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1. Introduction

An undirected graph G is called a circle graph if there exists a set of chords C on a circle
and a one-to-one correspondence between vertices of G and chords of C such that two distinct
vertices are adjacent if and only if their corresponding chords intersect. Such a set Cis called
a (circle-graph) model for G. Fig. 1 shows a circle graph, along with a model for it. Fig. 2
shows a graph that is not a circle graph. Our main result is an algorithm that, given a graph
G =(V, E), decides in O(] V| X |E}) time whether G is a circle graph, and if so outputs a
model for it.

Our circle-graph recognition algorithm utilizes two new graph-theoretic results, which
may also be of interest in their own right. Say that a pair of vertices in a graph is similar if
each third vertex is adjacent to both of them or neither of them. We show that a graph hav-
ing no similar pairs must have an induced subgraph isomorphic to a certain graph (Theorem 1).
We then use this result to show that a graph having neither articulation points nor similar

pairs must have an induced subgraph isomorphic to some member of a certain family of graphs

(Theorem 2).

Another interesting result that we prove and utilize here is that a decomposition of a
graph into prime elements, with respect to the join decomposition [CE], can be found in
O(! V! x |E!) time for undirected graphs. This improves on the O(}V}?) algorithm of [Cu].

Circle éraphs, also known as overlap graphs, were introduced in [EI]. Given a model, the
maximum clique and the maximum independent set problems on its corresponding graph can be
solved in polynomial time ([Ga], [Hs], [RU]), but the coloring problem is NP-hard [GJ]. The

recognition problem for circle graphs was posed as open in [GJ], [Go].

Polynomial-time algorithms have been found for recognizing permutation graphs ([PL],
[Sp]), as well as for circular-arc graphs [Tu], which are defined as the intersection graphs of the

matching diagram of a permutation, and of a set of arcs of a circle, respectively. These and
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other types of intersection graphs are discussed in [Go]. Note that the recognition problem for
circle graphs is at least as hard as that for permutation graphs. More precisely, given a graph
G we can add a new vertex adjacent to each other vertex to get a new graph G ; it is easily

seen that G is a permutation graph if and only if G 1is a circle graph.

A preliminary version of this paper appeared in [GH]. An O(}V!®) time algorithm for

recognizing circle graphs was independently discovered by Bouchet [Bo].



2. Overview of the algorithm

The idea of the algorithm is to attempt to build up a model C for the given graph
G =(V, E) by adding one chord at a time. Thus, after each iteration, C is a model for the
subgraph induced by some W C V. At all times, we maintain a placement for each vertex v
not yet in W, but adjacent to at least one member of W. In particular, we associate with va
pair of arcs {¢;, ¢o} with the property that the chord for v in any model for G must have one
endpoint in ¢; and one in ¢y (more precisely, the pair {¢;, ¢}, which we refer 4t0 as ch(v), is a
“pecessary placement’ for v relative to C, as defined in Section 3 below). Furthermore, at all
times, C is essentially the only model for the subgraph induced by W that could be contained
by a model for the entire graph G (more precisely, C is a “necessary model” for G/ W, as

defined in Section 3).

At each iteration, we add to W a vertex w chosen arbitrarily from among those not in W
but adjacent to at least one member of W. We also add a chord to C corresponding to w
whose endpoints lie in the two members of ch(w), respectively. We then must update ch(v) for
various vertices v € V — W, since our model C is now more detailed. In particular, for each
vertex v such that ch(v) contained some ¢ € ch(w), we now must be more specific about where
w must be placed. That is, the arc ¢ was split into two subarcs by the new chord for w; we
must update ch(v) by replacing ¢ by one of these two subarcs. Furthermore, we must compute
ch(v) for each vertex v adjacent to w but to no other members of W, since previously such ch(v)
were undefined. We must perform the updates to these various ch(v) in such a way that they

remain necessary placements relative to C.

The algorithm terminates either when W = V (in which case C is a model for the entire
graph G) or when we find that a chord with endpoints in ch(w) -- where w is the chosen vertex
-- does not intersect precisely those chords in C corresponding to vertices adjacent to w (in

which case G is not a circle graph, since ch(w) is necessary).
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To facilitate this process, we first do some pre-processing to remove certain degeneracies
from G. In particular, we first find the connected components of G. It is easily seen that G is
a circle graph if and only if each of its connected components are, and that a model for G can
be obtained in O(]V}) time from models for those connected components. Therefore we assume
in the remainder of this paper that G is connected. Next we decompose G into components
which are prime with respect to Cunningham’s join decomposition [CE], [Cu] (defined in Section
3 below). Again, G is a circle graph if and only if each of its prime components are, and a
model for G can be obtained quickly from models for those connected components (see Lemma
1)

After decomposing into prime elements, we assume that G is prime. The next major task
1s to start off the iterative process, that is, to find some initial W and a necessary model C for
it-and the necessary placements ch(v) relative to C. It turns out (Theorem 2) that each graph
containing neither similar pairs nor articulation points must contain as an induced subgraph at
least one member of a certain family F of graphs (see Fig. 9). This is interesting because prime
graphs have neither similar pairs nor articulation points (Lemma 2) and because each member
of F is easily seen to be prime and are “uniquely representable” circle graphs (defined in Sec-
tion 3), which essentially means that each of these graphs has only one model up to rotations,
reflections and order-preserving mappings of the circle. Furthermore, this induced member of

F can be found quickly.

Section 3 contains much of the definitions and notation used in the paper. Lemmas 1 and
2 (which pertain to primeness) as well as the improved algorithm for finding a prime decompo-
sition are contained in Section 4. Section 5 contain the algorithm for finding a W that induces
a member of F within a graph without similar pairs or articulation points. It also presents
another result (used as a substep of that algorithm) for finding a particular graph (see Fig. 7)

within a graph not containing similar pairs. Section 6 contains the algorithm for computing
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necessary placements relative to this initial W. Section 7 contains the main, iterative part of
the overall algorithm. A subroutine used in Section 6, which we call Algorithm A, is also used
in Section 7. An interesting corollary (Section 8) of this work is that primeness and unique

representability are equivalent notions for circle graphs.

The complexity analyses of the various steps are given in the sections in which they
appear. Performing the prime decomposition takes O(} V] X |E}]) time. Finding a member of
F takes O(}E}) time. Algorithm A can be performed in O(}E}) time. The initial placement
(Section 6) consists of | W} calls to Algorithm A, and the main iteration (Section 7) consists of
at most |Vl — | W] calls to Algorithm A. Hence the total time used by the algorithm is

O(i Vi X | E}).

3. Definitions and Notation

All graphs considered in this paper are undirected, with no self-loops. Let G =(V, E) be
a graph and W C V. Then G/W is the subgraph of G induced by W. If v € V, then Ny{v) =
{w € W:(w, v) €EE}, ie. it is the neighborhood of v restricted to W. Vertices a, b € V are
said to be W-similar if Ny{a) — {b} = Ny{b) — {a}. Thus, vertices that are V-similar are

what we called “similar” above.

A path in G is an ordered set of vertices p;, pa, ..., ps such that (p;, pis1) € E for all
i,1 <1 <s. The path is primitive if in addition (p;, p;) ¢ E for all ¢, j, |7—1} > 2.

We consider only sets of chords whose endpoints are all distinct; this is without loss of
generality because if G is a circle graph then it has a model with all endpoints distinct. We
also find it convenient to consider only sets of chords on a particular circle, say the unit circle

centered at the origin (thus we will refer to “the circle”).

We now give a more precise definition of unique representability. Let C be a set of chords

on the circle. Then G(C) denotes the graph for which Cis a model, and let {vy, v, ..., v,} be



%

its vertices. Let m(C) denote the permutation on the multiset {vy, vy, vg, ve, ..., v,, v},
obtained by traversing (starting at some arbitrary point) the 2n endpoints of chords of C' clock-
wise around the circle, and at each such endpoint reporting the vertex of G(C) corresponding
to the chord of C that contains it. If m =(m, my, ..., m;) is 2 permutation then a shift of =
results in the permutation (7, m, T, ..., Tt_1), and a reverse of m results in the permutation
(mk ) Tg—1, ..., M)- If C; and Cy are circle-graph models then we write C; ~ Cq if m{Cy) can
be obtained from 7(C;) by a sequence of shift and reverse operations. Note that ~ is an
equivalence relation. It is easily seen that C; ~ Cj implies that G(C,) is isomorphic to G(C3).

A circle graph G is uniquely representable if each two models C; and Cy for it satisfy C; ~ C,.

A model D for G/ W is necessary if either G is not a circle graph or each model for G has
a subset D “ corresponding to the vertices of W such that D "~ D. The endpoints of the
chords of D define 2}D} (= 21 W!) empty arcs on the circle, each containing none of these end-
points. A placement of a vertex v € V — W relative to D is a pair {¢;, ¢} of these empty arcs.
This placement of v is necessary if D U {d} is a necessary model for G/(W U {v}), where d is
some chord having one endpoint in c,f)l and the other in ¢s.

Finally, we review the notion of the join composition, following [CE], [Cu]. Let G =(V, E)

be a graph such that V can be partitioned into Vy, V;, Vo and V3 such that
ViXV,CE,
EN((VoX Vo) U(Vo X V3)U(Vi X V3)) =,
and
Vo U Vi), {VaU V3 22

(see Fig. 3). Let G; =G/(VoU Vy U{m,}) for some m; € Vo. Analogously, let Gy =

G/({ms} U Vo U V3) for some my € V;. Then we say that {G;, G} is a simple decomposition
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of G, yielded by the partition {Vy, Vy, Vi, V3}. A (general) decomposition of a graph G is
defined inductively to be either {G} or a set of graphs obtained from a decomposition G of G
by replacing some H € G by the members of a simple decomposition of H. A graph is prime if

it has no simple decomposition. A decomposition is prime if each of its elements is prime.



4. Decomposition into prime elements
The following result enables us to restrict our attention to prime graphs.

LEMMA 1: Let {G;, G2} be a simple decomposition of G. Then G is a circle graph if and
only if G; and G5 both are. Furthermore, given models for G; and G, respectively, a model
for G can be constructed in O(] V}) time.
PROOF: If G is a circle graph then G} and G5 are as well (since they are induced subgraphs).
To prove the converse, assume that G; and G, are circle graphs, with models C; and C,,

respectively. Let

m(Cy) =(my, Ay, my, By)
and

m(Cq) = (mg, Ag, mg, By),
where m; and m, are as specified in the definition of decomposition above, and where, for
i =1,2, A; (resp. B;) denotes the subsequence of vertices in n(C;) appearing after the first (resp.

second) occurrence of m;.

