LOWER BOUNDS ON THE COMPLEXITY
OF MULTIDIMENSIONAL SEARCHING

Bernard Chazelle

CS-TR-055-86

October 1986

LOWER BOUNDS ON THE COMPLEXITY
OF MUITIDIMENSIONAL SEARCHING

by

Bernard Chazelle

Department of Computer Science
Princeton University

Princeton, New Jersey 08544

Abstract:

We establish new lower bounds on the complexity of several searching problems. We show that
the time for solving the partial sum problem on n points in d dimensions is at least proportional
to (log n/ log %"—)d_l in both the worst and average cases; m denotes the amount of storage used.
This bound is provably tight for m = {}(nlog®n) and any ¢ > d— 1. We also prove a lower bound of
((n(log n/ log log n) ?) on the time required for executing n inserts and queries. Other results include
a lower bound on the complexity of orthogonal range searching in d dimensions (in report-mode).
We show that on a pointer machine a query time of O(s+polylog(n)) time can only be achieved at
the expense of ﬂ(n(logn/ log log n) d'l) space, which is optimal; n and s denote respectively the

input and output sizes.

This work was performed while the author was a visiting professor at Ecole Normale Supérieure,

Paris, France.

1. Introduction

Whereas searching a linearly ordered set is relatively well-understood, the complexity of mul-
tidimensional searching is far from being elucidated. The vast amount of literature on this topic
witnesses its central location in the study of data structures as well as its relevance to many practical
areas (e.g., database, graphics). If many ingenious data structures have been discovered, however,
only few of them have been given lower bounds matching their performance. An interesting model
of computation was proposed by Fredman [F1] along with a powerful technique for proving lower
bounds [F2]. Unfortunately, deletions (or related operations like updates) play an essential part
in Fredman’s framework, and results on static problems or on problems allowing only inserts and
queries are thereby excluded. This is not too surprising: recent work on dynamization suggests that

the coexistence of inserts and deletes often causes a severe increase in complexity [O].

As regards the static case, one of the most interesting results to date is a lower bound of Yao
[Y3] on the complexity of the partial sum problem: Let ¥ = {(pi;s;)|1 < @ < n} bea fileofn
records, where p; € R2 and s; belongs to a semigroup; the problem is to precompute m values in
the semigroup to facilitate the answering of questions such as Eprjp s; =7, with p a query point
in ®2. This problem is fundamental because most rectangle problems are in one form or another
reducible to it [E]. Yao showed that in the worst case answering a partial sum query takes time
1(log n/ log(= log n)) He posed as open problems deciding whether this bound was optimal and
whether it could be extended to higher dimensions. In particular, he asked whether in 8 the time

complexity is in (log?~* n), when m = O(n).

We answer all these questions. Specifically, we show that in ¢ the hardest query takes time
proportional to (logn/ log 27"‘) 41 {0 be answered. (Setting d = 2 gives an improvement on Yao’s
lower bound). Actually, we prove the stronger result that under a uniform distribution this bound
is achieved for a random query with probability arbitrarily close to 1; moreover this is also true if
the point-set is random. As an immediate consequence our lower bound holds in the worst case as
well as on the average. We can prove that these bounds are tight for m = ﬂ(n(log n)d_l"*") and

any € > 0.

The best previous result for d = 2 was the bound by Yao mentioned earlier. For d > 2 the best
bound was due to Vaidya [V], who showed that the time T' to answer an orthogonal range query is
Q((n/m)logs ° n), where § = 1 if d = 3, and § = 2 if d > 3. Our lower bound is stronger than
Vaidya’s for all values of d,n,m; also it applies to a more specific problem and is therefore more

general.

All logarithms are taken to the base 2, unless specified otherwise.

2

The second result of this paper makes use of a clever idea of Yao concerning the “dynamization”
of lower bounds. We establish the existence of a sequence of n inserts and queries that requires
Q(n(log n/ loglogn)4) time to be processed. A similar result by Fredman [F1] says that if deletions
are allowed then ((n log®n) is a lower bound. Recent work on dynamization (e.g., [O]) suggests that
deletions are often hard to accommodate. Intuitively, what makes a deletion costly is that a single
one may invalidate large portions of the data structure. Fredman’s proof technique rests crucially
on that fact and therefore does not generalize to the case of inserts-only. Interestingly, our result
says that even without deletions the problem still remains almost as difficult. The lower bound was

already established by Yao [Y3] for the case d = 1, but it is new for all d > 1.

The third contribution of this paper concerns orthogonal range reporting in d dimensions, also
known as orthogonal range searching in report-mode. We prove the rather surprising result that if a
query time of the form O(s+polylog(n)) is sought on a pointer machine, then (n(log n/ log logn)9~1)
storage is necessary (n and s are respectively the input and output sizes); moreover this is optimal.
This shows, in particular, that the solution in O(n log n/ log logn) space and O(s +log n) query time

proposed in [C1] for the planar case is in fact optimal on a pointer machine.

Most of the proofs in this paper use probabilistic arguments in the sense of [ES,Y2]. This
departs from previous methods which were mostly constructive. For the problems considered in this
paper, one advantage of probabilistic methods is to yield at no extra cost additional information on
the distribution of inputs that achieve the lower bounds. In several cases, this allows us to strengthen

the results by providing bounds for both the worst and average cases.

The next three sections address the three problems mentioned above in the same order. Section

5 closes with a few remarks and open questions.

2. The Partial Sum Problem: the Static Case

This section is fairly intricate so we shall take a number of preliminary steps. First, we outline
our approach in the next few paragraphs. Then in §2.1 we define the problem and the model of
computation; in §2.2 we establish a weaker result to provide a sense of the main theorem, which is

then proven in §2.3. We conclude in §2.4 with the issue of optimality.

We follow Yao [Y3] as regards the problem statement, the model of computation, and a prelimi-
nary reduction. This leads us to a game played between Bob and Alice, which goes roughly as follows
(we use a variant of Yao’s formulation). Let C4 be a hypercube in R¢ containing n green points and
m red points. We say that a red point shields any green point that it dominates (component-wise).
Alice makes a move by picking a point p in C4 (preferably not colored) and asking the question:

“How many of the red points dominated by p must be used in order to shield all the green points

3

dominated by p?” The minimum number necessary constitutes Alice’s score. Bob has control over
the red points, but before the game starts it is Alice’s job to place the green points in C; the way
she pleases. Then Bob and Alice play by taking turns: Alice picks p; then Bob places some red
points in (4, which he also reveals to Alice, who then figures out her score. If she finds it acceptable,
she can stop. Otherwise, she picks another point p and continues to play. As the game proceeds,
Bob reveals more red points to Alice, who can then tune her strategy better each time. Obviously,
time is on Alice’s side since she can only hope to score higher at the next step. Actually, she should
always try to score at least one extra point at each move. In this way, Bob’s sole preoccupation will
be to terminate the game as soon as possible. Of course, he should not be allowed to throw in any
point that does not effectively counter Alice’s latest move. Otherwise, Bob would immediately drop
all his red points and the game would be over. (This can be achieved by having Bob respond to
Alice’s move by adding red points one at a time with the requirement that each new point should

decrease the current score of Alice’s last move).

To make Alice’s strategy effective, Yao makes her play on several fronts (to disperse Bob’s
“troops”), but to keep her decision process tractable, at every move she gives up chunks of territory
deemed worthless. This partly accounts for the term loglogn in Yao’s (logn/(log log n+ log -’:1—"))
lower bound. The reason is that by playing cleverly Bob can then speed up the game and force Alice
into a premature exhaustion of her strategy. To avoid this is possible as we shall see (although it
will take a bit of effort).

First, we modify the rules and allow Alice to make non-deterministic moves. From a construc-
tivist’s viewpoint this is giving Alice the chance to say: “I was wrong in my last few choices and
I wish to back up and undo them.” Alice’s strategy is now quite different. With each point p she
considers a linear system of truncated hypersurfaces. Her goal is to find two surfaces in the system
between which green points can be clustered together with their red “shielders”, and partitioned
into a large number of equivalence classes, each class adding 1 to Alice’s score. The proper choice
of hypersurfaces is the key to Alice’s success. She must ensure that, no matter how clever Bob is,
a random pick on her part will satisfy the conditions needed with high probability. For technical
reasons, we choose hyperspheres in a metric space where the distance between two points is the

Lebesgue measure of the smallest hyperrectangle containing them.

