Providing Fault Tolerance
In Parallel Secondary Storage Systems

Arvin Park

K. Balasubramanian

Department Computer Seience
Princeton University
Princeton, New Jersey 08544

CS-TR-057-86

November 7, 1986

Abstract

Reliability is a critical concern for designers of parallel data storage systems. These systems
consist of large numbers of storage devices which can provide high rates of data transfer. However,
the consequential dependence on large numbers of devices can make such systems more prone to
failure then non-parallel systems which depend on only a single storage device. This problem can be
remedied by employing a modest amount of redundant storage to provide fault tolerance. In fact,
providing fault tolerance in parallel data storage systems requires less redundancy (and is therefore
more cost effective) than providing fault tolerance for non-parallel systems. This paper describes and

analyses an effective method of providing fault tolerance in parallel data storage systems.
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1. Introduction

Parallelism has been the focus of much recent computer architecture research. Multiple CPU’s
have been used to increase computational speed and parallel memory banks have been employed to
increase memory bandwidth. Recent research has extended this paradigm further down the memory
hierarchy into parallel secondary storage systems [Kim85] [Sale86] [Arul82] [Poly86].

Reliability becomes a critical concern in such systems because of their dependence on large
numbers of mechanical and electronic components. If naively designed, such systems can be
substantially more prone to failure than conventional non-parallel secondary storage systems.

This paper examines reliability issues in parallel secondary storage systems. We use error
correcting codes, and a clever regeneration procedure to provide fault tolerance for such systems.
This method of providing fault tolerance is shown to be more efficient than conventional methods of

providing fault tolerance in non-parallel systems.
2. Parallel Secondary Storage Architectures

Disk Striping has been proposed as an efficient method of exploiting parallelism in secondary
storage systems [Kim85] [Sale86]. Such systems are typically composed of a set of N disk drives
which operate in parallel to provide high rates of I/O bandwidth. Each logical disk block is
partitioned into N equal sized sub-blocks, and each sub-block is stored on a different disk drive. This
allows a single block access to utilize the full bandwidth of the N disk drives.

Two major types of errors can occur in such a system. Many failures are caused by spurious
electronic, transmission, or mechanical errors. These errors cause no permanent loss of data and a
subsequent request to the same memory block will, with high probability, succeed. We call these
spurious errors. Other errors are caused by permanent hardware failures. In these situations, a
functional subunit or the entire system is permanently disabled. Some data may consequently be
lost. We call this more serious type of failure a hard error. We examine both types of errors in this

paper.
3. Error Correcting Codes

Most disk systems presently utilize checksums to detect errors on disk accesses. If a block’s
checksum does not match the checksum calculated during a block read, then the data was not
transmitted properly, and the read operation is performed again. This error detection method
corrects errors that occur during a block access, but it can do nothing to mitigate the effects of a disk
failure, when the whole block along with the checksum may be lost. To detect and correct for this type
of error, something more is required.

We will employ error correcting codes to provide fault tolerance across a number of memory units.
This is presently done in many semiconductor memory systems, but until recently hasn’t been applied
towards designs of secondary storage systems. Error correcting strategies change when applied to
secondary storage. This is because each functional unit (disk drive) can provide operational status to
the memory system. The system can then act upon the information provided. In other words, if a
number of drives have failed in the system, we can query the disk drives find out which ones have



failed. Correction then becomes easier, since expensive error correcting codes are not required to
detect error position.

If error position information is available, N bit error detection capability will suffice to correct N
bit errors [Arul82]. (Merely test all 2N possible combinations for the failed bits using the error
detection capability, only the correct combination will produce no detectable error. This is an
exhaustive method, but serves to prove our point. Faster techniques, which can be implemented in
hardware, exist [Berl84].) Asan example consider a single parity bit which suffices to detect a single
bit error. This parity information along with error position information allows one to correct single
bit errors.