Then the sequence
(A142B,B,)
can be obtained from a traversal of a set of chords (see Fig. 4) that, as is easily verified, is a

circle model for G. QED

Thus our circle-graph recognition algorithm first finds a prime decomposition G of G,
then decides whether each of its elements is a circle graph. If so, then it constructs a model for
G in a pairwise manner from the models for the elements of G; otherwise it declares that G is

not a circle graph. Thus we assume from now on that the input graph G is prime.
The following properties of primeness will be used extensively.

LEMMA 2:1If G =(V, E)is a prime graph having at least five vertices then (1) G has no arti-
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culation points, and (2) G has no similar pairs.

PROOF: (1) If G has an articulation point v, then let {A, B} be a partition of V — {v} sets
such that |B] > 14} > 1 and the removal of v from G leaves A disconnected from B. Then

the partition of Vinto

Vo=A

vy ={v}

Vo = Np(v)

Vs = B — Np(v)

is a simple decomposition of G.

(2) If @, b € Vare a similar pair then the partition of Vinto

Vo=
Vi={a b}
Vy = Ni{a) — {b}

Vs =V —(Na) U{q b})
is a simple decomposition of G. QED
We now present an O time algorithm to find a prime decomposition of an undirected
graph G, thus improving on the O(}V}®) time algorithm of [Cu]. As is shown in [Cu], this prob-
lem can be solved by making O(} V1) calls to a subroutine that solves the following problem:
INPUT: a graph G =(V, E) and an edge (z, y) € E.

OUTPUT: a partition {Vy, V;, Vo, V3} of V yielding a decomposition, such that
z € Vy and y € Vy, if such a partition exists; otherwise output “no”.
An O(! V12) time algorithm to solve this problem is given in [Cu]; our algorithm, which runs in
O(!E!) time, is shown in Fig. 5. We maintain a partition {S, T} of V, such that z € § and
y € T. We try to construct these sets so that there is a partition {Vy, Vi, Vg, V3} of Vyield-

ing a decomposition, where S = Vo U V; and T = V3 U V3; if such a decomposition exists then
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we refer to the set {S, T} as a split. Initially S contains only z and one other (arbitrarily
chosen) vertex w, and T contains all other vertices. Define a violation as a pair {s, ¢} such

that s € S, and ¢ € T and one of the following four cases is true (see Fig. 6)

1. (s, )EE, (s,y)¢E, (I, z)€EE
2. (s, t)EE, (s, y)EE (i z)¢E
3. (s, )EE, (s, y)EE (i 2)¢E

4. (s, t)¢E, (s, y) €EE, (t z)€EFE.

It is easily verified that if there is a violation then {S, T} is not a split. The algorithm itera-
tively looks for violations, and whenever it finds one, eliminates it by moving the member of T
involved in the violation into S. We use a set U to hold all vertices s that have been moved
into S, but that we have not yet examined to see whether there is a ¢ € T with which s forms a

violation.
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(1) w « some element of V — {z, y};

(2) S+ A{z w};

B8) T«V-S5;

(4) U+ {w};

(5) WHILE U » & DO

()  BEGIN

(7) s +— some member of U; U« U — {s};

(8) [[ Look for violations of the form {s, ¢} where ¢ € T']|

(9) IF (5, 4) € E

(10) THEN FOR each t € Nz(s) U Nr(z) DO

(11) IF {s, t} is a violation THEN

(12) BEGIN

(13) T T-{t};

(14) S+ Su{t};

(15) U+ UU{t}

(16) END

(17) ELSE FOR each ¢ € Ny(s) DO

(18) BEGIN

(19) [[ {s, t} must be a violation |]

(20) T+« T—{t};

(21) S+« Su{t};

(22) U« UuU{t}

(23) END;

(24) END;

(25) [[ Now there are no violations |]

(26) IF iT| >1

(27) THEN BEGIN

(28) Vie—{s€S:(s y) EE}

(29) Vo S — Vy;

(30) Vo= {t€T:(t z) EE};

(31) Vo= T~=Vy

(32) output {Vy, V1, Vy, Va}

(33) END :

(34)  ELSE | e

(35) Interchange z and y and repeat the WHILE loop with S = {y, w} and T = {z}.

(36) Again, if | T}>1 then output a partition as in steps (28)-(32); otherwise output “no”.
Fig. 5

The algorithm to check for a decomposition splitting a particular edge.
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PROOF OF CORRECTNESS:

If there is a split {S, T} with z €S, y € T then either w € Sor w € T. Hence it suffices
to check that the algorithm correctly determines whether there is a split {S, T} with
{z, w} €S, y € T. We show first that after the termination of the WHILE loop there is no vio-
lation. Assume for a contradiction that there were such a violation {s, t}. Since every ele-
ment of Sother than z was removed from U at some point, we can consider the point at which
s was removed from U. If (s, y) € E then (since {s, t} is a violation) we must have that
t € Nq(s) U Np(z). But this implies that the violation {s, ¢} would have been detected in step
(10), and therefore ¢ would have been included in S, a contradiction. On the other hand, if
(s, y) ¢ E then the violation {s, t} would have been detected in step (17) and therefore ¢ would

have been included in S, again a contradiction.
Now if | T! > 1 then it is easy to verify that the partition {Vo, Vi, Vo, Va} yields a
decomposition. On the other hand, if there isa split {S , T } with 2 €S,y € T then no ele-

ment of S could constitute a violation with an element of T .
ANALYSIS OF TIME COMPLEXITY:

For each vertex v € V, we maintain a doubly-linked list of its neighbors in T (i.e. the set
Nrz(v)). When an element ¢ is removed from T, it must be deleted from each of the deg(t) such
lists. To facilitate this, we also maintain, for each ¢ € T, a list of the nodes corresponding to it

in these lists; thus there is one such node (in the list for Ny(v)) for each v adjacent to .

Note that no vertex is removed from U more than once. Furthermore, we claim that
whenever an element s is removed from U, the amount of time spent in checking for violations
involving s (which is proportional to the number of executions of the FOR loops in steps (10)
and (17)) is

O( deg(s) + # of violations found involving s)

To see this, note that step (10) examines some ¢ € T either when ¢ € N(s) (which happens for
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at most deg(s) values of t), or when t € Ny(z) — Nz(s) (which implies that {s, ¢} is a violation,
of type 4). To enumerate the elements in the set Np(z) — Ng(s) efficiently, we first traverse
the list Np(s), marking each element; we then traverse the list Np(z) reporting each unmarked
element. These two traversals take O( deg(s) + # of violations found involving s ) time.

Finally, step (17) executes | Nz(s)} ( < deg(s)) times.

Thus, the running time of the algorithm is at most

S O(deg(s) + # of violations found involving s )
s €V—{zy}

=0(1V} + 1) = O(iE}),

since the number of violations found is at most | V] — 2 (since each such violation causes an
element to be removed from T).
In summary, the running time of algorithm of [Cu] to find a prime decomposition is dom-

inated by O(! V1) calls to this algorithm; thus its total time is O(} V| X |E}).
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5. Finding a member of F

We assume throughout the remainder of the paper that G is prime and has at least five
vertices. Recall (Lemma 2) that this implies that G has neither similar pairs nor articulation
points. We begin by showing (Theorem 1) that G contains, as an induced subgraph, the graph
pictured in Fig. 7 (defined below). This will help us in showing (Theorem 2) that G must con-
tain, as an induced subgraph, one of the graphs pictured in Fig. 9 (also defined below). These
theorems are constructive, and indeed the required induced subgraph can be found in O(}E})

time.

DEFINITIONS: a graph is called a P4 if it is isomorphic to the graph with vertices {q, b, ¢, d}

and edges {(q, b), (b, ¢), (¢, d)} (see Fig. 7).
THEOREM 1: Let G =(V, E), |V| > 2, be a graph having no similar pairs. Then some

induced subgraph of G is a P4. Furthermore, such a subgraph can be found in O(}E]}) time.

(Note that the absence of similar pairs implies |E} = | V1))

PROOF: For all k£ > 0, let Hy denote the graph with vertices {a; : 0 < ¢ < 2k+1}, and edges
{(a;, a;) : 1 # j and j is even and (¢ is even or 7 > j)} (see Fig. 8). Our algorithm iteratively
finds an induced subgraph of G isomorphic to Hy for £k =0, 1, - - until eventually finding an

induced P4.

More precisely, we initially chose some edge (wg, wy) € E (E cannot be empty since other-
wise each vertex of G would be isolated and hence, since |V} > 2, G would have a similar
pair). Thus G/{wg, w;} is isomorphic to Hy.

Now assume that we have found a set W ={w;:0< j < 2k+1} C V that induces a sub-
graph of G isomorphic to Hj, for some k > 0, where w; corresponds to a; under the isomor-
phism. Note that since wo; and woi4; are W-similar there must exist some zg € V — W adja-
cent to exactly one of them (otherwise wo; and wgi4; would be V-similar). Assume that zj is

adjacent to wo; but not to woy,q; this is without loss of generality by the W-similarity of wq
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and woi4y. Now if zg is adjacent to wg;yy for some 7, 0 < j < &, then {u=2j+1, z0 , Wap, Waky1}
induces a P4 (and so we halt and output it). Otherwise if z; is not adjacent to wy; for some
5, 0 < 7 <k, then {z9, wgi, wyj, we;41) induces a P4. So assume that neither of these two

cases hold.

At this point we know that zy and wop4y are W U {zo}-similar. Therefore there must be
some z; € V — (W U {z0}) adjacent to exactly one of {zg, wo41}, for otherwise zy and wapyg
would be similar. Since zg and wor4; are W U {zg}-similar, it is without loss of generality to
assume that z; is adjacent to zp but not to wgry;. Now if z; is not adjacent to wo; for some
5, 0 < j <k, then {2y, 29, waj, wog41} induces a P4. Otherwise if z; is adjacent to wg;4; for

some j, 0 < j < k, then {wgj41, 21, Wor, wop41) induces a P4.