Returning to the game in action, we note that Alice’s strategy is still incomplete since her choice
of green points obviously cannot be left arbitrary. Yao introduces a pseudo-uniformity criterion and
proceeds to construct sets of points that satisfy it. Unfortunately, his construction does not seem
to extend to arbitrary dimensions. In a different context, Vaidya [V] uses probabilistic methods to
prove the existence of point-sets in R satisfying a weaker uniformity criterion. His criterion is too

weak for our purposes, however, as it would enforce the aforementioned term log log n which we are

4

precisely seeking to eliminate. Instead, we keep Yao’s pseudo-uniformity criterion, but we do not
insist that it should hold everywhere in C4. We show that Alice can place the green points at random
with a high probability of satisfying the criterion over a fixed fraction of C4 Of course, she will have
to tune her choice of hypersurfaces later on quite carefully because she does not know which subset
of C4 satisfies the uniformity criterion. For convenience, we shall rely on measure-theoretic notation

in formalizing Alice’s strategy, rather than using standard probabilistic language.

2.1. Preliminaries

A. The Notation. For d > 0, let C4 = [0,1]%. By a random point in C4 we mean a point drawn
randomly from a uniform distribution in C4. A random set of points in Cg4 is a set obtained by
drawing randomly and independently points from a uniform distribution in C4. We shall use this
abbreviated terminology throughout the paper. We let Ay designate the Lebesgue measure in R¢.
If p= (21,...,24) and ¢ = (y1,...,¥4) are 2 points in N, we write p < ¢ if z; < y; for each
i (1 <i<d). Wedefine p={g& Caqlg <p}and p={g€Calp=q} A rectangle m R* is
the Cartesian product of d closed intervals, i.e., ngs glai, bi]. The cardinality of a finite set X is
denoted |X|. Let Xi,...,X,, be m collections of closed intervals in R; then 11 1<i<m Xi denotes the
set {I; XX In|I; € X;(1 <1< m)}. Finally, we put [1...n] ={1,2,...,n} and N = {0,1,2,...}.

B. Semigroups. Let (S,+) be a commutative semigroup with an operation denoted +. To rule
out trivial semigroups over which complexity questions are vacuous (e.g., S = {b} and b + b = b),
Yao introduces the notion of faithfulness [Y3]. We say that (S,+) is fasthful if for every n > 0,
T1,T> C [1...n], and every sequence of integers oy, f; > 0 (¢ € Ty, 7 € T2), the equation

Z B = Z Bis;

€Ty JET2
cannot be satisfied for all assignments of the variables s1,...,8, unless 71 = T5. Introducing the
@i, Bj’s in the definition adds generality (but also makes proving lower bounds more difficult). For

example, the semigroup (N, +) is faithful and so is the seemingly “easier” one (NN, max).

C. The Partial Sum Problem. Let (S,+) be a faithful commutative semigroup. A file of size n
is a collection 7 = {(ps, s;)|1 < 7 < n}, where p; € Cg and s; € § for each i =1,...,n. We define a

function s: Cq — S such that s(p) = -, si (we set s(p) = 0 if {p;| p; < p} = #). The partial sum

piZp
problem is computing s(p) efficiently for any p € Cq.

D. The Model of Computation. Let V be a subset of [1...n] and let {a;|z € V} be a collection
of labelled positive integers. For any file ¥ of size n, let g(7) = }_,c a;si. The function g is called
a generator: it is the elementary component of any data structure for the partial sum problem. Let
P ={p1,...,pn} C Cg4; in the following S and P are fized. A storage scheme I' for (P, S) of size m
is a collection of generators {gi,...,9m} such that for any file 7 of the form {(p;,s;)|1 < ¢ < n}
(s; € S) and any point p € C4 we have

s(p) =Y, Bigi(7) (1)
iEW

(or = @ if W = @), for some integers f; > 0 and W C [L...m]. Let §,,(P,S) designate the set
of all storage schemes for (P, S) of size m. Note that ' is defined for P and S fixed but for any
assignments of the s;’s. This means that a storage scheme can take advantage of the particular
semigroup under consideration as well as of any properties which P may enjoy: However, it must
work for all possible assignments of values to the variables associated with the points of P. Next,
we define the complexity of a storage scheme. Given p € C4, let W be the smallest set such that (1)
is true. We put ¢(P,T, p) = |W| (defined only if T is a storage scheme for (P, S)). We also have

t = in max {(P,T,p).
(n,m) K et X (AT,p)

Assuming the probability distribution discussed in (A), we define
t(n,m) = E|p|=p min{ Epec, t(P,T,p)|T € Sm(P,S)}.

Note that in all these definitions the semigroup S is understood. We shall now state the main result

of this section.

Theorem 1. Let S be a faithful commutative semigroup; let d be any positive integer and ¢ any
real (0 < € < 1). There exists a constant ¢ > 0 such that the following is true. Let P be a random
(nonempty) set of n points in C4 and let ' be any storage scheme for (P,S) of size m. If pis a
random point in C g4, then with probability greater than 1 — ¢ the time complexity of the partial sum

problem satisfies
T
t(P,T,p) > ¢ (log n/log —) :
n

As a corollary, the worst-case and average-case times satisfy

s,) > Hin,m)= B ((Iog n/ log z—n’ﬁ) d_l) .

Remark: Intuitively there is the chronological sequence: Pick P, then set I', and finally choose p.
Rigorously, the statement is to be understood as follows: Given any function mapping each P into
a storage scheme I'(P), the stated lower bound on t(P,T'(P), p) holds with probability > 1 — ¢, if
(P,p) is a random point in Cgn41). To say “let ' be any storage scheme...” in Theorem 1 is a

shorthand for saying that the previous statement is true for an arbitrary choice of the function I'.

E. A Canonical Reduction. Let P and M be 2 finite sets of points in 4. We say that M is a
P-cover if, for each point p € C4, there exists a subset @ of M N p such that

pnpc Ja (2)

9€Q
We define c¢(P, M,p) = |Q|, where Q is the smallest set such that (2) is true. (If M is not a P-
cover and there is no such @, we have c¢(P, M, p) = +c0). Informally, P represents the green points
mentioned earlier and M contains the red shielders. The next result states that ¢(P, M, p) yields a

lower bound on the complexity of the partial sum problem.

Lemma 1. Let S be a faithful commutative semigroup and let P be a finite subset of C4. Given
any storage scheme I for (P, S), there exists a P-cover M of cardinality IT'| such that for each point
p € C4 we have ¢(P, M, p) < t(P,T, p).

Proof: Let ' = {g1,...,9m} be a storage scheme for (P,S) and let P = {p;,...,pn}. Given any
file 7 = {(pi,s:)|1 < 1 < n} (s; € S) we can write g;(7) = ey, @i 85, for some V; C [1...n]
and integers c; ; > 0. Let M = {g1,...,qm} be a set of m points defined as follows: For each 1

(1<i<m)
6‘5‘—'_"’ m ﬁs
X:Cp
with X; = {p;|j € Vi}. Next we show that M is a P-cover. Let p be a point of Cq and let

s(p) = Xiew Pigi(7). We have
s =D B Y, assi

iIEW JEV;
which because S is a commutative semigroup we can write as EieW‘ ~;8:, with W' = UiEW V; and
% = 2; Biazi (§ € W and 4 € V;). It now suffices to show that @ = {g:| i € W} satisfies (2) and
the proof will be complete. By definition, we know that s(p) = Ep‘,eﬁ s;. On the other hand, we
have s(p) = EieW‘ ~i8:, so by faithfulness we derive PN p = {p;|¢ € W'}. This implies that for
each i € W we have X; C §, therefore §; C p, hence Q C 5. Also, since for each : € W, X; C §;, we
have
Prs={nliewt=UxcUa=Us4s
IEW iIEW qER

which completes the proof.

Remark: It is easy to show that a P-cover contains P, therefore |M| > |P|. We shall use this

fact later on without further reference to it.

2.2. A Weaker Result

This section is included to illustrate in a simpler context some of the ideas used in the proof
of the main theorem. The proof in question is fairly technical and involves a large number of
quantities, some of which will be motivated in this preliminary digression. We shall rederive Yao’s
result [Y3] using our techniques on hypersurfaces. We shall show that in the case d = 2, t(m,n) =
D(log n/log(2 log n)) This result will be improved later on, so technically speaking this section
may be skipped entirely by the reader.

To begin with, we define a criterion of weak uniformity. We say that a set of n points in C5 is
weakly uniform if the points are in general position and any rectangle in Co of measure 64logn/n
contains at least one point of the set. In the following we use the expression “sufficiently large” to

mean “larger than some conveniently chosen constant”.

Lemma 2. For any n sufficiently large, a random set of n points is weakly uniform with probability
greater than 1 — 1/n%.