In this paper we will use two types of error detection codes. Single error detection can be provided
for by adding a single parity bit. This uses only one extra bit of information to detect a single bit error
across N bits. Double bit error detection can be provided by a modified Hamming code. This method
uses M redundant bits to detect double bit errors in 2M-1 _ (M-1) -1 bits of data [Berl84}. This means
O(logN) redundant bits of data are required to provide double error detection capability for N bits of
data. Other methods of double error detection use fewer bits on particular word lengths, but no
general method performs significantly better than the modified Hamming code.

4. Spurious Errors

This type of error will not cause catastrophic system failure or loss of data, but it can degrade
system performance and complicate system software. To model such a system we assume it is
composed of data striped bit-wise across N disk drives. (Note that the data may be striped by word or
sub-block, but this doesn’t affect our results. It is only essential that data from a single logical block
be equally distributed across N disk drives. When Data is striped by sub-block we can still use
standard error correcting codes by maintaining that the kth bit in the error-correcting drive sub-block
corresponds to the error correcting bit for the word consisting of the kth bits of all the data sub-
blocks.) We assume probability of failure access on a single request to a single disk drive is p, and that
M failures can be tolerated on a given access. We can then calculate p(N,M) = the probability of

more than M failures on a single access.

M
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To determine what this means for a a practical system we assume N = 16, and let p and M take on

several values in Figure 1. As we can see from the graph, providing the ability to tolerate single bit
errors will compensate for the increased failure rate of a parallel disk system. (This is true for
practical valuesof p, .0001 < p = .01)

5. Hard Errors

To model hard errors we assume our system is composed of N disk drives each with an exponential
failure rate with constant A. the probability of failure of a given disk drive in a period At then
becomes f(t) = Ae-AtAt. By convolving failure rates of multiple disk drives we find the probability
distribution for the first disk failure out of an N disk system is fiy(t) = NAe-NAtAt,



The metric that we are interested in is the MTBF (mean time between failures). Note that the

MTBF of a disk drive with an exponential failure rate with constant Ais 1/A. From this we can derive

an expression for the MTBF of an N disk system in which M failures can be tolerated.
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Figure 1: Failure Rate as a Function of Fault Tolerance Level

Note that the MTBF increases almost linearly with the number of failures that can be tolerated.

This is offset by an inverse linear decrease in MTBF due to multiple disk drives. Thus, to produce a

system with an MTBF = 1/A, we would have to be able to tolerate quite a few failures. This is clearly

not practical as N increases. This problem can be solved by adding regeneration capabilities to the

fault tolerant secondary storage system.



6. Regeneration

When a disk drive fails, a spare drive can be brought on line, and the original contents of the failed
drive can be reconstructed and copied onto the spare drive. To do this it is necessary to scan the entire
contents of the parallel disk bank to reconstruct the contents of the spare drive. This doesn’t
necessitate bringing down the entire system. A background process can scan through the disk drives
performing the regeneration while the system continues to operate with a slightly reduced
performance.

If a subsequent disks should fail during the regeneration process, and this failure can be tolerated,
the regeneration process does not have to start over for the first failed drive. The scan can proceed
through the disk bank, regenerating both failed drives. When the end of the disk bank is reached the
first failed drive will be corﬁpletely regenerated. The scan process can then proceed cyclically through
the disk bank to complete regeneration of the second failed drive. The scan process can be thought of
as continually scanning cyclically through the disk bank. To completely regenerate a disk, it is only
necessary to wait for one complete cycle of the scan process.

The regeneration process adds significantly to the MTBF of the system. For the system to
completely fail, more than M failures must occur within the time required to regenerate one drive
(the first one that failed). This means more than M failures must occur in a time window of size R
(where R is the regeneration time). To estimate the MTBF of a parallel secondary storage system
with regeneration, we assume the system is composed of N disk drives, and can tolerate M failures.
Failures for each disk drive are exponentially distributed with parameter A and the regeneration

time is .
From this we calculate the probability that a single (given) disk drive fails in R time window.
t=R
P(single disk drive fails in R time window) = ! Ne Map =1 — MR
t=0

Call this quantity a. We can now approximate the probability that more than M disks fail in a time
period R. (Note that R is in general < < 1/X.)
P(more than M disks fail in a time period R)

=1 — P(M or fewer disks fail in a time period R)