Thus if we have not yet found an induced P4 in G then the set W U {zg, z;} induces a

subgraph isomorphic to Hy,;.

By induction, the algorithm must find an induced P4 in G, since otherwise it finds an

induced subgraph in G isomorphic to Hy for each k£ > 0, contradicting the finiteness of G.

We now describe how to implement the algorithm in the specified time bound. At the kth
iteration we must find a vertex zy adjacent to wag, but not to wog4q, or vice versa. To do this,
we can traverse the adjacency list for wq, placing a marker in the slots corresponding to its
elements in an array representing all the members of V. Then we traverse the adjacency list
for wop4q; if we ever find an unmarked vertex in it, we halt and return that as zo (since it is
adjacent to wory; but not to wg). Similarly, we can search for a vertex adjacent to wo but
not to wor41). We check whether zy is adjacent to wgjyy for some j, 0 < j <k, by scanning
the adjacency list for z;. We check whether zo is not adjacent to wq; for some 0 < j < k by
scanning the adjacency list for zp and marking off the even-indexed elements of W as they are
encountered --- thus the work is O(deg(z¢)), unless this is the last iteration, in which case it is

O(1V}). Finding z; and checking its adjacencies is done analogously. Therefore the total time
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required after the sorting is O(|E}).

Since we have shown that G has an induced P4, another way to find it is to use the algo-
rithm of [CP] that finds an induced P4 (whenever it exists) in a graph (V, E) in O(! Vi + |E})
time.

QED Theorem 1

DEFINITIONS: A graph is a house if it is isomorphic to the graph with vertices {a, b, ¢, d, €}
and edges {(a, b), (a, ¢), (b, d), (¢, d), (¢, ¢), (d, e)}. A graph is a tepee if it is isomorphic to
the graph with vertices {q, b, ¢, d, e} and edges {(a, b), (b, c), (¢, d), (q, €), (b, €), (c, e),
(d, e)}. A graph is a figure-8if it is isomorphic to the graph with vertices {a, b, ¢, d, e f}and
edges {(q¢, b), (¢, ¢), (b, d), (¢, d), (¢, €), (d, f), (¢, f)}. A graph is a primitive k-cycle if it is
isomorphic to the graph with vertices {a;, ag, -+, a4} and edges {(a;, as), (as, az), ...,
(ax-1, ag), (ar, a;)} (see Fig. 9). Let
F ={G: Gis a house, a tepee, a figure-8 or a primitive k-cycle for some k > 5}.

The key fact, as is easily verified, is that each member of F has at least 5 vertices, is prime,

and is a uniquely representable circle graph. Furthermore, we can efficiently find a member of

F within G because of the following result.

THEOREM 2: Let G =(V, E), | V| > 2, be a graph having neither similar pairs nor articula-
tion points. Then some induced subgraph of G is a member of F. Furthermore, such a sub-

graph can be found in O(|E}) time.

PROOF: Our algorithm to find such an induced subgraph first finds a P4 (Step 1). Then in
each of Steps 2 through 9, we test for some condition and if it is satisfied then we can find a
member of F and halt; otherwise we continue, and utilize the falsity of the condition in subse-
quent steps. Finally (Step 10), if none of the conditions has been met, then we can find a set
UC Vsuch that (1) there is a particular vertex w that is adjacent to each member of U, (2)

U} 2 2, and (3) U contains no U-similar pairs. Therefore we can simply apply Theorem 1 to
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the subgraph G/ U to obtain another P4; this P4 together with w induces a tepee.

More precisely, the algorithm is:
Step 1: Find vertices a, b, ¢, d € V that induce a P4, where (q, b), (b, ¢), (¢, d) € E, by means
of the algorithm in the proof of Theorem 1.
Step 2: If there exists v € V adjacent to both @ and d then output the subgraph induced by
{a, b, ¢, d, v} (which must be a house, tepee or primitive 5-cycle) and halt.

Step 3:
B+« {b €V : (a b )€Eand there exists ¢ € Vsuch that (b ,c ), (¢ ,d) € E};

C«—{c EV : (d ¢ )€EE and there exists b € Vsuch that (a, b ), (b , ¢ ) € E}.

If there exist vertices b; € B, ¢; € C such that (b;,c;) € F then we can find an induced
member of F as follows. Since b; € B, ¢; € C, there exist vertices by, co such that
(a,b5),(ba,c;) €E, and (by,ca),(c2,d) €E (Fig. 10.1). Note that Step 2 ensures that
(a,c9),(bg,d) & E. There are eight cases, depending on which subset of {(b1,bs),(ba,c2),(c1,¢2)}

are contained in E. The reader may verify that there is an induced member of F in each case.
Thus
FACT 1: for all b; €B, ¢; € C, (b1,¢1) € E (see Fig. 10.15).

Step 4: If | B} =1 then let (a = po,p1,P2,..-,r = ¢) be the shortest path from a to ¢ not con-
taining b (such a path must exist, otherwise b would be an articulation point). We know that
r > 3, since otherwise B would have at least two elements, namely b and p;. Consider the sub-
graph induced by {b,a,p1,ps,...,p;—1,¢}; it must be of the form shown in Fig. 10.2. Let k be the

smallest integer greater than 2 such that p; is adjacent to b.
We consider four cases:

CASE 1: (p1,0), (p2,b) € E.
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Then {a,p1,ps,...,ps, b} is a primitive cycle of length k+2 > 5.
CASE 2: (plib) GE, (erb) é E

If k=3 then {a,p;,ps,p3,b} induces a house. If k£ > 4 then {p;,ps,....ps,b} is a

primitive cycle of length £+1 > 5.
CASE 3: (plib) é Er (p2ub) €E.

If k=3 then {a,p1,ps,ps,b} induces a house. If k=4 then {a,p;,ps,p3,P4,b}

induces a figure-8. If k > 5 then {ps,ps, - . . ,Ps, b} is a primitive cycle of length k¥ > 5.
CASE 4 (plwb)r(pQrb) e E

If £ =3 then {a,p;,pa,p3,b} induces a tepee. If k =4 then {p;,ps,p3,p4,b} induces

a house. If k > 5 then {pa,ps,...,px,b} is a primitive cycle of length k > 5.

Step 5:

W, < {v € V— B : vis adjacent to at least one element of B and at least one ele-

ment of C U {a,d} };

Wo +— {v € V — B : vis adjacent to at least one element of B but no elements of

C U/{a,d} }.

Thus {W;, Wy} is a partition of the vertices outside of B but adjacent to elements of B.

After Step 6, each element of W, will be adjacent to each element of B. After Step 7,
each element of W, will be adjacent to at least two elements of B. Steps 8 and 9 will use these
two facts to produce a set U C B having at least two elements and no Ursimilar pairs, which

then allows us to find a member of F in Step 10.
Step 6: If there exists w € Wy such that Np(w) # B then we find a member of F as follows.

First note that it cannot be that Ng(w) 5 (& and (w,a) € E, otherwise we would have
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w € B. Furthermore, it cannot be that Ng(w) = ¢ and (w,a) ¢ E, otherwise we would have
(w,d) € E and hence (since Np(w) # (/f) we would have w € C. Also note that w # g, since oth-
erwise there would be some ¢; € Ng(w) adjacent to @ and also adjacent to d (by the definition
of C), which cannot be true because of Step 2. Since w is adjacent to at least one, but not all

elements of B, there exists b;,b, € B such that wis adjacent to b; but not to bs.
CASE 1: Ng(w) # &, (w,a) ¢ E.
Let c¢; be an element of C adjacent to w (Fig. 10.3). Then {b;,a,bs,c1,w} induces
a tepee if (by,bs) € E, and a house otherwise.
CASE 2: Ng(w) = &, (w,a) € E (Fig. 10.4).
Then {by,c,bo,a,w} induces a tepee if (b;,by) € E, and a house otherwise.

Step 7:

Q «—{we Wy: |Np(w)j =1} .

If @ is non-empty then we find a member of F as follows. For each ¢ € @ define b, as the sole
element of Np(g), and define path(g) as a shortest path not containing b, from ¢ to some
b € B—{b,} (such a path must exist since otherwise b, would be an articulation point, since
IB] > 2 by Step 4). Find some ¢ € @ such that path(gp) has minimum length; let
(g0,p1,P2,---,Pk, b ) be path(gg). Note that for all 1 <7 < k, p; is not adjacent to both a and ¢,

since otherwise p; € B (by the definition of B) and therefore path(gg) is not minimum.

Since |Np(go)} =1 we must have k > 1; hence go is not adjacent to b . Also note that

p1 & {a,c}, by the definition of Q.
CASE1l: k=1

If (a,p;) € E then (as shown above) p; is not adjacent to ¢. We also know that gq

is not adjacent to ¢, since gy € @ implies N¢(gq) = & (since @ C W,). Thus (Fig. 10.5)



<« O =

{bqo,qo,pl,b ,c} induces either a tepee (if b, is adjacent to both p; and & ), a house (if
it is adjacent to exactly one of them), or a primitive 5-cycle (if it is adjacent to nei-
ther).
On the other hand, if (a,p;) € E then (since (go,a) & E, by the definition of @) we
have that {a,b ,b,,,q0,p1} induces either a tepee, house or primitive 5-cycle in each of
the four cases depending on which subset of {b ,p;} is adjacent to b,,. (Fig. 10.6).
The following two facts are used in cases 2 and 3:
FACT 2: for all 1,1 < i< k-2, p; is adjacent to neither a nor ¢, since otherwise there would
be a path from go to b shorter than path(gg) (b is adjacent to ¢ by Fact 1).
FACT 3:for all 7,1 <1 < k-1, p; is not adjacent to b,,. To see this, assume that it is. Then
p; is not adjacent to some b € B — {b,.}, since otherwise there would be a path from g to

b shorter than path(gg). Therefore since |B] > 2 (by Step 4), we have Np(p;) # B. Therefore
we have (as a result of Step 6) that p; is adjacent to no element of C U {a,d}. Thus p; € Q.

Furthermore path(p;) is of shorter length than path(go), a contradiction.
CASE 2: k =2.
CASE 2.1: (b,,,b ) € E (Fig. 10.7).
Then {b,,,90,P1,P2,b } induces a house if (b,,,p2) € E and a primitive 5-cycle oth-
erwise.
CASE 2.2: (b,,b ) € E.
CASE 2.2.1: (p;,a) EE.