Proof: Let I = {[3/2%, (i+1)/2*]|0 < k < [logn] and 0 < i < 2%} and J = {r € I?| nA3(r) > 4logn}.
(The elements of J are somewhat similar to what Vaidya [V] calls canonical boxes). We assume
throughout the proof that n is large enough. We shall successively show that J is linear in size, that
“big” rectangles always contain members of J, and finally that a random throw of n points in C2
will hit each rectangle of J with high probability. Let n(k,!) be the number of elements of J of the
form [1/2%, (i 4 1) /2] x [7/2", (5 + 1)/2']: We have n(k,1) = 0 if n < 2¥+"+2Jogn, and n(k,1) < 2FH!

in general. Therefore,

|J] < Z n(k,l) < Z 2t | logn < n.

k,l| 2kt logn<n/4 i<logn—loglogn—2

Let R = [z, %3] X [y1,y2] € C2 be a rectangle of measure 64logn/n, and let k = [log 1 1 +1

Ta—Ty
and 1 = [2,2*]. To prove that [/2, (i + 1) /2¥] C [z1, z2], it suffices to show that 1+ 1 < 2*z;. But
this follows from the fact that

2":(:52 - 51) — 21+|—log zz—x).-](xZ s 31) > 2

8

hence 26z, > 2+ 283, > i+ 1. We easily verify that 0 < k < [logn] and 0 < 7 < 2%, therefore
ry = [¢/2F, (i + 1)/2F] lies in [z1, Z2] and is a member of I. Similarly, we derive the existence of

ro € I such that ra C [y1, y2]- Since
1
)\1(1‘1) = 1/2k Z Z(Ig - 31)

and a similar inequality holds for 75, we conclude to the existence of a rectangle r C R, with r € I?

and
1
Az(r) > -1—6}\2(R) = 4logn/n,

hence r € J. To summarize, any rectangle in Co of measure 64log n/n contains a rectangle of J. To
complete the proof, we shall show that if P is a random set of n points in Co, then with probability
> 1 — 1/n* every rectangle of J contains a point of P. The probability that no rectangle of J is
empty is at least

1—|J|(1— 4logn/n)™ > 1— |J|e~ 418"
(for n large enough), which is at least 1 — n/e*18™ > 1—1/n%. y

Let P be a weakly uniform set of n points in C; and let M be a P-cover of size m < n?.

For clarity, we introduce some parameters: a = 1/y/I6mlogn, b = 1/16, ¢ = Mn[oga—n, and
§=|Llogn/log(Zlogn)|. Let

B =1[0,] [0,a] [J{(=:9)| 2y < a®};
as usual, we assume that » is large enough, so in particular we have ¢ < b. Let z and z’ be 2 reals
(@ €< z < 7' <b) and put x1 = (z,a%/2') and x2 = (2',a%/z): x1 and xz are 2 points on each
side of the hyperbolic curve delimiting B. We define b(z,z') = ¥1 N X2. Any rectangle of the form
b(z,z') is called a boz (Fig.1). We say that a box is valid if its measure is equal to 64logn/n. Also,
we say that the set by,...,b forms a chain of boxes if each b; is a box and the intersection of any

2 is empty (b; Nb; = @, if £ # 7). We need the following technical lemma.

Lemma 3. For any n large enough, there exists a chain of § valid boxes.

Proof: Let k = |log 2/logc| and let b; = b(ac’,ac***) for all 1 (0 < ¢ < k). Since m > n and n is
large enough, we have ¢ > 1 and ac' > a. With the inequality ac® < b we can conclude that each b;

is a box. We have

2 2
=1 1 641
WAL e A RN |
c 2 n
therefore b; contains a valid box b} in its interior. The set {bf,...,b};_;} forms a chain of valid

boxes. There are k of them, with

v/16mlogn 3000m log2 n %Iog n+ % loglogn — 2
k= |log log > 8,
16 n 2log(Zlogn) + 12

assuming as usual that n is sufficiently large. §

Let p = (pe, py) € C2 and C(p) = {(pz — =, py — ¥)| (2, y) € B}. We say that a point p is clear if
C(p) € C2 and C(p) N M = @. Some intuition might be helpful at this stage. With each point p the
region C(p) associates a chain of boxes (Lemma 3) that are confined between 2 hyperbolic curves
(zy = a®c and zy = a?/c, up to rotation). Each box being valid, it contains green points (Lemma

2), so it will add 1 to Alice’s score provided that the point p is clear.

Lemma 4. For any n sufficiently large, a random point of 5 is clear with probability > 3/4.

Proof: Let p be the probability that p is not clear. The condition C(p) C C2 contributes 1 — (1 —
a)(1—b) to p. Asto C(p)N M =, each point of M contributes at most the measure of B, that is,
b 2 b
a?+ a—dz=a2(1+1n—),
a & a
therefore

p<1-(1-a)(1-b)+am(l+ I 0) <a+ b+ a?m(1+log o),

logm
32logn’?

hence the lemma. §

hence p < %+ for n large enough. Since we have assumed that m < n?, this gives u < 3/16,

If P is weakly uniform and p is clear, then each of the valid boxes of C(p) provided by Lemma
3 contains at least one point of P (note that these boxes lie entirely in C;). Since the boxes are
pairwise disjoint and C(p) N M = @, no point of M in p can dominate 2 points of P in distinct
boxes. Consequently, c(P, M,p) > 6 (Fig.2). Since § = 0 if m > nZ, we conclude that in all cases
c(P,M,p) > &, hence t(n,m) = ﬂ(log n/ log(%'-log n)) in the planar case. This is Yao’s lower
bound. Our result is actually slightly stronger. If we look at the pair (P, p) as a random point in
Con+t2, then Lemmas 2 and 4 show that ¢(P, M, p) > § with probability at least %(1 —1/n%) > 1/2,
for n > 1. It follows that #(n,m) = Q (logn/log(= logn)).

To improve on this result, we must deal primarily with two problems. First, the weak uniformity
criterion is strengthened by requiring that any rectangle of measure inversely proportional to the
density of P should intersect P. Unfortunately, this seems difficult to achieve (especially if it must
be true on the average), so we replace “any” by “most”. Secondly, the clear—ness condition is too
strong. We weaken it by requiring that C(p) should be free of points of M over many “large”

subregions.

10

2.3. The Main Theorem

2.3.1. Introduction

We assume in the following that d > 1. Let € be an arbitrary real (0 < ¢ < 1). For convenience

we introduce some parameters

a=1/n1/d
€
A= 5log 2
5
h= —
en

as well as a relation which, unless specified otherwise, is assumed from now on to be satisfied by the
integers n and m:
2 d+5
0< d®n<m<nlte /57, (3)

Next we introduce a tool for “discretizing” the hypersurfaces used later on. Let p = (z1,...,z4) € Cq
and p = (z1,...,Z4-1). For each k (0 < k < d) and 7 > 0, we define

ki = |2k — iy, 2k — wi),

where up = 0 and for ¢ > 0, u; = u;—1 + a2 F (note that u; = ag—i';:—i). We define the logarithmaic
lattice
)= I | Uk}
o<k<d \i>0
which consists of rectangles (5, 7) = [locxcq Jhixs Where 5 = (i1,...,24-1) € N& 1. Let z =
hfXa-1(r(5,7)) and a = (21 — %i; 415+ s Td—1 — Yiy_,+1, T4 — 2); We define

v(p, 7) = r(P,9) X [2a — 2, 24,
- . z
U+(p! .7) = T(P:J‘) X [xd — 2,Tq — W]:
w(p: 5) = (@) \ v* (p,J)-
Fig.3 illustrates these notions in the case d = 2. Note that since 21/% = (m/n)%/¢ > d'9/¢ > 1

(from (3)), the interval [z4 — 2,24 — 2/2'/7], and hence v*(p, 5), are well-defined. We introduce 2

collections of rectangles:
V(p) = {v(p,5) € Cal s €N}
and
W(p) = {w(p:5)| v(p:5) € V(p)}-
Let P = {p1,...,pn} and M = {q1,...,qm} be 2 sets of points in C4; we introduce the functions
n(P,p) and u(M, p), defined for each p € Cq:

n(P,p) = [{r € V(p)| P 1 # B}|

11

and

p(M,p) = |{r € W(p)| M Nr=0}|

Let v > 0 be a real. We say that p € C4 is v-ezposed if n(P,p) > v, and v-isolated if u(M,p) > v.
If p is both v-exposed and v-isolated then it is called v-hyperbolic. Note that in that terminology P

and M are understood. These definitions find their justification in the following lemma.

