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Abstract. We present a robust method for tracing a curve that is represented as the
contour of a function in Euclidean space of any dimension. The method proceeds
locally by following the intersections of the contour with the facets of a triangulation
of space.

The algorithm is robust in the presence of high curvature of the contour, and gives
reasonable results when the curve is self-intersecting. It accumulates essentially no
round-off error, and has a well-defined integer test for detecting a loop. In developing
the algorithm we explore the nature of a particular class of triangulations of Euclidean
space, namely, those generated by reflections.
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1. Problem

We consider the problem of tracing the contours of a map between Euclidean
spaces. If f : R® — R¥ (k < n) is, say, smooth, the implicit function theorem
(together with Sard’s theorem) says that, for most points y in the image of f, the
contour C' = f~1(y) is a smooth manifold of dimension n — k. If k = n, again for
most points y in the image of f, C' is a collection of isolated points, and finding C
is the same as finding the roots of y = f(z); although the solution to this problem
has a vast literature, it seems to be of little help in solving the problem for k < n.

The problem of finding the contour C' breaks into two parts: locating the various
components of C (that is, finding at least one point in each component), then
tracing around each component, using the fact that the components are connected.
Later we state more precisely our definition of what it means to trace C; the general
idea is that we want to compute a collection of “representative” points in C. In
this paper we will focus on the tracing problem, although we discuss very briefly
(section 8) the problem of locating contours. In any case, many applications supply
their own starting points.

!Research of the first three authors was supported in part by the National Science Foundation
under Grant DCR&5-05517.



We will assume that we are given a program to compute f(z), for any z in some
region of interest. This is to be distinguished from another situation that often
arises, in which we are given a collection of pairs (a:.-,f(:c,-)), fors = 1,...,N,
with the points z; scattered throughout the region of interest. In principle the two
situations are nearly equivalent: given a program to compute f, we can produce
the values of f at z;,...,zn; or given those values we can design a program that
computes an approximation to f. In practice, however, if we have a program that
calculates f for any input we will not precalculate f at a set of values, because
many of these values will not be used in tracing the desired contour, especially in
higher dimensions. Thus the two situations tend to lead, in practice, to different
sorts of algorithms for tracing contours.

Most of the large literature on contour tracing deals with the data case. For
an excellent review with extensive bibliography, see [Sabin 1985]. Arnon [1983]
discusses the case of curves given by functions f on the plane, when f is algebraic.

Our decision to focus on functions rather than data does not, in general, create
too great a restriction. A prime example is in estimating the probability density of
some n-dimensional distribution from which we have a number of independent and
identically distributed observations. Most existing procedures to contour a density
estimate proceed by evaluating the estimate on a grid, then building the contours
by a complete pass across the grid. But viewing the density estimate as a function
(which is often, but not always, practical, depending upon the particular estimate),
we may apply the methods of this paper to find the contours directly, while only
evaluating the estimate at points in a neighborhood of the contour.

We will focus our attention on the case k = n — 1, which leads to one-dimensional
contours, but our results can be extended to higher-dimensional contours; we take
up this subject briefly in section 8.

The algorithm we will describe is related to a class of algorithms first introduced
by Scarf [1967] to deal with certain fixed point problems in economics. These
algorithms, based on a lemma due to Sperner [1928], basically follow a contour
curve (typically of a homotopy) as it passes close to, but not necessarily through,
a sequence of simplices. For more details, see the books by Todd [1976] and Kara-
mardian [1977], the survey paper by Allgower and Georg [1980] with its extensive
bibliography, and the recent article by Allgower and Schmidt [1985].

Our work is a departure from this line in several ways. First, we trace contours
through the precise set of simplices they intersect; this translates into a gain in
accuracy, especially as the dimension increases. Second, we make use of well-known
geometrical results [Coxeter 1973] to generalize the several specific triangulations
that have been in common use in the fixed point literature; in particular, we explore
and compare all monohedral triangulations generated by reflections, in arbitrary
dimension. Finally, the algorithm described here seems conceptually simpler, and
is correspondingly easier to implement. A fairly general implementation of it is the
subject of a paper currently under preparation.
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Many interesting problems can be stated in the context of contour tracing. A few
of them, drawn from computer graphics, computational geometry, pure mathematics
and statistics, are discussed in the next section. These examples are not meant to
be exhaustive, but rather to illustrate some directions in which the general method
can be applied. Still in section 2, we outline two possible approaches to the tracing
problem, and indicate why we chose one over the other.