Then (py,c) € E (Fig. 10.8), since otherwise p; € B, giving a path shorter than

path(go). Then {b,,¢0,P1,4,b ,c} induces a figure-8.

CASE 2.2.2: (p;,a) € E (Fig. 10.9).
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Then if (ps,a) € E then {b;,,90,p1,p2,a} induces a house or a primitive 5-cycle
(depending on whether (pg,b,)) €E). On the other hand, if (ps,a) ¢ E then

{b4:90,P1,P2,0 ,a} induces a figure-8 or a primitive 6-cycle (depending on whether

(p2,bg,) € E).
CASE 3: k > 3.
CASE 3.1: (pg—1,¢) € E (Fig. 10.10).

Then {b;,,90,P1,P2,---,Pk—1,¢} is a primitive cycle of length k+2 > 5.

CASE 3.2: (pg_1,¢) € E.
CASE 3.2.1: (pg,b,,) € E.

Then {b,,,90,P1,P2,--,px} is a primitive cycle of length k+2 > 5.
CASE 3.2.2: (py, b,,) ¢ E (Fig. 10.11).

If (pr,c) €EE then {b;,q0,P1,P2,...,Ps, ¢} is a primitive cycle of length k+3 > 6.
Otherwise ((pg,c) € E) either {b;.,q0,p1,p2,....,ps,0 } is a primitive cycle of length
k+3 > 6 (if (b ,b,,) €E) or {by,,q0,P1,02,.-,Pk,b ,c} is a primitive cycle of length
k+4 > 7 (f (b ,b,,) € B).

Thus
FACT 4: |Np(w)| > 2 for all w € W,.

Step 8:

w +— the element of W, having the fewest neighbors in B, i.e. |Np(w)] < | Np(w )]

forall w € Wy (We know W, # (Jsince a € Wy);

U « Np(w).

If there exists v € B — U adjacent to some b; € U but not adjacent to some by € U then
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(Fig. 10.12) {b;,w, by, c,v} induces a tepee if (b;,by) € E and a house otherwise.
Thus each vertex in B outside of U is adjacent to either none or all of the vertices in U.

Step 9: If there exist w € W, adjacent to some b; € U but not adjacent to some by € U,
then we can find a member of F as follows. Let bs be an element of B — U that is adjacent to
w (such a vertex must exist, since otherwise |Np(w)l = U} > |U—{b2}| > |Np(w )| con-
tradicting the choice of w).
CASE 1: (w,w ) € E (Fig. 10.13).
Then {b;,a,bs,w ,w} induces a tepee if (b;,b5) € E and a house otherwise.
CASE 2: (w,w ) ¢ E (Fig. 10.14).

Then {b;,w,bo,bs,w } induces a tepee (if b; is adjacent to both by and b3), a prim-

itive 5-cycle (if b; is adjacent to neither by nor b3), or a house otherwise.
CASE 2.2: (bg,b3) € E.

If b, is adjacent to both by and bz then {b;,w,bs,a,bs} induces a tepee. If b; is
adjacent to by but not bz then {b;,w ,bs,a,bs} induces a house. If b, is adjacent to b3
but not by then {b;,w,bs,a,b3} induces a house. Finally, if b; is adjacent to neither by
nor by then {b;,w,by,a,b3,w } induces a figure-8.

FACT 5: U has no U-similar pairs.

PROOF: We claim that each vertex v € V — U is adjacent to all of U or none of U. Step 6
ensures this for each v € W, (since U C B). Step 8 ensures this for each v € B—U. Step 9
ensures this for each v € W,. Therefore if there exists uj,us € U that are U-similar, then

uy,uq are also V-similar, a contradiction. QED

Step 10: Find vertices u;,uq,u3,uy € U that induce a P4, by again using the algorithm of the

proof of Theorem 1 (Facts 4 and 5 allow us to do this). Thus {w,u;,us,us,us} induces a tepee.
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It is a simple matter to implement Steps 1-6 and 8-10 in O(}E]) time. For Step 7 it is
only slightly more complicated: recall that there we must find a shortest path
(g0,21,P2,--.,P1, 0 ) subject to gg € @, p; # by, for all 1 <7<k and b € B—{b, }. To do this,
we first find a shortest path P; of this form but subject also to py € @. Secondly, we find a
shortest path (g,py,po,...,px) subject to ¢pr € Q, b, # b,,; and then let P, be the path
(¢,p1,P2,.-, Pk, bp,). Both Py and P, can be found in O(|E}) by means of breadth-first search.

We then choose the shorter of P; and P, as our desired path.

QED Theorem 2
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6. Initial placement

Now assume that we have found (using the algorithm of the previous section) some
W C V that induces a member of F. We then construct a model C for this graph G/ W, which
is easily done in O(]W]) time. The model C is (of course) necessary for G/W since each
member of F' is uniquely representable (the reader may wish to review the definition of ‘“neces-
sary” models and placements from Section 3). Let chordg(w) denote the chord in C
corresponding to w, for each w € W. In this section, our task is to assign a necessary place-
ment relative to C to each v € V — W adjacent to at least one member of W. Having made
this placement for v, we then pick an arbitrary point within each of these two empty arcs as
endpoints of a chord for v. The important decision is which two principal arcs are chosen; the

actual points chosen within the arcs are irrelevant.

We first define certain subsets of V' — W as follows: Let
Ag={vEV —W:Ny{v)=}.
For each w € W, let

Ay(w) ={v € V = W : Ny(v) = {w}}

and
M(w)={v €V — W:vis W-similar to w} .
Let
Ar= |J Ai(w)(={v €V —W: [Nyv)| =1})
wEW
and
M=y Mw)
wE W

Finally, let
Ay ={a € V—(WUM): |Ny{a)| 22}

Thus, {Ag, A1, As, M} is a partition of V — W.
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Thus our task is to give each v € A; U A, U M a necessary placement ch(v) relative to C.
We assign such placements to members of A, using one method, and then to members of

A1 U M using another.

6.1. Placing members of A,

Our algorithm that assigns a necessary placement (relative to C) to each v € Ay, is
straightforward: for each pair {o, f} of empty arcs defined by C, we consider a chord ¢4 g hav-
ing one endpoint in @ and the other in B. We then check which chords of C are intersected by
cqp- If we ever find a pair {@, B} such that c, g intersects precisely those chords correspond-
ing to members of Ny{v), then we return the pair {a, B} as the placement for v. Otherwise, we
report that G is not a circle graph and halt the entire algorithm. We can do this with confi-
dence that (in the former case) the chord returned for v is necessary or that (in the latter case)

G is not a circle graph, because of the following result.

LEMMA 3: For each v € Ay, if G/(W U {v}) is a circle graph then there exists a unique pair
{a, B} of empty arcs defined by C such that there exists a chord ¢, with one endpoint in & and

one in B, and C U {c,} is 2 model for G/(W U {v}).

PROOF: Let ¢ and ¢ be chords having endpoints in @ and §, and in @ and £ , respectively,
such that C U {c} and C U {c } are both models for G/(W U {v}). Assume for a contradic-

tion that {a, f} # {a , B }. Consider two cases.
CASE 1: «, B, @ and f are nof pairwise distinct.

Then there exists some Y€ {a, Sy N{a , B } Let ¢, ¢ and ¢, be the three arcs
separating the three distinct members of {e, 8, @ , B }, such that -y does not share a bounding
point with ¢, (see Fig. 11(3))" We regard ¢;, ¢t =0,1,2, as being closed (i.e. it includes its
bounding points). For each w € W, chordo(w) does not have exactly one endpoint in ¢, since

otherwise chord o(w) would intersect exactly one of {¢, ¢ }. Therefore the set



W ={w € W: chordg(w) has an endpoint in ¢y},
is non-empty and is disconnected from W — W | which is also non-empty (since ¢; has at least
one bounding point, which is an endpoint of a chord of C). But then G/W is disconnected, a

contradiction (since G/W € F).
CASE 2: o, f, @ and f are pairwise distinct.

Consider the arcs ¢g, ¢;, ¢ and @3, separating a, f, @ and f , in clockwise order around
the circle, where ¢;, ¢ =0,1,2,3 is regarded as being closed (i.e. it includes its two bounding
points). For example, see Fig. 11(b). Note that for { =0,1,2,3, for all w € W, it is not the case
that chord¢(w) has one endpoint in ¢; and the other in ;41 moa 4, since otherwise chord(w)
would intersect exactly one of {¢, ¢ }. If both ¢y and ¢, contain only one point, then these two
points must be the endpoints of chord¢(w) for some w € W. Therefore, either v and w are W-
similar or Ny{v) = {w}; either case contradicts the fact that v € A,. Similarly, it cannot be
that both ¢; and ¢; contain only one point. There is at least one vertex v; (resp. vy) in W
such that one endpoint of chordg(v;) lies in ¢ (resp. ¢;) and the other in ¢, (resp. ¢3). Hence
v must be adjacent to v; or vy (or both); without loss of generality, assume that v is adjacent
to vy. Therefore {Vy, V;, Vs, V3} is a partition of W, where

Vo ={u € W: the endpoints of chord¢(u) are both in ¢; or both in ¢,}

Vi ={u € W: one endpoint of chordg(u) is in ¢, and the other is in ¢;}

Vo ={u € W: one endpoint of chord¢(u) is in ¢; and the other is in ¢}

Vs ={u € W: the endpoints of chord(u) are both in ¢; or both in ¢5}
(thus v; € V; and vy € V,). This partition gives a simple decomposition of G/W. To see this,
it is easily verified that each member of V7 is adjacent to each member of V5, that no member
of Vy is a.djacent to a member of V, U V3, and that no member of V; is adjacent to a member
of V3. Furthermore, | Vo U V| > 2, because (as noted above) ¢y U @, contains at least three

endpoints of chords in C. Similarly, |V, U V3] > 2. But G/Wis a member of F and is there-
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fore prime, a contradiction.

QED LEMMA 3

6.2. Placing members of A; UM

We assign a necessary placement, relative to C, to the members of A; UM by calling
Algorithm A (described below) once for each w € W. Algorithm A, given some w € W, returns

a necessary placement relative to C for each member of A;(w) U M(w).