Lemma 5. Let P be a finite set of points in C4 and M be a P-cover. Let p € C4 and v be a real
> 0. If p is v-hyperbolic then ¢(P, M, p) > 2v — |V(p)|-

Proof: Let
L= {j € N¥1|u(p,5) € V(p) and v(p,j) NP # @}
and

Ly={j € N*“ | w(p,5) € W(p) and w(p, j) N M = 6},

and let L = Ly N La. If j € L, v¥(p, j) contains a point of P since P C M and w(p,7) N M = 0.
This point is not shared by any other v* (p, 5') (5* # 7). But since w(p,5)NM = @ the only points of
M N p that can dominate this point must also lie in v (p, 7). This proves that if we have Q C M Np
and PN C Uyeq §s then [Q] > |L|. But we have

|L| = w(P, p) + u(M, p) — |L1 U L2| > 2v — [V(p),

so the proof is complete. g

2.3.2. Measuring the Set of Exposed Points

Let j = (41,...,8a—1) € N 1. We define a characteristic function f;(P,p) as follows:

; 1, ifu(p,7) € V(p) and v(p,7) NP #6;
fi(Pp) = {0, otherwise.
Put
h
tj' = | Uiy 1yee ey Uig_3+1) ad—lz('i1+"'+i¢-1)/ﬁ ’
and

D, =f / n(P, p)dpdP.
Cdn cd
12

Here, we interpret P as a point of C4,. Observing that v(p,7) € V(p) if and only if p € #,, we can

write
o, = / f > fi(Pp)dpdP
Can ¥ Cyq jENI-1
=Y f 75(P, p)dPdp
jENd-1 Can
E /(1_ 1_)dp:
eNd 1
therefore

& =(1-(1-R)") Y AalE). (4)

jeNn’.—l
The derivations above are valid only if o < 1, which is true for n large enough. Once again,
throughout this section, we shall make use of the fact that n can be assumed to be larger than any

conveniently chosen constant. We continue with a technical result.

Let o' = a'/VIs & and ag = (o, ..., ') € R% and let A = {5 € N 1| t; € &4}

Lemma 6. For any n sufficiently large, we have

d d—1
|A] > [1- (ﬁlog%—Z) .

-\/log-i-

Proof: We can easily verify that for n large enough we have

h '
qd—19(i1++ia—1)/B sa.

Since 21/ — 1 > 1 it follows that

1

\flog;—

log = —1(0< k <d)

]

|A] > |K (1,-..84-1) E N < B (1—

hence
d—1

Al | 8|1-

Using (3) to show that f log% > 2, if n is large enough, we have

d—1 i1
Al = [1- - x(ﬁlogi—Z) :
\,flog% &

For any real z (0 < z < 2) we have (1—z)*"! > 1~ (d— 1)z, and the lemma follows readily. (This

last inequality will be used repeatedly later on without further mention). g

13

logn
For n large enough we have logn < 2V “7", therefore do!/V1°¢ & < 1/log ~. Since t; € &4 if
7 € A, we have

. d
M) > (1- oV E) > 1 - dat/VIFE > 1 1/l10g ~. (5)
o
From (4) we derive ®; > (1— (1= h)") X en Aa(t;), hence for n large enough,
1
&1 > (1= (1- B)") (1— 1/ log D). (©)

We now introduce an important quantity, #V = max{|V(p)|: p € C 4}, which we can estimate as

follows:

Lemma 7. For any n large enough, (|Alog %J)d_l <#V < (1+Plogl) 3,

Proof: Obviously, #V = |V(p)|, where p = (,...,1) € C4. Let j = (41,...,44-1) € N4%; since
v(p, 7) € V(p) if and only if p € £;, an equivalent condition is that (i) for each & (0 < k < d),

9(i+1)/B _ 1
Uip+1 = aw <1

and (ii) h < ad=12(i1++ie-1)/8 Note that for n large enough, (ii) is always satisfied. Also, one can
easily verify that because of (3) condition (i) implies 7 < flog % and is satisfied for 7z < flog % -1,
which completes the proof. j

The next result concludes our study of exposed points.

Lemma 8. Let n and m be integers satisfying (3), with n large enough, and let v be a real such
that 0 < v < #V. If P is a random set of n points in C4 and p is a random point in Cg4, then the
point p is v-exposed with probability greater than

(1-(1-h)"(1-1/logl)|A|-v
#Y—v ’

Proof: Let Ty = {(P,p) € Cy(n+1)| 7(P,p) > v}. Since n(P, p) < [V(p)|, we have

81 < (#V)Aant1)(T1) + v (1= Aggniny (T1)) -

The lemma follows from (6) and the fact that Ay(n41)(T'1) is precisely the probability that p is

v-exposed. |

14

2.3.3. Measuring the Set of Isolated Points

As usual, M is a set of m points in Cg4, and n and m satisfy (3). This is understood throughout

this section. Let 7 = (41,...,%4—1) € N9! and p € C4. We define a function g;(p) as follows:

(o) = 1, ifw(p,j) € W(p) and w(p,7) N M = 0§;
R 0, otherwise.

Following the approach of the previous section, we put &z = [C p(M, p)dp. We have

= 3 f gi(p)dp= > _/gg (p)dp > Z/Q‘:(P (7)

JENI-1 JENI-1 JEA

Let w(p,7) € W(p); by definition we have
Xa(w(p 7)) = Ma(EN) ~ Aamt (r(5,9)) (1 1/247) 2,
where z = h/Ag—1(r(5, 7)). We derive

Aa(w(p, 7)) = %h —(1—1/28)n

h :
= W]:[(21/.3 - 1/2=k/ﬂ) e il 1/21/'3)13,
0<k<d
therefore
: 1 =1
Ad(w(p, 1)) < ((W) T 1) h. (8)
The derivative of dz + 1 — 1/(1 — z)%~! has a zero at z = 1 — (1 — 1/d)/%, so it is immediate that
forallz (0 <z <1—(1—1/d)*9)
1 \4t
(1—:) < 14 dz. (9)

Because d > 1 and 0 < € < 1, we have (1—1/d'%)¢ > 1—1/d, hence 1/d'%/¢ < 1— (1—1/d)*/<.

From (3) we find that
1 1 iHe
21/;9 le/E <1-— (1— E) 3

(d+ 1)
A=mox sum ki <

therefore from (8,9) we derive

and from (7), &2 > EjeA (z\d(fj] — mA), hence from (5)

i d+ 1)mh
o,y > (1 —1/log = (2—1/33—) |Al. (10)

15

Lemma 9. Let n and m be integers satisfying (3), with n large enough, and let v be a real such
that 0 < v < #V. If M is an arbitrary set of m points in C 4, then a random point in Cg4 is v-isolated
with probability greater than

(1—1/log L — (d + 1)mh/21/P) |A| — v
#V—v ’

Proof: Let T2 = {p € Cq|u(M,p) > v}. For each p € Cq, p(M,p) < |W(p)| = |V(p)|, therefore
D, < (#V)Aa(T2) + v(1 — A4q(T'2)), which because of (10) completes the proof. g

2.3.4. The Lower Bound

Recall that € is areal (0 < € < 1) and n and m satisfy (3). Let y = Blog 2 andv = #V—%71/3.
Let M(P) be an arbitrary mapping of a set P of n points in C4 into a P-cover of size m. We define
II as the probability that if P is a random set of n points in C4 and if p is a random point of C 4,
then ¢(P, M(P),p) > 2v — |V(p)|. Let II; be the probability that given a random set P of n points
in C4, a random point of C 4 is v-exposed with respect to P, and let h;(P) be the measure of the set
of points in C4 that are v-exposed. We define M = {M C C4: |[M| = m} and M(P) as the set of all
P-covers of size m, given P C Cq4 (|P| = n). Let ha(M) be the Lebesgue measure of the v-isolated
subset of C4, given M € M, and put Il = min{ho(M)| M € M}. Using Lemma 5, we have

Im> o MglMuilP) Xa({p € Cd|c(P,M,p) > 2v—|V(p)|}) dP

i A S is v-h boli dP
- MénMn(lP) a({p € Ca|p is v-hyperbolic })

> [(a(P) + min{ha(M)| M € M}~ 1) P
Cin

therefore

H>H; +8;-1. (11)
Applying Lemmas 8 and 9, we find that for n large enough we have 1 — IT < A/B, where
a=2) ~ 121 (2~ (1= W) (1~ 1/ g 2) — (d+ mb/277) (12)

and

B=+4"18 (13)

We derive an upper bound on A via several approximations. We begin with a technical resuls.

Lemma 10. For any reals z,y > 2, we have z¥ > (z — 2)y°.

16

Proof: Let ¢(z,y) = z¥ — (z — 2)y* and ¢(y) = 2¢"! — y. Since ¢'(y) =0for y =1~ logln2 < 2,
we have ¥(y) > 0, hence y*/(v=1) < 2, for y > 2. But -‘?—‘%%-11)- = 0 at z = y'/(v=1), therefore
$(z,y) 2 $(2,y) > 0, for z,y > 2.