=1- (P(O disks fails) + P(1 disks fail) + ... + P(Mdisksfail))]

i=M

1 (3 (Ma-ar-iad)

=0
To get an MTBF for the resulting system, we simply multiply the repair time by the expected

number of repair times until first failure. The expected number of repair times is just the inverse of
the probability of failure in a single repair period.
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To produce numerical estimates for MTBF, assume the regeneration time R is two hours. Assume

MTBF(N,M) =

that N =16 and that A = .0001 (If failure rates are assumed exponential, this translates into a 10,000
hour MTBF for a single disk drive which is typical of present day industry standards). From these
figures, we can compute the MTBF’s for different values of fault-tolerance M. Different values of M
require different amounts of numbers of error correction drives. A single redundant drive suffices to
correct single bit errors so the total N for single bit fault tolerance becomes 17. Six redundant drives
can be used to correct double bit errors on 16 data drives by using a modified Hamming Code. This
means 22 drives are required to provide double bit fault-tolerance. Using these values of N we have
calculated MTBF figures for systems which can tolerate zero, one, and two bit failures. These are
listed in Table 1.

M(N) 0(16) 1(17) 2(22)

MTBF 626 hours 42.0 years 18,600 years

Table 1: MTBF As a Function of Fault Tolerance M

As can be seen, providing the ability to tolerate a single disk failure extends the system MTBF to
42 years. At this point, clearly other system components (such as control processors, and data paths,
error detection and correction hardware, power supplies, software, human operators) will constrain
fault tolerance more than individual disk failures [Gray85]. These observations lead to a viable
architecture for a high bandwidth fault-tolerant secondary storage system.

7. Architecture

We propose an architecture for fault tolerance which makes use of error correcting codes and
redundant disk drives to provide a high degree of fault tolerance and a large MTBF. Our system is
composed of a set of disk which act as a single logical disk. The data is distributed across drives so
that every logical block is evenly distributed across each of the drives. Each disk access can fully
utilize the aggregate bandwidth of all of the drives.

There are three types of drives in our systems. “Data” drives contain data in bit-striped form .
“ECC” drives contain error detection information which can be used too regenerate the contents of a
failed drives. A small pool of “spare” drives is used to replace failed drives. The number of spare
drives required is dependent on the availability of a service technician to replace failed drives.
Enough spare drives should be provided so that the pool of spare drives cannot be depleted by the
regeneration process before failed drives can be replaced. (Obviously we require the number of spares
to be greater than or equal to the fault-tolerance M)



Several architectural features are required to make this system feasible. “Live insertion” of disk
drives must be possible so that the task of replacing failed drives can be completed without a system
shutdown. This technology is presently available for printed circuit cards, and it doesn’t appear
complicated to construct such a system for small disk drives.

Synchronization of parallel drives has been examined in [Kim85]. It appears to be an easy task to
synchronize the rotational motion of a set of disk drives by using a phase-locked loop [Kim85].
Synchronization improves average response time. A system of parallel disks would ordinarily have to
wait for the slowest drive to perform its disk access before transmitting its composite logical block to
the memory system. This average response time would almost always be the worst case response
time of a single drive. If the disks are synchronized, the average response time for the entire system
should be similar to the average response time of a single drive. Synchronizing disks also reduces
buffering requirements to form a composite block from N individual disk blocks.

Our proposed architecture is illustrated in Figure 2. This system includes consists of 16 data
drives, two spare drives and a redundant parity drive. This parity drive enables the system to
tolerate a single disk failure. To increase reliability, we have provided redundant data paths to our
control processor. A highly fault tolerant design is illustrated in Figure 3. This system cosists of 16
data drives, 4 spare drives, and 6 error correcting drives which enables the system to detect and
‘correct two simultaneous single disk failures. Three control processors are provided, each with
separate data paths to each of the disk drives. The three processors act as a single TMR (triple

modular redundant) processor which is immune to single processor failure.
8. Comparison with Mirror Disks

We now compare our fault tolerant architecture with mirror disk systems which are presently used
to provide fault tolerant secondary storage [Bart81] [Gray85]. A mirror disk system maintains two
copies of the same data on separate but identical disks. If one disk should happen to fail, another copy
remains intact on the second disk. The damaged copy may be restored by scanning the valid copy in
much the same way as a bad disk is restored in the parallel architecture. The only way data can be
lost is if both copies of the same data item are destroyed.