In order to describe the operation of Algorithm A, given w, we need some notation. Let ¢
be the chord in C corresponding to w. Let & and J denote the two empty arcs defined by the
model C — {c} that contain the endpoints of ¢. Let ag and a; (resp. fy and B;) denote the two
empty arcs of model C into which ¢ splits & (resp. f), in such a way that oy and B, are on the
same side of ¢, as is illustrated in Fig. 12. We refer to the arcs oy, a3, By and f; as the princi-
pal arcs. Let v and 6 denote the two arcs between & and £ so that the sequence of arcs oy, o,
8, B1, Bo, 77 are encountered during a clockwise traversal of the circle. Thus, there are vertices
wy, wo, w3, wy € W such that o is bounded by one endpoint of chordg(w;) and one of
chord o(ws), 6 is bounded by one endpoint of chord(ws) and one of chord¢(w;), B is bounded by
one endpoint of chord¢(ws) and one of chord¢(wy), 7y is bounded by one endpoint of chord(wy)

and one of chordg(wy).

Thus, Algorithm A finds, for each v € Aj(w) U M(w), a pair of principal ares that must
contain the endpoints of ¢’s chord in all models for G. Note that, in each model for G, the
placement for each member of A;(w) must have either one endpoint in ag and the other in o,
or one in f; and the other in f;. Similarly, there are two possibilities for the placement of
each m € M(w). In particular, if (m,w) ¢ E then the chord for m must have either one end-
point in ¢ and the other in By, or one in @; and the other in B;. Otherwise ((m, w) € E) the
chord for m must have either one endpoint in oy and the other in f#;, or one in @; and the

other in fy. Thus, for each v € A;(w) UM(w), once Algorithm A has found that some
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endpoint of v's chord must (in all models for G) lie in a particular principal arc, then it is a

trivial matter to decide which principal arc must contain the other endpoint of v’s chord.

Since the chord for each member of M(w) must have one endpoint in & and one in B, we
refer to M(w) by the symbol Fos. The reason for this extra notation is that Algorithm A will
be called again while iteratively adding chords (Section 7). The algorithm for adding chords
will also identify a set of vertices needing chords with one endpoint in @ and one in 8, but this
set will not directly correspond to the notion of W-similarity with some vertex; this will be

clarified in Section 7.
Now the information that allows Algorithm A to make these binary choices of placements

for vertices in A;(w) U Fup is provided to it in the form of four sets of vertices: Fo i Fa, Fp,

and Fﬂl-

6.2.1. Computing F,,

We {irst motivate and describe the computation of Fg, in detail, and then briefly mention
the analogous sets Fp, Fg, and Fp . Intuitively, Fo, is the set of vertices whose chords must
have one endpoint in v U 6 and the other might lie in o but cannot lie in any of the other
three principal arcs. In other words, these vertices’ chords cannot have an endpoint in a; U 8,
but can have (at most) one endpoint in . Identifying these vertices is useful to Algorithm A
because if, for example, some vertex p with this property is adjacent to some ¢ € A;(w), then

we know that the endpoints of the chord for ¢ must lie in @y and a;, rather than in £, and f;.

We begin by including in F, each v € A, for which ch(v) (computed in Section 6.1 above)

contains ¢ (note that the other arc in ch(v) must be contained in v U §, since v € Ay). Asis

shown in Section 6.1, ch(v) is necessary.

We also include each v € A;(w,;) in F,. We claim that, in each model for G, the chord

for v cannot have an endpoint in a; U 8. To see this, let y; denote the endpoint of chord ¢(w;)
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bounding @ and -, and let y, denote chordg(w;)’s other endpoint. Then the endpoints of ¢’s
chord must lie either in the two empty arcs defined by C surrounding y; or in those surround-
ing yo, because v is adjacent to no vertices of W other than w. If (w;,w) € E then y, € v and
hence the endpoints of v’s chord must either lie both in « or one in < and the other in o (see
Fig. 13(a)). Otherwise ( (w;,w) € E') they both lie in 6 or one lies in y and the other in o (Fig.

13(b)). This follows easily from the following result:
LEMMA 4: w;, wy, ws and wy are pairwise distinct.
PROOF: If w; = wqy (see Fig. 14(a)) then Ny{w;) = {w}, which contradicts the fact that no
graph in F has an articulation point. Analogously, we have w; # wy. If w; = ws (Fig. 14(b))
or w; = wy then wand w; are W-similar, contradicting the fact that no graph in F has a simi-
lar pair. Analogously, we have wy # wy and we # w3z. QED
In either case, v's chord has no endpoint in a7 U S.

Finally, we include each v € M(w;) in Fo,. There are four possibilities for the placement
of v’s chord: two if (w, w,) € E (Fig. 15(a)) and two if (w, w;) € E (Fig. 15(b)). No two
members of {w;, wa, w3, wy} are W-similar (since no graph in F has a similar pair); hence v’s

chord cannot have an endpoint in a; U .

In summary, we compute:

Foo+—{vEA; 0 € ch(v)} U A (w;) U M(w;)
Fgo + {v €Ay : 0 €ch(v)} UA;(ws) UM(wy)
Fgo—{v €Ay : By €ch(v)} UAy(wg) UMwy)

Fg « {vE€A,:p €ch(v)} UA(ws) U M(ws)

For convenience, we define F; = Fo, U Fo, UFg, U Fp,.
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6.2.2. Algorithm A

. Throughout the remainder of this section, when we refer to the placement of a vertex we

mean relative to the model C' — {c}, unless otherwise specified.

Algorithm A is shown in Fig. 16, and works as follows. We iteratively place a member of
Aj(w) UF; UFgs and in doing so, learn how to place other such members. We traverse this
subset of Aj(w) UF; UFus as a breadth-first search, implemented by means of a first-in-
first-out queue. Thus whenever placing a vertex, we then put it in the queue. The algorithm
iteratively dequeues a vertex v, which then may cause a number of other vertices to be placed
and enqueued; in this case we say that v determines these other vertices. We maintain a set P
of all members of A;(w)U F,s that have ever been in the queue, i.e. the members of

Aj(w) U Fap that have been placed so far.

A few definitions are needed to explain Fig. 16. If k¥ > 1 then a chain is a path
aj,as,...,a; in G such that a; € Ag for ¢t =1,2,...,k. _Two vertices v, v € V are said to be con-
nected by this chain if (v, a;), (g, v) € E. We refer to the four arcs ag, oy, fy, f; as the princi-
pal arcs. Thus, the output of Algorithm A consists of a pair of principal arcs for each member
of Aj(w) U Fqas. We define the z_reflect of a principal arc as the other principal arc on the
same side of chord ¢ ; more precisely

x_reflect(ag) = By, x_reflect(fy) = ap, x_reflect(a;) =pF;, x_reflect(B;) =0, .
Analogously, define the y_reflect of a principal arc as the principal arc differing from it only by
being on the other side of ¢ ; more precisely

y_reflect(ap) = o1, y_reflect(a;) = ap, y_reflect(fy) = F1, y_reflect(F;) =B .

By “placing” a vertex v, what the algorithm actually does is to pick the two principal
arcs to contain the endpoints of a chord for v. We distinguish between these two principal

arcs, calling them arc;(v) and arcy(v), respectively.

The algorithm begins by placing each f € F,, as follows. Note that, in each model for G,
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no endpoint of fs chord may lie in a; U B, but there may be an endpoint of fs chord in aj.
We indeed set arco(f) to ap, for the following reason. If f will determine some
g € A;(w) U Fgp, then indeed fs chord must have an endpoint in & U £ and hence in ap. On
the other hand, if fdoes not determine any vertices, then arco(f) will never be referenced and
hence it does not matter what value it receives here. We let are,(f) be é if fis adjacent to w,
otherwise we set it to . Notice that arc;(f) will not be referenced in the algorithm, but will

appear in the proof of correctness (Lemma 6). We place each member of F,,, Fg, and Fg,
analogously.
In the body of the main loop of Algorithm A, a vertex p is removed by the queue and then

the vertices ¢ (not previously determined) that are determined by p are placed and enqueued.

There are conditions under which p determines g, illustrated in Fig. 17 (a)-(e):
(a) p and ¢ are connected by a chain,
(b) ¢ € Ay(w) and (p, ¢) €E,
(c) 9 € Fap, p € Ay(w) 2nd (p, ) € E,
(d) ¢ € Fop, p €F1 U Fop, (p, w) €Eand (p, q) £ E,
(€) ¢ EFap, p €F1 UFqg, (p, w) ¢ Eand (p, q) EE.

The key idea (made more formal in the proof of correctness) of the algorithm is that the first
endpoint of ¢’s chord must lie in the same principal arc z as the second endpoint of p’s arc.
The first and second endpoints of the arcs are distinguished by 1’s and 2’s in the figure. The
second endpoint of ¢’s arc is then forced to lie in the y_reflect of z if ¢ € A;(w), or in the
x_reflect of z if ¢ € Fop and (¢, w) € E, or in the y_reflect of the x_reflect of z if ¢ € Fop and

(g, w) €EE.
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queue +— (%
FOR each z € {ay, a;, By, B} DO
FOR each f € F, DO
BEGIN
IF ((f, w) EE)iff ( z € {ag,fo} )
THEN arc,(f) «+ 6
ELSE arc,(f) « v;

arey(f) « z;

enqueue(/)
END;

P40
WHILE the queue is non-empty DO
BEGIN
dequeue(p) ;

FOR each ¢ € A;(w) — P adjacent to p or connected by a chain to p DO
BEGIN
arey(g) + area(p) ;
arce(gq) +— y_reflect(q) ;

enqueue(q) ; P <« P U {q}
END;

FOR each ¢ € F,s — PDO
IF  (pis connected by a chain to g)
OR (p € A;(w) AND (p, q) £ E)
OR ( p EFI UFczﬁ
AND
( ((p, w) EE,AND (p, q) ¢ E)
OR ((p, w) ¢ E, AND (p, ¢) € E) ) ) THEN
BEGIN

arcy(g) «+ arcy(p) ;

arco(gq) «— x_reflect( arcy(q) );
IF ¢is adjacent to w THEN
arco(q) +— y_reflect( arcy(q) );

enqueue(q) ; P +— PU{q}
END
END;

Fig. 16
Algorithm A
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PROOF OF CORRECTNESS OF ALGORITHM A

The proof of correctness of Algorithm A follows immediately from Lemmas 6 and 7;

Lemma 5 is used in proving Lemma 6.