From (3) we find that

pdt+4

Lemma 7 shows that #V < 49~%(1+ 1/4)¢"!, which is easily shown to be at most v (1 + (d —
1)29-2/4) (since vy > 1). Using (14) and Lemma 10 we find that

de 2¢

gd—2 _de 2
/1< #(5/2)% ~ B’

therefore we have

#V <7+ (14 ﬁ) : (15)

From (14) we know that v > 1, therefore
(v=2)%t =4 (1= 2/7) %t > 4% (1 - 2d /).
Using (14) and Lemma 10 it follows that

gyl o =1 _L)
(r-2)% > 42 (1- o).

From Lemma 6, we then have

A > (1 = jiggin) (vy—2)*,

so for n large enough,

B (1 o %) N1 (16)

If n is large enough,

(1 —~ i) < Lfefle 2185,
en

so from Lemma 10, we have (1 — %)n < €2/9, hence

(2—(1—R)") (1—1/10%) o (2— (1—6%)") (1— lo:n) >2- £, (17)

Next we establish the relation

%"ﬁ <efS. (18)

From (3) we have
(d+1)mh _ 5(d+1) & 5(d+ 1)d?
21/8B - e(m/n)S/e—l edl0/e

We distinguish between 2 cases:

(19)

17

1: €< 3/5. Then from Lemma 10 we have d1%¢ > (d®)% > 38(d® — 2)/e® > 1L48/e?, therefore
(d+ 1)mh /21 /P < £% < ¢/5, since d > 2.
2: €>3/5. Then from (19) we have (d+ 1)mh/2!/# < u‘r’a%“;'—ll < 2 <efs.

Relation (18) is thus proven. Putting together the inequalities (15-18), we derive from (12)

663 4 4 d—1
< ———
i - <4 "e¢/3

which, combined with (13), gives IT > 1 — e. Using the lower bound of Lemma 7, we conclude that

with probability greater than 1 — ¢ we have
o(P,M(P),p) > 2v —#V > (7)) — 2% /3.

To simplify this lower bound, we use Lemma 10 to derive 59+ > 1875d%. From (14) we easily find
that
(1—1/9)41 > (1—d/534) " > 1 d2/5% > 5/6,

therefore with probability > 1 — ¢, we have

d—1
elogn) .
b

d—1 >
c(P,M(P),p) > /62> (—SOdlog =

this statement being true for any n large enough and m satisfying (3). Assume now that (3) does
not hold. If m < d?n then we augment M (P) with dummy points so as to obtain a set M’ with
1+ d?n points, hence satisfying (3) if n is large enough. Since c¢(P, M(P),p) > c(P, M',p), we
have ¢(P, M(P),p) = Q(log* ' n). If now m > ni+e’ /5" our previous relation indicates that

¢(P, M (P),p) = (1), which is of course always true. We thus have shown, using Lemma 1,

Theorem 1. Let S be a faithful commutative semigroup; let d be any positive integer and ¢ any
real (0 < € < 1). Then there exists a real ¢ > 0 such that the following is true. Let P be a random
(nonempty) set of n points in C4 and let T' be any storage scheme for (P,S) of size m. If pisa
random point in C 4, then with probability greater than 1 — e the time complexity of the partial sum

problem satisfies
om\ 41
t(PT,p) >¢ (log n/ log 7) ;

As a corollary, the worst-case and average-case times satisfy

i) = Bl) = ((10,;) log 27”") d_l) .

18

2.4. Optimality Issues

How good is the lower bound of Theorem 17 We can prove that it is optimal for “most” values
of m/n, but we cannot conclude to its optimality in general. To begin with, let’s observe that our
bounds have little meaning if m — n is not in }(n). Indeed, even for d = 2, we have a lower bound
of Q(7=&57) on t(n,m). This lower bound is vacuous for m = n+ {}(n}, but far exceeds the bound
of Theorem 1 when m — n grows very slowly (e.g., as logn). The claimed lower bound follows by
reduction of another searching problem to the partial sum problem in 2 dimensions. If we place the
points of P on the line z + y = 1, computing partial sums becomes equivalent to summing up all
the entries of an array of size n between query positions 7 and 7. This problem has been studied
by Yao [Y1], who derived an 2 (m+n+l- + a(m, n)) lower bound on its complexity, where « is the

inverse of Ackermann’s function.

It is interesting to compare this result with the fact, to be proven next, that for certain semi-
groups the average-case result of Theorem 1 is tight for m = O(n). (From the previous paragraph
this obviously is not true in the worst case). As we shall see, the moral of the story is: doing nothing

is best! We choose (N, max) as our semigroup.

Theorem 2. There exist semigroups for which the expected-time complexity of the partial sum
problem on n points in d dimensions satisfies #(n,m) = ©(log®~* n), for any m such that n < m =
O(n).

Proof: We can assume that d > 1 without loss of generality. The data structure is nothing more
than the input to the problem, therefore m = n. However, for each point p;, instead of storing s,

we shall store) s;. In this way, the average-case time complexity can be expressed as

Di=pi
A(n) = / m(P, p)dpd P,
CanvCua

where m(P,p) is the number of maxima in P N . We can easily show that if ¢ = (1,...,1) €Cgq,
A(n) cannot exceed fCan m(P, q)dP, which from [BKST]| we can show to be in O(log®* n). To prove

our claim, observe that

s = [| 2 () a-rtor [, manae) e

0<kZn =k

=1 > (7) (= rato)™* m(a)500 |

0<k<n

where M (k) is the average number of maxima when k points are drawn uniformly and independently

from a hypercube in ®¢. Since obviously the number of maxima depends only on the d permutations

19

of the points induced by their coordinates, and that for a given set of d permutations the set of points
that realize them has the same measure, M (k) can be obtained by assuming that the coordinates
are permutations of {1,...,k}. Then we can use a result of Bentley et al [BKST] and conclude that
M(k) = O(log®* k), hence A(n) = O(log? ! n). Optimality for m = O(n) follows from Theorem 1.
|

At this point, one should be reminded that the underlying model is not computational but
combinatorial. In this regard, lower bounds are admittedly more meaningful than upper bounds.

Next, we shall show that as regards the worst case Theorem 1 is optimal if m = {1 (n(log Y i

Theorem 3. Let € be any real > 0. The worst-case time complexity of the partial sum problem on
n points in d dimensions satisfies t(n,m) = © ((log n/log %) d_l) , for any m = Q (n(log n) d—1+5)_

Proof: The theorem is clearly true for d = 1, so we assume that d > 1. The data structure is
a straightforward modification of the solution to orthogonal range searching proposed by Bent-

ley and Maurer [BM]. For this reason, we only give a brief sketch of the method. Since m =

Q (n(log n)4~1%¢), we define
- {__f”"/“)"""'J o2
logn

for n large enough. Let A = logn/logk. If n = 1 the data structure is trivial. If n > 1 then
divide up the set of n points into subsets P,..., P; of size [n/k] (except possibly for the last one).
This partition is to be carried along one coordinate, say, the first one. Then we construct a data
structure of dimension d for each of Pi,...,P; and a data structure of dimension d — 1 for each
of the sets U,<;<; P (1 < 7 < 1), where P/ is the set of points in R4-1 obtained by ignoring
the first coordinate of each point in P,. The storage S(d,n) and the query time Q(d,n) follow the

recurrences: (n=rny + -+ n; and n; < [n/k])

S(dn)< . S(d=Lng+-+n))+ Y S(dny),

o<g<l 0<j<i

Q(d,n) <max{Q|d—1, > ni|+Q(dn;)|0<j<I

o<i<y
(sums over empty sets are null) and S(1,n) = O(n) and Q(1,n) = O(1). We easily derive
S(dyn) <IxS(d—1Ln)+ »_ S(d,n;)

0<s<!

= O (IAS(d—1,n))
=0 ((N)*+15(L,n)).

20

Since | < k we easily verify that for n large enough we have S(d,n) < m. Similarly, we find

Q(d;n) < Q(d—1,n) +Q (d [n/F])
= O(AQ(d_ lan))
=0(x1).

Since m = (0 (n(log n)4-1%¢) we have

1 1
d-—1 d-1+4¢

m m
> — — —rt —_—
log k > ()log Z_o()=a (tog n),

which implies Q(d,n) = O ((log n/log Z)¢~*). Optimality follows from Theorem 1.

3. The Partial Sum Problem: the Dynamic Case

In the dynamic version of the partial sum problem, one wishes to process a sequence of in-
structions of the form: (1) insert(p,s) into the current file ¥ (p € R4, s € §), or (2) compute
s(p) = 22, <pSis fora given p € R4, To do so, an algorithm must specify how to implement these
instructions, using an infinite array of registers z;, z2,.... For an insertion, operations of the form

2 1= s or z; 1= azy + fz (o, f integer > 0) are allowed. Queries are answered as in the static case.