Section 3 is devoted to an easily understood instance of the algorithm, and to set-
ting the stage for the more general case. In section 4 we generalize the triangulation,
and in section 5 we present further computational details, including a theoretical
analysis of the relative performance of the various triangulations. Section 6 con-
tains the full algorithm, adapted to degenerate cases. Finally, in section 7 we give
examples of the algorithm in action, while in section 8 we suggest several possible
extensions of the method.

2. Examples and Approaches

We begin by describing a broad range of sample problems to which contour tracing
has been applied.

Example 1: curve tracing

Many simple curves may be represented as the contour of some suitable function.
For example, let f : R? — R! be the function defined by f(z,y) = z? + y2. The
graph of f is a paraboloid and contours of f, for y positive, are circles centered at
the origin. The contour of f containing the starting point (r,0) is just the circle

fz,y) =r.
Example 2: shadow computation

Let ¥ and ¥, be spheres with centers ¢; = (29,y?,29) and ¢; = (29,43, 29),
and radii r; and ry. Assume that a light source is located at (Iz,ly,lz) and that it
is known that ¥; casts a shadow on £;. We can study the outline of this shadow
by considering a contour of the function f : R® — R’ with components f =

(f1, f2, f3, f, f5), where
fi(zi,91, 21,32, 42, 22) = (@i = 23)° + (i —0))* + (2 = 2])?, fori=1,2,

is the square of the distance from the point p; = (z;,y, z;) to the center of sphere
i

f3(p1,p2) = (z1 — 2))(z1 — Iz) + (y1 — y))(y1 — ly) + (21 — 20)(z21 = I2)

vanishes if and only if p; lies on the horizon of the first sphere (the vector from the
P1 to c; is perpendicular to the vector from p; to the light source); and

fa(pP1,P2) = (x1 — lz)(y2 — ly) + (22 — l2)(11 — ly),
fs(P1,P2) = (21 — lz)(ys — ly) + (x5 — lz)(y1 — ly)

3



vanish if and only if p; and p; are collinear with the light source. The contour
corresponding to f(p1,p2) = (rf,r%,0,0,0) gives all pairs of points such that the
first belongs to the first sphere and the second belongs to the second sphere and lies
in the shadow of the first. The shadow outline itself is (a part of) the P2-component
of this contour. Notice that, although we need to keep track of the pP1-component
as well, this component is irrevelant to the computed shadow.

Example 3: object intersection

A torus in R? is the set of points that are at a fixed distance from a given circle.
(The distance from a point to a circle is the smallest distance to any point on the
circle.) If we denote by T'(p;c,r,n) the square of the distance from a point p to
the circle with center c, radius r and lying in the plane normal to n, we have

T(p;c,r,n) = (r — |[p—c —an|))* = (p - n).

The torus of thickness d about this circle is the contour T-'(d?). To find the
intersection of the torus of thickness d; around the circle (e1,71,my) with the tor
of thickness d; around the circle (cz,72,n3), define f : R® — R? by '

f(p) = (T(p; Ci1,71, nl), T(p; C2,7T2, nz)).

Then the intersection is the set of curves f~1(d?,d3).
Example 4: density estimation, confidence regions

A common activity in statistical data analysis is to estimate a probability density,
given a sample of data points z,,...,z, € R?. One possibility is the balloon density
estimate, which is defined at z € R%, to be proportional to the reciprocal of the
volume of the sphere centered at = that contains exactly k of the data points, for
some fixed k [Tukey 1981]. This function from R? to R has (d — 1)-manifolds as
contours; to study these, pictures can be made of level curves, by fixing the values
of d — 2 of the dimensions and tracing the contours of the resulting functions from
R? to R.

In hypothesis testing, confidence regions can be considered as the regions bounded
by contours of the log likelihood function, so their computation can be attacked as
a contour tracing problem.

Some of the problems above can be solved by methods other than contour trac-
ing: for example, Bresenham’s algorithm can be used to scan-convert circles [Foley
and van Dam 1982, p. 442], ray tracing to compute shadows, and there are other
approaches to the problem of intersections of surfaces (see, for example, [Geisow
1983] and [Requicha and Voelcker 1983]). However, the paradigm of contour trac-
ing is a useful one in which to cast these diverse problems. In our research, we
have used contour tracing in numerous other situations; initially the idea arose in
connection with two problems which we had previously considered to be unrelated,
namely, the calculation of Julia and Mandelbrot sets [Blanchard 1984] and the fast
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display of torus knots. The first of these problems is discussed in section 7. For the
latter, other considerations are more significant than the contour tracing and the
methodology will be described elsewhere.