Let P denote the set P at the termination of the algorithm. For each pPEF,UP ,let

ch(p) denote the placement given to p by the algorithm; that is, ch(p) = {arc;(p), arcs(p)}.

Throughout these lemmas, we fix a model D for G, let chordp(v) denote the chord in D
corresponding to v, for each vertex v of G. Since C is a necessary model for G/ W, we can
assume without loss of generality for our purposes that for each w € W, the chord correspond-
ing to w in model C is identical to chordp(w). Thus, we are able to refer to the principal arcs
ag, a, By and By with regard to model D just as we have for model C. Since the choice of D

was arbitrary, Lemma 6 implies that ch(p) is necessary, for each p € A;(w) U Fyp.

LEMMA 5: If a;, as, -+ , g is a chain such that a; is adjacent to some v € Aj(w) U Fyp

there is some principal are z such that for all ¢, 1<i<k, both endpoints of chordp(a;) are in z.

PROOF: Assume the contrary. Then since a; is adjacent to v and chordp(v) has both end-
points in @ U B, one endpoint of chordp(a,) lies in some principal arc (since (a;, w) € E), say
. By assumption, there is some vertex in the chain whose chord in D has endpoints not both
in ap; let a; be such a vertex for the least ;. Now chordp(a;) has one endpoint in ¢ (since, if j
> 1, a; is adjacent to a;_; and chordp(a;_;) has both endpoints in ap). The other endpoint of
chordp(a;) cannot lie in oy U B; U 6 (since (aj, w) € E), nor in By (since a; is not W-similar to
w), nor in  (since otherwise W would be disconnected, since a; is adjacent to no member of W).

QED

LEMMA 6: The endpoints of chordp(p) lie in arc;(p) and arcy(p), respectively, for each

pEP .

PROOF:



.

We begin with a few definitions: For each p € F; U P , we distinguish between the two
endpoints of chordp(p), calling them first(p) and second(p), respectively. In particular, we will
show (as mentioned above) by induction that the endpoints of chordp(p) lie in arc;(p) and
arcq(p), respectively. Define first(p) (resp. second(p)) as that endpoint of chordp(p) lying within

arcy(p) (resp. arce(p)). These are well defined since arc;(p) cannot equal arcy(p).

If 2 is a point within arc « (resp. ) then outside(z) denotes the arc bounded by z and by
one of the two bounding points of & (resp. f) such that outside(z) is entirely contained in some
principal arc. In other words, outside(z) does not contain an endpoint of chord ¢ (see Fig. 18).

If zis a point on the circle not in & U B then define outside(z) as the empty set.

As a notational convenience, if p € F; UP then we let
outside;(p) = outside( first(p) ) and  outsides(p) = outside( second(p) )
(note that outside(first(p)) = (Jif p € F). Also, let

live(p) = outsides(p) U ( U outside;(q) )
g determined by p

Finally, we have already defined what it means for vertices v; and vy to be connected by
a chain. Also, we have seen (Lemma 5) that for each chain ay, as, ..., a; such that a; is adja-
cent to a member of P , there is a principal arc z containing both endpoints of each of the
chords chordp(a;), chordp(as), ..., chordp(a;). Now we say that points z;, 2o € z are connected

by this chain if

where ¢; is the arc within z defined by chordp(a;) (see Fig. 19).

Let py,po,...pir,up | be the vertices of F; UP in the order of their inclusion in the
queue (i.e. in the order in which they were placed by the algorithm). We will show the follow-
ing facts about py, for k=1,2, .., |F; UP |, by induction on &

1. If p; determines a vertex g then
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(A) If p; is connected by a chain to ¢ then this chain connects second(p;) to some end-
point of chordp(g),

(B) The endpoints of chordp(px) lie in arej(p;) and arco(py) and the endpoints of
chordp(g) lie in arcy(g) and arcy(g) (this permits us to define first(p;), second(py), first(q)
and second(q) as discussed above),

(C) If second(p;) € outside;(¢) then p; and g are connected by a chain.

2. If r € A;(w) U Fop and chordp(r) has an endpoint in live(p;) then r was determined by p;
for some j<k (that is, r was determined by p; if it had not already been determined ear-
lier).

Part 1.B of the induction hypothesis is what we are really interested in; parts 1.A, 1.C

and 2 are carried along in order to facilitate its proof.

BASIS OF INDUCTION: As a basis for the induction, assume 1<k<|F;|. Then p; € Fy,
since the algorithm uses a first-in-first-out queue. In this basis step, we find it convenient to
prove the four parts of the claim in the order 1.B, 1.A, 1.C, 2. In the proof of parts 1.A, 1.B

and 1.C of the claim, let ¢ be a vertex determined by py.

PROOF OF PART 1.B: We will first show that the endpoints of chordp(p) lie in arcy(p;) and
arco(pi). Then we will show that one endpoint of chordp(g) (which we will define as first(g))
lies in arcy(pg). The other endpoint of chordp(g) (which we will define as second(g)) must there-
fore lie in the y_reflect of this arc (if ¢ € A;(w)), or in the y_reflect of its x_reflect (if ¢ € Fyp
and (¢, w) € E) or in simply its x_reflect (if ¢ € Fop and (g, w) € E). But this is precisely the

way the algorithm chooses arcy(q).

Consider two cases.

CASE 1: (pi, w) € E .

Then g is either adjacent to p; or connected by a chain to p;. Since chordp(g) has
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both endpoints in @ U £ (since ¢ € Aj(w) U Fqap), this implies that chordp(pg) has at least
one endpoint in @ U . But since p; € F, chordp(ps) also has at least one endpoint in
~ U 6. Therefore the endpoints of chdrdp(pk) lie in arc;(pg) ar:d arco(pg). For example (see
Fig. 20(a)) if py € Fq, then chordp(p;) has one endpoint in < and the other not in o U S

Therefore since this second endpoint must lie in & U £, it must lie in a.

If ¢ is adjacent to p; then one endpoint of chordp(g) is in arcs(pg) = arcy(g). On the
other hand, if ¢ is connected by a chain to p;, then some endpoint of chordp(pi) is con-
nected to some endpoint of chordp(g). Therefore since endpoints of chordp(g) lie in o U 8
and since first(p;) does not lie in @ U f, we have that this endpoint of chordp(g) is con-

nected by a chain to second(p;) and hence lies in arco(py) = arcy(g).

CASE 2: (pi, w) EE ..

If either ¢ is a member of A,(w), or if ¢ is a member of F,g and connected to p; by a

chain, then we can show the claim by using the argument of CASE 1 above.

So assume that ¢ € Fog and that ¢ is not c.onnected to p; by a chain. Then g is not
adjacent to p; (since py determined g). Therefore since chordp(gq) has one endpoint in o
and one in B, and since (p;, w) € E, chordp(p;) has at most one endpoint in ¥ U 6. There-
fore the endpoints of chordp(p) lie in arcy(p;) and arcy(p;). For example (see Fig. 20(b)) if
Pk € Fq, then chordp(pi) has one endpoint in é and the other not in aq U B. Since py is not

adjacent to g, this second endpoint must lie in o U £ and hence in ap.

Therefore one endpoint (which we define as first(q)) of chordp(q) is in

arca(px) = arey(g).
PROOF OF PART 1.A: Assume that p; and g are connected by a chain. Then some endpoint
of chordp(pg) is connected to some endpoint of chordp(g). Therefore since endpoints of
chordp(q) lie in @ U B (since g € Aj(w) U Fog), and first(p;) does not lie in a Up (since

pr € F1), we have that second(p;) is connected by a chain to some endpoint of chordp(g).



- 38 -

PROOF OF PART 1.C:
Assume second(p;) € outside(qg).

If ¢ € A;(w) then (p;, ¢) € E and hence (since p; determined g) p; and ¢ are connected by
a chain (see Fig. 21(a)).

Otherwise (¢ € Fop) if (pr,w) € E (Fig. 21(b)) then (pz,¢) €E; on the other hand, if
(pk,w) & E (Fig. 21(c)) then (ps,q) € E. In either case, p; and g are connected by a chain (since
pi determined g).

PROOF OF PART 2:

Let r € Aj(w) U Fqop be such that chordp(r) has an endpoint z; in live( pg ). Let 2,

denote the other endpoint chordp(r).
CASE 1: second(p;) € outside(z;).

Then since 2z, €live(p;), there is a vertex ¢ determined by p; such that
z; € outside;(¢) and second(p;) € outside,(¢) (Fig. 22(a)). Since ¢ was determined by p;,
the endpoints of chordp(g) lie in arc;(g) and arce(g), as is shown in part 1.B above.
Therefore, by part 1.C, p; is connected to ¢ by a chain. Then, by part 1.A, second(p;) is
connected by a chain to first(g). Hence r is connected by a chain to pg, and therefore

was determined by p; if not earlier.
CASE 2: second(p;) € outside(z,).
Then either (pg, w) € E (Fig. 22(b)) or (pk, w) & E (Fig. 22(c)). In either case, if

r € A1(w) then (p;, r) € E, implying that r was determined by p; if not earlier. Other-

wise (r € Fap) we have that (py, r) € E (if (ps, v) € E)) or (ps, 1) € B (if (pay ) ¢ ),

implying in either case that r was determined by p; if not earlier.

INDUCTIVE STEP: Consider some k£ > |F;!, and assume the claim for all j, 1<j<k. Thus

pr € P . Define p as the vertex that determined p;, Then p = p; for some j < k, and hence
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the inductive hypothesis applies to p. Therefore the endpoints of chordp(pg) lie in arcy(p;) and
arca(pg). In the proof of parts 1.A, 1.B and 1.C of the claim, let g be a vertex determined by
Dk-

PROOF OF PART 1.A:

Assume that p; and ¢ are connected by a chain. Then some endpoint z; of chordp(q) lies
in the same principal arc as does first(p;) or second(p;). Assume for a contradiction that z;
and first(pi) lie in the same principal arc. Let z, be the other endpoint of chordp(g). We know
that z; & live(p), since otherwise g would have been determined by p or earlier, by part 2 of
the inductive hypothesis applied to p. Hence z; ¢ outside;(p;) and z; & outsides(p). Consider

two cases, depending on the relative order of first( p; ) and second( p’ ).
CASE 1: first(pg) € outsidey(p) (see Fig. 23(a)).