In [Y3] Yao cleverly observes that a dynamic algorithm in dimension d can be used to construct
a static data structure in dimension d + 1. This allows him to turn his static lower bound into a
dynamic one. We follow a similar approach here. (Because we are using a continuous probabilistic

model the proof is quite different, however).

In the case where deletions are allowed, Fredman [F1] has been able to construct sequences
of n instructions requiring ((n log? n) operations to be processed. The following result shows that
disallowing deletions cannot improve the situation dramatically. As mentioned in introduction, this

result has already been obtained by Yao [Y3] for the case d = 1, but it is new for any d > 1.

Theorem 4. Consider the dynamic partial sum problem in ¢ (d > 0) over a commutative faithful
semigroup §. For any n > 2 there exists a sequence of n instructions (inserts or queries) that

requires ((n(logn/loglogn)?) time to process.

Proof: Without loss of generality, assume that n is of the form n = 3k > 6. Because of Theorem
1, we know that there exists a constant ¢ > 0 such that the following is true. For any k > 0 there
exists a set of k points in 441 such that, for any storage scheme T' for (P, S) of size m, we have
t(P,T, p) > ¢ (log k/ log gf‘-)d for a random point p € C 441 with probability > 1/2. Let {p1,...,px}
be the points of P sorted by z;-coordinates and let p; = (%i,¥i,1,---,¥s,a) and ¢ = (¥i,1,-- .3 Yi.d)

21

(1 <4 < k). Let D be a data structure for the dynamic partial sum problem in R and let T’ be
the storage scheme for (P, S) constructed as follows. Initially, I' consists of the k semigroup values
associated with the points of P. Then as each g; is inserted into D, for ¢ = 1,...,k, and as various
queries are processed, I' collects all the generators on the p’s induced by the generators on the
gi’s created by D in the process. If T' is the time of execution of a program on D, then certainly
IT| € ¢1T, for some constant ¢; > 0 independent of k. Next, we define a language for specifying
instructions to D.
1. “I(g)” means “insert g in D”.

2 “Q” means “ask the hardest query at current time”.

Let K = {v1,...,va} be the sequence formed by merging {z1,...,zx} and {t/k|1 < ¢ < k}.
We form the program J by replacing in K each “z;” by “@,I(g:)”, and each “¢/k” by “Q”. Note
that J consists precisely of n instructions. Let ro,...,r2x—1 be the open intervals: ro = (0, v1) and
r; = (vi,vi41) (0 < 4 < 2k). Let T be the storage scheme formed by J, as described earlier. Put
y=c¢ (log k/log EJkEI_) d. For each 1 (0 < 4 < 2k), mark r; if r; X C4 contains a point p such that
¢(P,T, p) > 7. Since such points are to be found at random with probability > 1/2 and the length
of each r; is < 1/k, at least [k/2] intervals will be marked. But since I' can only “improve” over
time, this means that at least [k/2] queries in J take time > c2v, for some constant c; > 0. We

derive

1 C]_T 4
T > Cgk’y/z > -2-62]0’.‘ log k/ log --k— y

from which it follows that T > cak(log k/ loglog k) ¢, for some constant cs > 0.

4. Orthogonal Range Reporting

4.1. Preliminaries

Let P be a set of n points in ®¢ and let Q = I be the query domain, where I = {[z,y]|z <
y € R}. Orthogonal range reporting in d dimensions refers to the problem of computing the function
g € Q — PN g, using preprocessing. Throughout this section we assume that the underlying model
of computation is a pointer machine, as defined by Tarjan [T]. Our main result is that a query time
of the form O(|P N g|+polylog(n)) can only be achieved at the expense of Q(n(logn/ loglogn) =Ly
storage, and this is optimal.

This shows, rather surprisingly, that the solution in O(n logn/ loglog n) space and O(|PNg| +
log n) query time, given by Chazelle [C1] for the planar case, is in fact optimal. It must be observed
that this is not true in the random access machine model. Indeed, in that model, Chazelle [C2| has
shown that it is possible to perform the computation in time O(|P N g| + logn) using O(nlog®n)

storage, for any € > 0.

22

We begin by recalling a few basic facts about pointer machines. Observe that for the purpose
of proving lower bounds one may use any model which is more powerful than the one in which the
bounds are intended. This will simplify the description. Following Tarjan [T], a pointer machine
consists of a finite number of registers and an unbounded (finite) amount of records: A record
consists of a data field and a constant number of addresses (pointers); we can assume this number
to be 2 without loss of generality. The memory can be modelled as a directed graph G = (V, E)
of outdegree at most 2, endowed with a source s from which every node can be reached. Roughly
speaking, the execution of a program can be regarded as a sequential visit of nodes in G, starting
at s, with various modifications of data and address fields along the way. The key requirement is
that no node v (# s) can be visited unless a node w has already been visited and (w,v) € E. New
nodes can be added to G by requesting them from a pool of free nodes with empty fields — See [T]
for details.

For the problem at hand we further assume that, aside from s, G has n distinguished nodes of
outdegree 0: vy, ...,vn, where each v; corresponds to a unique point p; of P. Let N(v) = {w| (v, w) €
E}. Computing PNgq involves the execution of a program composed of instructions in the repertoire
below: initially, W = {s};

1. Pick any v € W and add N(v) to W.

2. Request a new node v and add it to W (N(v) = 9).

3. Pick any v,w € W and add (v, w) to E (provided that the outdegree does not exceed 2).
E

. Pick any v, w € W and remove the edge (v, w) from E if it exists.

At termination we must have {v;| p; € PNg} C W. The time complexity is defined as |W|. Note
that updates of data fields are not mentioned and that the actual implementation of “pick any” in
steps 1,3,4 is hidden. In this sense our model is more powerful than an actual pointer machine. We
leave it as an exercise to show that a lower bound in our model constitutes a valid lower bound (up
to within a constant factor) on the complexity of orthogonal range reporting in the pointer machine

model.

We can go even further and show that steps 2—4 can be ignored. Indeed, prior to the computation
of P N q there must exist a directed path from s to each v (p; € PN q), all of whose nodes will
belong to W at the end of the computation (simple proof by induction). This implies the existence
of a tree T rooted at s, whose nodes belong to W and whose leaves are precisely {|p; € PN g}.
(By a tree we mean a subgraph of G with a source s, whose undirected version is a tree). We use
the notation |T| to designate the number of nodes of T. Let ¢(g) be the number of nodes of the
Steiner minimal tree (SMT) of {s}U{v:|pi € PN g} in G. From the previous remark, it is clear
that c(g) < |W|, so c(g) constitutes a lower bound on the time needed to compute PN g, using G.

Next, we introduce some terminology.

23

Let a,b > 0 be 2 real constants. We say that G is (a,b)-effective for P if for each ¢ € @ we have
c(fg) <a (]P Ngl+ logbn) :

We assume in the following that G is (a, b)-effective for P. Given v,w € V, let p(v, w) be the number

of edges on the shortest path in G from v to wj if there is no such path then p(v,w) = +oco. We also
define

d(v,w) = min{p(z,v) + p(z,w)|z€ V}
and for any real z > 0,
M(z) = [{{v,w) € V3| d(v, w) < z}|

Note that d(v,w) < p(s,v) + p(s, w) < +oo0.

Lemma 11. For each z > 0, M(z) < |V[225+2,

Proof: For any z € V, we have |{v € V|p(z,v) < z}| < 2%F! — 1, since each node has outdegree < 2.
This implies that for a given z,

|{(v, w) € V?|d(v,w) = p(z,v) + p(z,w) < z}| < 2212,
which completes the proof. §

Assume that |PNg| > log®n > 4 and let T be the SMT of {s}U{vi| p: € PNg} (ie. ¢(q) = |T|).
We transform T into another tree T' by applying the following steps as long as possible: Pick a
node v with a single outgoing edge (v,w). If v has an incoming edge (2,v), remove v and replace
the 2 edges (z,v) and (v,w) by (2, w). Otherwise, simply remove v and (v,w). It is clear that 1"
is a binary tree with 2|P N g| — 1 nodes. Embed it in the plane and let Iy, ..., ;s be its leaves from
left to right. We have

37 Al liva) < 2T — 1) < 2(|T] - 1) < 2¢(q)-
0<i<m
Note that m = |PNg|. Since G is (a, b)-effective for P we have
Z d(li, li+1) < 2a(m + log® n) < 4am.
0<i<m

Let A(q) = {(li;li+1)] d(lis liy1) < 8a}; we immediately derive |A(g)| > m/4. Suppose now that
there exist gy,...,qx € @ such that for each 2,7 (¢ < 7), [PNgi| > log®n and A(g:) N A(gy) = 6;
then

A= |J A@)]>km/a

1<i<k

24

But on the other hand, we have |A| < M(8a) < |[V[21%*2 (Lemma 11). We conclude that
[V| > mk/210+4, (20)

We will use a slightly weaker version of this result. The idea is to find “many” rectangles with at
least log® n points of P in each of them, but with no 2 points belonging to 2 rectangles at the same

time.