We contrast this with our fault tolerant parallel disk system which consists of a set of V striped
disk drives, and a single parity drive that can be used to correct single disk errors. Note that both
systems can tolerate single disk failures, but neither system can tolerate all possible double disk
failures. The mirror disk system is also much less space efficient than the parallel disk systems. The
mirror disk system doubles the amount of disk space required to store data, while the parallel system
uses only one extra disk drive to provide fault tolerance for N disk drives.

To compare these systems it is not sufficient to merely mention the number of failures each system
can tolerate. One must examine the relative probabilities of these failures. We model a mirror disk
system as a collection of N pairs of disk drives (2N total drives). Where each pair of drives contains
two copies of the same data. We contrast this with a parallel disk system of N+ 1 disk drives. Where
N drives contain data and 1 extra drive contains parity information for the entire set of N disk drives.
Both systems have the same storage capacity, and both can tolerate single disk failures.

We assume the mirror disk, like the parallel system, can regenerate failed disk drives. And we
assume this regeneration time R is identical for both mirror disk and parallel disk systems.
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Figure 3: Highly Fault-Tolerant Secondary Storage Architecture

If both members of a mirror disk pair fail in the same repair period, data will be lost, and the mirror
disk system will fail. This is differs from the parallel system where any two disk failures (out of the
N +1 disks) will cause a system failure. We assume that all disk drives are identical, and that each
disk fails with probability a in a repair time period R.

In a single repair time, the probability that at least one disk out of a mirror disk pair will not fail
is:

P(mirror disk pair doesn’t fail in time period R) = P(no failures) + P(1 failure)
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The probability that none of the N pairs fails in a single repair period is:

VN
P(no pair fails) = P(single pair doesn’zfaiDN = ((1 —a) + 2(1 —-a)q)

N N
:(1— 2a + a2+ 2a —2(12) :(1 -02)

We next caleulate the MTBF:
RepairTime

MTBF(for system of N mirror disk pairs) =

(P(failure inasingle repairperiod))

R R

N
(1 — P(no failures inasinglerepairperiod) (1 _(1 _02) )

To compare this with our previous analysis of parallel disks let R, N, and a assume their previous
values. R = 2hours, N = 16,a = .0002. Using these values we find:

MTBF = 3.125 X 10° hours = 356.5 years

Note that this MTBF is higher than the single fault tolerant system, but lower than double fault-
tolerant system. Since the double fault-tolerant system employs fewer redundant drives (O(logN) vs.
O(N)), and produces a larger MTBF it appears to be a more cost effective method for providing fault
tolerance in secondary storage systems. As we have noticed previously, the MTBF figures that we
have arrived at were produced under the assumption that only disk drives can fail. This is clearly not
the case in actual systems. As the probability of system failure due to disk failures diminishes, other
factors will begin to constrain the MTBF. Power supplies, data paths, and processors will fail first
[Gray85]. Even providing a single redundant parity drive makes disk failures an insignificant factor
in system MTBF. This is clearly a more efficient, and cheaper, method of providing fault tolerance
than blindly doubling the requisite storage.

Another issue to consider when comparing these two types of systems is system throughput.
During read operations, a mirror disk system maintains two copies of the same data that can be read
simultaneously. This doubles the system throughput for read operations only. The parallel disk
system can perform only one block read or write operation at a time. However, these operations can
proceed at the combined bandwidth of N parallel disk drives.

Conclusion

We have developed a efficient method of providing fault-tolerance in parallel secondary storage
systems. This fault tolerance is provided without the great amount of redundant storage overhead
presently utilized in non-parallel fault-tolerant secondary storage systems.

Our method of providing fault tolerance makes highly parallel secondary storage systems very
attractive. Besides offering orders of magnitude more secondary storage bandwidth, the parallel



nature of these systems allows error correcting codes to be employed to efficiently provide a high
degree of fault tolerance.
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