Then since 2, is connected by a chain to first(p;) and since second(p) is between z;
and first(p;), ¢ must be connected by a chain to p. Hence ¢ was determined by p or

earlier, and therefore not by p;, a contradiction.
CASE 2: first(p;) ¢ outsides(p) (see Fig. 23(b)).

Then p; is connected to p by a chain which, by part 1.B of the inductive
hypothesis applied to p, connects second(p) to first(p;). But then second(p) is con-
nected by a chain to z;. Hence ¢ was determined by p or earlier, and therefore not by

P, & contradiction.
PROOF OF PART 1.B:

The endpoints of chordp(pe) lie in arcy(py) and arce(p;) by part 1.B of the inductive
hypothesis applied to p; thus we need only show that the endpoints of chordp(g) lie in arc;(q)

and arcs(¢).

If px and ¢ are connected by a chain then, as shown above, second(p;) and some endpoint
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of chordp(g) lie in the same principal arc, namely arco(pi) (= arcy(g)) by part 1.B of the induc-
tion hypothesis applied to p. The other endpoint of chordp(g) must therefore lie in arcy(q).

So assume that p; and g are not connected by a chain. We will prove the claim by con-
sidering a number of cases. A key fact in many of these is no endpoint of chordp(g) fnay lie in
outside;(p;). To see this, note that outside(p;) C live(p), implying that if an endpoint of
chordp(g) were within outside;(p;) then (by part 2 of the inductive hypothesis applied to p) ¢
would have been determined by p or earlier and hence not by p;.

CASE 1: ¢ € Ay(w).
CASE 1.1: p; € A (w) (Fig. 24(a)).
Then (p, ¢) € E. Therefore the endpoints of chordp(g) must lie in the same pair

of principal arcs as do the endpoints of chordp(p;), hence the claim is true.
CASE 1.2: p; € Fop (Fig. 24(b)).
Then (pg, ) € E. Therefore since some endpoint of chordp(g) must lie in the same
principal arc as some endpoint of chordp(p;), the claim is true.
CASE 2: ¢ € Fyp.
CASE 2.1: p; € A;(w) (see Fig. 24(c)).

Then (pi, ) € E (since p; determined ¢). Therefore since some endpoint of
chordp(g) must lie in the same principal arc as some endpoint of chordp(pi), and since
no endpoint of chordp(g) lies in outside;(p;) the claim (i.e. that the endpoints of
chordp(q) lie in arc;(g) and arcy(q)) is true.

CASE 2.2: p; € Fgp.

CASE 2.2.1: (p, w), (g, w) & E (Fig. 24(d)).

Then (pg, q) € E. Therefore the endpoints of chordp(g) must lie in the same pair

of principal arcs as do the endpoints of chordp(p;), hence the claim is true.
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CASE 2.2.2: (p;, w) € E, (¢, w) € E (Fig. 24(e)).
Then (p, ¢) € E. Therefore, since no endpoint of chordp(g) lies in outside;(p;), one
endpoint of chordp(g) must lie in outsides(p;). Hence the claim is true.
CASE 2.2.3: (p, w) € E, (g, w) ¢ E (Fig. 24(f)).

Then (px, ) € E. Therefore, since no endpoint of chordp(g) lies in outside;(p;), one

endpoint of chordp(g) must lie in outsideg(p;). Hence the claim is true.
CASE 2.2.4: (p;, w), (g, w) € E (Fig. 24(g)).

Then (pi, q) € E. Therefore the endpoints of chordp(g) must lie in the same pair

of principal arcs as do the endpoints of chordp(py), hence the claim is true.
PROOF OF PART 1.C:
Assume second(p;) € outside;(g).
CASE 1: g € A;(w).
CASE 1.1: p; € A;(w) (Fig. 25(a)).

Then second(q) & outside;(p;), since otherwise ¢ would have have been determined
by p or earlier (and hence not by p;) by part 2 of the inductive hypothesis applied to p,

since outside;(px) C live(p)).

Therefore (pz, ¢) € E and hence (since p; determined ¢) p; and g are connected by

a chain.
CASE 1.2: p; € Fop (Fig. 25(b)).

Then (pg, ¢) € E and hence (since p; determined g¢) p; and g are connected by a

chain.
CASE 2: q € Fop.

CASE 2.1: p; € Aj(w) (Fig. 25(c)).
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Then (px, ¢) € E and hence (since p, determined ¢) p; and g are connected by a

chain.

CASE 2.2: p; € Fap. .
CASE 2.2.1 (p;,w) ¢ E and (q,w) € E. (Fig. 25(d))

Then second(q) ¢ outside;(p;), since otherwise ¢ would have have been determined
by p or earlier (and hence not by p;) by part 2 of the inductive hypothesis applied to p,

since outside;(p;) C live(p)).

Therefore (pi, ¢) € E; hence (since p; determined ¢) py and g are connected by a

chain.
CASE 2.2.2 (p,w) ¢ E and (g,w) € E. (Fig. 25(e))
Then (p;, q) € E; hence (since py determined ¢) p; and g are connected by a chain.
CASE 2.2.3 (p;,w) € E and (q,w) & E. (Fig. 25())
Then (p;, ¢) € E; hence (since p; determined ¢) p; and ¢ are connected by a chain.

CASE 2.2.4 (p,w) € E and (g,w) € E. (Fig. 25(g))

Then second(q) ¢ outside;(py), since otherwise ¢ would have been determined by p
or earlier (and hence not by p;) by part 2 of the inductive hypothesis applied to p, since

outside;(pg) C live(p)).

Therefore (pg, ¢) € E; hence (since p; determined ¢) p; and ¢ are connected by a

chain.

PROOF OF PART 2:

Let r € Ay(w) U Fqap be such that chordp(r) has an endpoint z; in live( pp ). Let 2o

denote the other endpoint chordp(r).

CASE 1: second(p;) € outside(z;).



48 =

Then since z; € live(p;), there is a vertex ¢ determined by p; such that
z; € outside;(g) and second(p;) € outside;(g) (Fig. 26(a)). Since ¢ was determined by p,
the endpoints of chordp(g) lie in arcy(g) and ares(g), as is shown in part 1.B above.
Therefore, by part 1.C, py is connected to ¢ by a chain. Then, by part 1.A, second(py) is
connected by a chain to first(¢g). Hence r is connected by a chain to p, and therefore

was determined by p; if not earlier.
CASE 2: second(p;) ¢ outside(z;) and z; € outside;(pz). (Fig. 26(b))

Then zs € live(p), since outside;(px) C live(p). Therefore, by part 2 of the induc-

tive hypothesis applied to p, we have that r was determined by p if not earlier.
CASE 3: second(p;) ¢ outside(z;) and 2z & outside;(p).

Consider the three cases:
Case 3.1: p; € A,(w) (Fig. 26(c))
Case 3.2: p; € Fop and (py, w) €EE (Fig. 26(d))
Case 3.3: pp € Fop and (pr, w) ¢ E (Fig. 26(e))
In each of these three cases, if r € A;(w) then (pg, r) € E, implying that r was deter-
mined by p; if not earlier. Otherwise (r € Fqo5) we have that (pg, 1) ¢ E in Cases 3.1
and 3.2 and (py, r) € E in Case 3.3, implying in each case that r was determined by pj if

not earlier.

QED LEMMA 6
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LEMMA 7: all members of A;(w) U Fqp are placed by Algorithm A.

PROOF: We must show P =A;(w)UFus  Assume for a contradiction that
(A1(w) U Fag) — P is non-empty. Partition V as follows:
Vo = (A1(w) —P)
U{ag € Ap : there is a member of (A;(w) U Fag) — P adjacent to ag
or connected by a chain to ag} ,
Vi=(Fap — P )U{u},
Vo= Ny{w)
U Fas
U{f € F:(f, w) €EE}
U(P N(A(w)U{fE€Fqap:(f, w) EE}))
Vs=V—(VoUViUVy),
where F.5 is defined as
{vEV—(WUA UALUF; UFap): (v, w) EE}.
It is easy to see that the chord (in D) for a vertex in F.s has one endpoint in -y and one in 6.
We will show that {Vy, Vy, Vy, V3} is a simple decomposition of G, contradicting the prime-

ness of G.

First, note that V, U V; contains at least two members, namely w and the members of
(A1(w) U Fop) — P (which, as we have assumed, is non-empty). Furthermore V, U V3 con-
tains at least two members, since

VaU Vel > 1W—{w)] 24

To see that every vertex in V; is adjacent to every vertex in Vj, let v; € V) and

vy € Vo. The proof that (vq, vg) € E is straightforward if either v; =w or if v € Fop and

vs € Ny{w) U Fs. On the other hand, if v; € Fqp and

ve E{fEF:(f, w)EE} U (P NA(w)U{fEF1 UFqs:(f, w) EE})
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then if v; were not adjacent to vy then vy would have determined v; (unless it were previously

placed). In either case we would have v; € P ; thus (v;,v2) € E.

We next show that no vertex in Vs is adjacent to a vertex in V. Let vg € V. Since
chordp(vg) has both endpoints in @ or both in f, it cannot be adjacent to a member
Ny{w) U F,s. So consider the other case, ie. vy is adjacent to some vo €F; UP . If
vy € A;(w) — P then it cannot be adjacent to vy, since otherwise vy would determine vy and
we would have vy € P . On the other hand, if vg € A¢ then it is connected by a chain to some
v € (A1(w) U Fqp) — P ; vy cannot be adjacent to vy since otherwise vy would determine v,
givingv €P . |

Finally, we show that no vertex vs € V3 is adjacent to a vertex v € Vo U V, by consid-
ering four cases. These cases are exhaustive since vz cannot be a member of A;(w)
(C VoU Vy)orof Fus (C Va).
CASE 1: vz € W.
Then v # w (since vz € V) and v, is not adjacent to w (since vz & V). Therefore the end-
point of chordp(vs) must be both in ~ or both in 6, whereas those of v are both in « upg.
Hence (v3,v) ¢ E.
CASE 2: v3 € Ay.
Then (vs,w) ¢ E, by the definition of Ag. If v # w then (v3,v) € E since otherwise v would be
connected by a chain to some member of (A;(w) U Fos) — P , implying vz € V.
CASE 3: v3 € F; U Fup.
Then (vs,w) & E. To see this note that if v3 € Fy then (vs, w) € E would imply vz € Vz. On
the other hand, if vs € Fos then vs € P (since Fog —P C V) so that again (v3, w) €EE
would imply vz € V.