Given a query g € @, let K(g) = {(pi;p;) € (PNg)?|i < j}. We say that a collection of queries
{q1,-..,qx} is compatible if for each 4,7 (i < 7) we have |[PNg;| > log®n and K(g;) N K(g;) = 6.
From (20) we easily derive

Lemma 12. Let P be a set of n points in ®¢ which admits of a compatible set of k& queries. Then
solving the orthogonal range reporting problem in O(s + log” n) query time, where s denotes the

output size, requires {2(k log® n) storage.

Our next task is to prove the existence of a “large” compatible set of queries. We use proba-
bilistic arguments: first we construct the rectangles, and then we show that with respect to random
points these rectangles form a compatible set of queries with probability greater than 0. In the

planar case, however, it is easier to give an explicit construction.

4.2. The Planar Case

Each rectangle will contain exactly m points of P. We define m = |2 log® p|] and A =
_ﬁ—gll(;g;’-—T“J , where p is an integer large enough so that m,A > 4. Let n = m?*; for p large

enough, it is easy to show that m > log®n and

logn
> | —.
Az \‘1+bloglognJ

For any integer 7 > 0, let m(i) be the integer obtained by writing ¢ in base m (z = muma...my)
and reversing the order of the digits (m(i) = my ... mam;). Let P = {(m(s),1)|0 <1 < m}. We
construct an m-ary tree T as follows: Let {p1,...,pn} be the points of P from left to right, and let
21,...,2m be the children of the root z of T from left to right. With z we associate the list L(z) of
points in P sorted by y-coordinates. For each 1 = 0,...,m, we define L(z;) as the y-sorted list of
points in

{P(i—1)mi-1+1: Pli—1)m>—1425+ 1 Pim?—1 }-

For each node of T we specify a certain number of queries ¢; € Q. For the root z, we caliber the

queries g; so that P N g; consists of m consecutive points of L(z) (in z-order). A key observation is

25

that within each PNg; the points appear in distinct lists L(z;)’s. Applying this reasoning recursively

leads to a compatible set of Y, ;<) m*™!

2. = An/m queries. From Lemma 12 it then follows that
the storage is in Q(nlogn/loglogn). Taking into consideration the matching upper bound of [C1]

we conclude with this preliminary result.

Theorem 5. Given n points in the plane, it is possible to solve the orthogonal range reporting
problem in O(nlogn/loglogn) storage and O(s + logn) query time, where s is the size of the

output. The algorithm is optimal in the pointer machine model.

In the next section we will prove the existence of a compatible set of queries of size

q (n(log n/loglogn)¢-1)
log®n '

4.3. The General Case

In the following, we assume that d > 1. We also continue to use the notation of Section 2.1.A.

For convenience we introduce a few parameters

1/d
(410gbn) 4
a=
n

p=1/(logn)b+e
4
nlogdn.-

§ =

Whereas dealing with compatibility involves probabilistic arguments, defining the query rect-
angles can be done explicitly. (In two dimensions the rectangles are somewhat similar to those used
in the proof of Lemma 2). The idea is to define several partitionings of Cg4, each corresponding to
a distinct point with integer coordinates on the hyperplane E15k5 2%k = 0. For this reason we
introduce the set

§={(z1,.-.,20) €Z%| D z=0
1<k<d

26

4.3.1. The Set of Query Rectangles

For each z = (z1,...,24) €S and 7 = (71,...,Ja) € N4, we define the rectangle

w(z;)= [I [dear™, G + 1)ap™]
1<k<d

and the collection

G = {v(5) € Cd|(2,5) € T x N%}.

The elements of G are called cells. They all have the same measure, equal to a®. The next lemma
shows that two cells cannot overlap too much. This will be important later on to satisfy the

intersection criterion of compatible sets.

Lemma 13. For any n large enough, the intersection of two distinct cells is either the empty set or

a rectangle of measure at most §.

Proof: Let ¢ = v(z;7) and ¢’ = v(2';5') be 2 distinct cells. If z = 2, then j # ;' and obviously
Aa(cNe') = 0. If now z # 2’, we can assume without loss of generality that z; < 2]. Let ¢ (resp.
ct) be the projection of ¢ (resp. ¢') on the zx-axis (1 < k < d). For n large enough we have the

following derivations

Alene)= J[Mlernch)

1<k<d

< H min ()\1(61:): Al(c;c))

1<k<d

S ”z;—z1A1(cl) X H mil'l. (Al(ck)} Al(c;&!))
1<k<d
< pha(e),

therefore Ag(c Ne¢') < pad. §

Our next result is a lower bound on the size of g.

Lemma 14. For any n large enough, we have

n(log n)d-t-1
191> (b + d)*¢(loglog n)d—1"

27

Proof: We easily verify that for any 2, € Z such that

1 (1+2/d b log n)

> — Esva
B loglogn d dloglogn

+d ()

we have au® < 1/2. This shows that for any z = (21,...,24) € S, such that (21) holds for
k=1,...,d, the number of cells of the form v(z2;j) is at least

N A R

#z"j
1<k<d 1<k<d

For n large enough, the r.h.s. of (21) is negative, therefore a simple lower bound on the number of

z € & whose coordinates z’s satisfy (21) is given by

([1 (logn 1+42/d b)J+1 = 9 logn o
b+d \dloglogn loglogn d ' 2d(b + d) loglogn ’

This implies that the number of cells in § exceeds

n(logn) d=b=1

234F14a1 (b +)91 (log log n) + 1’

from which the lemma follows. §

We will also need an upper bound on the number of cells to which a given point can belong. A
rough estimate will be sufficient.

Lemma 15. For any n large enough, no point can lie in the interior of more than (dlogn/ loglog n) i

cells of §.

Proof: If 2= (21,...,24) is such that there exists j € N¢ with v(z;7) C Cg4, then for n large enough

2 exceeds —% logn/loglogn, for k = 1,...,d. Since z € &, we derive zj < d_Tllog n/ log log n.

Completing the proof is straightforward. g

4.3.2. Placing the Points: Heaviness and Diffusion

The first criterion of compatibility is that the query rectangles should contain at least log’n
points of P. We strengthen this requirement a little because “bad” points may have to be eliminated

later on. We say that a cell is heavy if it contains in its interior more than 2 log® n points of P.

Lemma 16. Let P be a random set of n points in €4, with n large enough. Then, with probability
greater than 1 — 2/ log” n, more than half the cells of § are heavy.

28

Proof: Let ¢ be an arbitrary cell of § and let x be the number of points of P in the interior of c. We
also define 7 as the probability that ¢ is heavy (i.e. Prob (x > 2log”n)). The mean and variance of
x are respectively n)g(c) and nAg(c)(1 — Ag(c)). Using Chebyshev’s inequality we derive

1-7<

mAale)(1— Aa(e))
(nAg(c) — 21log” n)2’

therefore 7 > 1— 1/ log®n. Let II be the probability that more than half the cells of § are heavy.

Since the expected number of heavy cells is equal to x| G|, we have

(1-m)|g|+ 1|4l

o=

(1-1/log"n)|§] < 7|g| <
which completes the proof.

Next we must ensure that points are not too close to each other, in order to satisfy the second
criterion of a compatible set. To that effect, we define the separation between 2 points (z15...,%Za)
and (y1,...,yq) in R? as the measure of the smallest rectangle containing them, that is, Mi<k<alze—
yx|. Let P be a set of points in C4; we say that a point p € P is stranded if its separation to any
point of P\ {p} exceeds §. Finally, we say that P is p-diffuse (p € [0,1]) if it contains at least pn

stranded points.

Lemma 17. Let p = 1 — 1/y/Iogn. For any n large enough, a random set of n points in Cais
p-diffuse with probability greater than 1 — 2%72/,/logn.

Proof: Let L(d,y) = Aq ({(a:l,...,:r:d] €Cy | ngkgd Ty < y}), with 0 < y < 1. We have the

recurrence relation L(0,y) = 0 and, for d > 1,
1
L(d,y) =y +f L(d-1,y/z)dz.
v
Let M(d,y) = L(d,y) — L(d — 1, y), for d > 0. We derive the simpler recurrence: M(1,y) =y and
1
M) = f M(d—1,y/2)dz,
v

for d > 1. This gives
1/y
M(d,y)=yf M(d—1,1/z)dz,
1

1/y pz1 Td—2 y
RO o o o SO
1 1 1 Ty X+ XTg—1
2

9

hence

We can evaluate this integral directly. This leads to

Lidy) = Y. % (ln s)k,

0<k<d

assuming that 0! = 1. Since 1/§ goes to infinity with n, we have

&d & i ”
L(d,&) < (T_—l—)‘ (lng) < 26(10gn)d 1,

hence

8

L(d, 6 A
(d)<nlogn

(22)

Consider the locus of points in C4 whose separation to a given point of C4 is at most §. Let V' be

the largest measure of such a set. It is immediate that
V < 2¢L(d, 6). (23)

Let v be the expected number of stranded points in P and let = be the probability that P is p-diffuse.
We have the relation
v < (1—n7)pn+ mn. (24)

The probability that a given point of P is stranded is at least equal to (1 — V)™, which exceeds
1—nV for n large enough (since V' tends to 0 as n goes to infinity). This implies that v > n(1—nV).

Combining this inequality with (22-24) leads to the lemma. §

Lemmas 16 and 17 imply the existence of a set P which is p-diffuse and causes more than half
the cells of § to be heavy. We form the set P* by removing each point of P which is not stranded
and replacing it by a point far outside of C4. In this way, each point of P* N (g4 is stranded.

Let T be the cells of § whose interior contains at least log® n points of P*.

Lemma 18. For n large enough, we have

n(logn)d-t-1

1k :
IE| > (b + d)54(log log n) 41

Proof: Consider each heavy cell of § (with respect to P) and mark it if at least half the points it
contains are stranded. Since P is p-diffuse and because of Lemma 15, the number of heavy cells
left unmarked cannot exceed d*~1n(logn)?*~3/2 /(loglogn)¢~1. Since more than half the cells are

heavy, Lemma 14 completes the proof. §

30

Since the points of P* N (4 are stranded, it follows from Lemma 13 that no two cells of T'
can contain the same pair of points of P*. We derive that I' forms a compatible set of queries.
From Lemmas 12 and 18, we conclude that to solve the orthogonal range reporting problem in
O(s+polylog(r)) time, where s is the size of the output, requires Q(n(lﬂg n/ loglogn) d_l) space.
In [M, pp.47] Mehlhorn describes a solution to orthogonal range reporting whose performance
depends on a slack parameter. When adjusted appropriately, this gives a data structure of size

O(n(logn/loglogn)¥1), with O(s+polylog(n)) query time. Our lower bound is therefore optimal.

Theorem 6. On a pointer machine, to solve the orthogonal range reporting problem on n points
in R in O(s+polylog(n)) time, where s is the size of the output, requires Q(n(logn/ loglog n) d-1)

space. This lower bound is optimal.

We leave the converse question open: given @(n(log n/loglogn) d_l) space, what query time
can be achieved? We know that O(s+polylog(n)) is within reach, but what is the smallest exponent
in the polylogarithmic term? Note that our results on the partial sum problem cannot be used here,
or at least not directly, because in the reporting problem the query time is expressed as a function

of both input and ouput sizes.

5. Concluding Remarks

It is important to observe that the lower bound proofs given in this paper assume real coordinates
only for the sake of convenience. Since in this context point-sets differ combinatorially only if the
permutations induced by the coordinates of the points also differ, all the lower bounds still hold if

we restrict ourselves to points with integer coordinates.

In closing, we will mention some intriguing open problems. To begin with, is our lower bound
on the complexity of the partial sum problem optimal when the storage is O(nlogd_1 n)? Is there
a matching upper bound for the € (n(logn/ loglogn)) lower bound given in this paper for the
dynamic version of the problem? Also, what is the complexity of the partial sum problem in
the so-called group model, where we allow an inverse operation? Recently Willard has gener-
alized Fredman’s technique to the group model [W2]. To our knowledge, however, nothing is
known about the static case in higher dimensions. Finally, one should see whether the methods

used here can be adapted to other range searching problems (e.g., polygonal/circular range search
[EW,HW,W1,Y4,Y5]).

Fredman’s arithmetic model of computation, in which our study of the partial sum problem is
cast, is very general and any lower bound in that model can be trusted to hold in any “reasonable”

sequential model as well. This is not always the case in the other direction, however. An optimal

31

upper bound in the arithmetic model might no longer be tight in a more realistic model, because the
cost of computing addresses is not included. Theorem 3 shows the existence of a solution for the par-
tial sum problem on n points in R2 requiring, for example, O(n log® n) storage and O(logn/ loglog n)
time. One can easily show that these bounds cannot be achieved in any comparison-based model.
But then what is the complexity of the problem in such models? Is there a natural mathematical
model which brings about the distinction between the combinatorial and computational aspects of

multidimensional searching?

Acknowledgment: I wish to thank Robert E. Tarjan for valuable comments on a draft of this

paper.

32

REFERENCES

[BKST] Bentley, J.L., Kung, H.T., Schkolick, M., Thompson, C.D. On the average number of mazima
in a set of vectors, and applications, JACM, 25 (4), Oct. 1978, pp. 536-543.

[BM] Bentley, J.L., Maurer, H.A. Efficient worst-case data structures for range searching, Acta In-
formatica, 13, 1980, pp. 155-168.

[C1] Chazelle, B. Filtering search: a new approach to query-answering, Proc. 24th Annu. IEEE
Symp. Found. Comput. Sci. (1983), pp. 122-132. To appear in SIAM J. Comput., 15 (3),
Aug. 1986.

[C2] Chazelle, B. A funcitonal approach to data structures and its use in multidimensional searching,
Brown Univ. TR, No. CS-85-16, Sept. 1985. Preliminary version in Proc. 26th Annu. IEEE
Symp. on Found. of Comp. Sci., Portland, Oct. 1985, pp. 165-174.

[E] Edelsbrunner, H. Intersection problems in computational geometry, PhD Thesis, Tech. Rep.
F-93, Techn. Univ. Graz, 1982.

[EW| Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space and O(n%%%%) query time,
Rep. F111, Inst. Inform. Proc., Tech. Univ. Graz, Austria, 1983.

[ES] Erdégs, P., Spencer, J. Probabilistic methods in combinatorics, Academic Press, New York, 1974.

[F1] Fredman, M.L. A lower bound on the complezity of orthogonal range queries, J. ACM, 28, 1981,
pp. 696-705.

[F2] Fredman, M.L. Lower bounds on the complezity of some optimal data structures, SIAM J.
Comput. 10 (1), 1981, pp. 1-10.

[HW] Haussler, D., Welzl, E. Epsilon-nets and simplez range queries, Proc. 2nd ACM Symp. on
Computational Geometry, Yorktown Heights, NY, June 1986, pp. 61-71.

[M] Mehlhorn, K. Data Structures and Algorithms: Vol. 8. Multi-dimensional searching and com-
putational geometiry, Springer-Verlag, 1984,

[O] Overmars, M.H. The design of dynamic data structures, LNCS, Vol. 156, Springer-Verlag, 1983.

[T] Tarjan, R.E. A class of algorithms which require nonlinear time to maintain disjoint sets, J.

Comput. System Sci., 18, 1979, pp. 110-127.

[V] Vaidya, P.M., Space-time tradeoffs for orthogonal range queries, Proc. 17th Annu. ACM Symp.
on Theory of Comput., May 1985, pp. 169-174.

[W1] Willard, D.E. Polygon retrieval, SIAM J. Comput., 11, 1982, pp. 149-165.

33

[W2] Willard, D.E. Lower bounds for dynamic range query problems that permit subtraction, Proc.
13th ICALP, 1986.

[Y1] Yao, A.C. Space-time tradeoff for answering range queries, Proc. 14th Annu. ACM Symp. on
Theory of Comput., 1982, pp. 128-136.

[Y2] Yao, A.C. Lower bounds by probabilistic arguments, Proc. 24th Annu. IEEE Symp. on Found.
of Comp. Sci., Nov. 1983, pp. 420-428.

[Y8] Yao, A.C. On the complezity of maintaining partial sums, SIAM J. Comput. 14 (2), May 1985,
pp. 277-288.

[Y4] Yao, A.C., Yao, F.F. A general approach to d-dimensional geometric queries, Proc. 17th Annu.
ACM Symp. on Theory of Comput., May 1985, pp. 163-168.

[Y5] Yao, F.F. A 3-space partition and its applications, Proc. 15th Annu. ACM Symp. on Theory
of Comput., 1983, pp. 258-263.

34

_Figure 2

"'(/:)J)g\i\
I'd.-;/p %//// wir,j)

UCfJ)

..

e By 5 ==
_Figvre 3

—_—