Hence if v # w and vs were adjacent to v then either v € (A;(w) U Fos) — P in which

case vy would determine v, or else v would be in Ay and adjacent to or connected by a chain to
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some v € (A1(w) U Fqp) — P which would therefore be determined by vz. In either case we

have a contradiction; hence (vz,v) ¢ E.
CASE 4: v3 € V — (W U Ag U A, (w) UF; UFas UF.g).
Then no endpoint of chordp(vs) lies in & U B, but both endpoints of chordp(v) lie in oo U S

(since v € Vy U V). Furthermore, (v3, w) € E. Therefore (v3,v) ¢ E.

QED LEMMA 7
ANALYSIS OF TIME COMPLEXITY OF ALGORITHM A
We now describe how to implement Algorithm A in O(}E}) time.
In order to facilitate finding the vertices connected by a chain to the vertex just
dequeued, we do some preprocessing, as follows. We first find the connected components of the

graph G/A,. Then for each such component A , we construct a linked list of the vertices in

A1(w) U Fup adjacent to at least one vertex in A . These lists can be constructed in a total of

O(|E}) time, as follows:

FOR each v € A;(w) U Fqup DO
FOR each a € Ay adjacent to v DO

add v to the list associated with a’s component ;

Having done this preprocessing, whenever we dequeue some vertex p, for each a € Ag adjacent
to p, we place and enqueue each ¢ in the list associated with a’s component, and then delete

this list.
Next, we place and enqueue each ¢ € A;(w) — P adjacent to p.

Next, if p € F) U Fop and (p, w) ¢ E then we place and enqueue each ¢ € Fgp — P adja-

cent to p.

These three steps described so far can all be accomplish in O(deg(p)) time.
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Finally, if p € A (w) or if (p € F; U Fop and (p, w) € E) then we place and enqueue each
member of Fos5 — P not adjacent to p. This can be done efficiently by maintaining a doubly-
linked list to represent the set Fog — P, we first traverse p’s adjacency list and marking (in the
list for Fop — P) each member adjacent to p. This requires O(deg(p)) time. We then traverse
the list for F,s — P, placing and enqueueing (and deleting from the list, i.e. inserting into P)
each unmarked element. Thus, each ¢ € Fop will be visited during such traversals at most a
total of deg(q) + 1 times (since when g¢ is placed and enqueued it is inserted into P so as never

to be visited again).

Thus the total time of Algorithm A is O(}E}).
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7. Adding chords

sary placement ch(v) relative to C for each v € V —
(recall from the definitions that ch(v) is a pair of empty arcs in the model defined by C). We
now describe how to iteratively add vertices to W along with corresponding chords to C, while

maintaining the necessary placements relative to C for these members of V — W. The algo-

At this point we have already computed a necessary model C for G/ W, as well as a neces-

rithm is as follows:

Ag— {vEV =W : Ny{v) =} ;
WHILE W # VDO

BEGIN
w + some member of ¥V — Wsuch that |Ny{w)] > 1;
([ such a vertex must exist since G is connected ||
a, B+ the two members of ch(w);
¢, — some chord with one endpoint in & and one in 3 ;

IF the subset of chords in C intersected by c,, does not equal Ny{w)
THEN declare that G is not a circle graph and halt ;

Aq(w) +— N{w) N A ;
Ay — Ay — N{w) ;

Fop —{v€V—W:ch(v)=A{e, B} };
T V—(WUA(w)UAq U Fap) ;

Fo, + {v € T : ch(w) = {a, ¢} for some arc é such that (¢ C 7)iff (v, w) EE};
Fg, + {v € T : ch(w) = {a, ¢} for some arc ¢ such that (¢ & q) iff (v, w) EE };
Fg, « {v € T : ch(w) = {B, ¢} for some arc ¢ such that (¢ C ) iff (v, w) € E };
Fg —{veET: ch w) = {B, ¢} for some arc ¢ such that (¢ C ) iff (v, w) EE};

Fl*_FaoUFcrlUFﬂoUFﬁ:’

FOR each z € {ag, 0y, Py, B} DO
FOR each v € F, DO

ch(v) = (ch(v) —{a, B}) U {z};

Call Algorithm A with parameter w, update ch(v) for each v € Ay(w) U Fop
with its value returned by this call;

C + CU{cu};
END;

(26) [[ G is a circle graph J]

(27)

output C as a model for G';

W adjacent to at least one member of W



G =

The arcs ag, @, B, A1, ¥ and & are defined here as they were in Section 6 (see Fig. 12).

Thus, at each iteration, the algorithm chooses some w adjacent to at least one member of
W (hence at all times, G/ W is connected). We then use Algorithm A to refine the placements
given to the vertices; that is, we must choose among two possibilities for placing each
v € A;(w) (whose necessary placement has both endpoints in @ or both in f) and each v € Fop
(whose necessary placement has one endpoint in & and one in f). The set A;(w) is computed
exactly as in Section 6. The set Fop is computed by looking at the necessary placements ch(v),
relative to W, that we have already computed; note that now there may be some vertices W-

similar to w but not included in Fu4, since w may be W-similar to other members of W.

In general, we cannot assume here (as we did in Section 6) that G/ W is prime. So, for
example, it might be that & consists of a single point; that is, wo might equal ws, (making w an
articulation point of G/(W U {w})) so that Lemma 4 would not be true in this context. How-
ever, Lemmas 5, 6 and 7, which constitute the proof of correctness of Algorithm A, do not
depend on G/(W U {w} being prime; it suffices that.it is connected and has at least five ver-

tices.

The sets Fgy, Fa,, Fg, and Fg, have a simpler interpretation and are conceptually simpler
to compute than they were in Section 6. Recall that in Section 6, F 4, was interpreted as the
union of those vertices that might have one endpoint in ap but none in any other principal arc.
This uncertainty was not harmful because it turned out that if those vertices did indeed deter-
mine any members of A1(w) U Fas then we knew that they must have an endpoint in ag. Here
we can simply define F'y, as the vertices v € V — W having necessary placements with one end-
point in &y and one in v U § we can do this because we already have ch(v) (from the previous
iteration). There is only one minor detail: ch(v) = {a, ¢} for some arc ¢ is a placement of v
relative to C, but we need a placement of v relative to C'U {cy,}; that is, we need to replace «

in ch(v) by either ag or a;. Thisis accomplished by making the simple test as described in step
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(14): if ¢ is contained within ~ then choose aq if (v, w) € E and @; otherwise; on the other
hand, if ¢ is contained within & then choose aq if (v, w) € E and a; otherwise. This placement
of v is clearly necessary relative to C U {c}, so we record it in step (21). The sets Fo , Fg;, Fg,
are computed analogously.

Having computed Ag, A;(w), and F; in this way, we perform Algorithm A precisely as it

appears in Fig. 16. The proof of correctness also is unchanged.
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8. Remarks
We can now characterize unique representability as follows:

COROLLARY: Let G be a circle graph with at least five vertices. Then G is prime if and

only if it is uniquely representable.

PROOF: If G is prime, then our algorithm either finds that it is not a circle graph, or con-

structs a necessary model for it.

Conversely, assume that G is uniquely representable. Assume for a contraction that there
is a partition {Vy, Vy, Vi, V3} yielding a simple decomposition {G/(VoU Vi Um,),
G/(Vy U V3 U my)}, for some m; € Vg, mg € V;, with models C; and Cy, respectively. Let

m(Cy) = (my, A1, my, By)
and
m(Cs) = (my, Ay, ma, Ba),
where, for ¢ = 1,2, A; (resp. B;) denotes the subsequence of vertices in 7(C;) appearing after the

first (resp. second) occurrence of m;.

Then the sequences
(A142B1Bs)
and
((A1)FA2B) By)
where (Al)R is the reverse of sequence A;, can each be obtained from a traversal of a set of
chords D, and D, respectively, (again see Fig. 4). It is easily verified that D; and Dy are each
models for G and that it is not true that D; ~ Dy, contradicting the unique representability of

G. QED

Unique representability of certain circle graphs is discussed in [Bu].
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(a) (b)

Fig. 1

A graph along with a model for it.

Fig. 2

A graph that is not 2 circle graph.
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A simple decomposition of a graph.
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Tlustration for the proof of Lemma i
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Fig. 6
The four types of violations.
A straight line indicates an edge, an absence of line indicates no edge,

a wavy line indicates that an edge may or may not be present.
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A graph that is a P4

Fig. 8

The graph H;.
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Graphs in the set F.
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Illustrations for the proof of Theorem 2.

A straight line indicates an edge, an absence of line indicates no edge,

a wavy line indicates that an edge may or may not be present.
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Another illustration for the proof of Theorem 2.



(a)

Fig. 11

Illustrations for the proof of Lemma 3.
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Fig. 12

The arcs referenced by Algorithm A.
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Fig. 13

The possible placements of v € A;(w,) are shown in broken line.
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Fig. 14

Illustrations for the proof of Lemma 4.
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Fig. 15

The possible placements of v € M(w;) are shown in broken line.
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Fig. 17

The five ways for p to determine g.
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Fig. 18

Definition of outside(z).

Fig. 19

The chain a;, @9, a3, a4 connects points z; and z3.
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Fig. 20

Tilustrations for proof of part 1.B, basis step,

(b)

in Lemma 6.
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Fig. 21

Illustrations for proof of part 1.C, basis step, in Lemma 6.
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Fig. 22

Illustrations for proof of part 2, basis step, in Lemma 6.
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Fig. 23

Illustrations for proof of part 1.A, inductive step, in Lemma 6.
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Tllustrations for proof of part 1.B, inductive step, in Lemma 6.
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Illustrations for proof of part 1.C, inductive step, in Lemma 6.
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in Lemma 6.

Illustrations for proof of part 2, inductive step,