We now describe in more detail the concept of contour tracing. Let f: U — R*~1
be a C! function on an open, connected subset U of R™, and assume that we are
given zg and yo such that yo = f(2o). The contour of f passing through z, is the
inverse image C' = f~!(yo), or sometimes the connected component of it containing
To. Assuming for the moment that yq is a regular value of f, that is, df (z) is of rank
n — 1 whenever f(z) = yo, the implicit function theorem says that C is a disjoint
union of smooth curves in U, each homeomorphic to either the reals R or to the
circle S1.

Our problem is find the connected component Cy of C' that contains zo. More
specifically, we would like to generate a finite sequence of points in Cy by starting
at zo, and stepping along the curve until we either come back to z¢ or we reach the
boundary of U. In the latter case, we start again at zo and trace in the opposite
direction until we again hit the boundary. These are the only possibilities.

The first decision to be made is, how big should the steps along the curve be? A
natural criterion for the step size is that every point of the curve should be within
e of one of the computed points, for some preassigned ¢ > 0. In addition, we might
like the computed points to be closer together when the curve is changing more
rapidly, in order that the details of the changes can be followed. In fact, we might
vary the step size at each step, according to some estimate of the local curvature of
Co at the current position. In what follows, we will not take this dynamic approach;
we will assume that points that are at most ¢ apart on the curve are sufficient. This
is certainly a reasonable assumption if Cy is being graphically presented as, say,
the linear spline connecting the computed points, and if ¢ is taken to be equal to
the resolution of the plotting device; in this case the true picture of Cy would be
indistinguishable from the computed picture. We will talk a bit more about variable
step sizes in section 8.

The basic problem is then to find the next point z;1; € Cj, given the current
point z; € Co, and perhaps previous points. Two general approaches can be broadly
characterized as “infinitesimal” and “local” (but see [Geisow 1983] for a classification
of methods that is somewhat different from ours).

The infinitesimal approach is easiest to describe for n = 2 (figure 1(a)). To
find z;41, we use the derivative of f at z; to determine the tangent line to the
curve. We take a small step away from z; along this line, then do a one-dimensional
search in the direction orthogonal to the tangent to “rediscover” the curve. The
main shortcomings of this method are: (a) it is possible to lose the curve in a
region where it has high curvature; (b) derivatives may not be available for f, so
an approximation must be used, and this can be a source of numerical difficulties;
(c) each step requires several function evaluations to rediscover the curve—as many
as 5 or 6 in dimension two—and in many applications a single function evaluation
can be significantly expensive; (d) the procedure is difficult to generalize to higher
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dimensions satisfactorily. See [Allgower and Georg 1980] for a brief review of some
standard infinitesimal methods and how they deal with these problems.

The idea behind the local approach is to use, rather than the derivative of f
at z;, the values of f in a neighborhood of z;. At the outset, f is conceptually
replaced with a function f, which is equal to f at points in some grid, and is
defined by interpolation at other points. (Of course, the interpolation depends on
the grid.) The simplest possible interpolation is affine (linear), and in this case the
contour C = f‘l(yg) is piecewise linear, and can be traced exactly. In general, C
approximates C' to the resolution of the grid, but it fails to reflect sudden variations
in f that take place in a scale smaller than this resolution. Furthermore, ¢ and
C may be topologically different; for example, if C' has two components that come
very close at some point, C may join these two components at a node or a “neck”.

On the other hand, the local method described in this paper does not suffer from
disadvantages (a)—(d) above: it never loses the curve, does not involve derivatives,
requires only one function evaluation per step, and generalizes easily to all dimen-
sions. It also gives reasonable results even in cases when y, is a critical value of f,
whereas the infinitesimal approach requires special care in these cases.

We can summarize the two approaches by saying that the local method traces the
exact contour of an approximation to f, whereas the infinitesimal method traces
an approximate contour of the exact f. Figure 1 illustrates the two approaches. In
figure 1(a) the current position is z,, on the contour f~!(y), where f : R? - R
is some smooth function. We take a step from z; to z; + ef'(z;), then do a one-
dimensional search in the direction perpendicular to the direction of the step (along
the dotted line). In Figure 1(b), f has been (conceptually) replaced by the affine
approximation f, and the contours of f are piecewise linear curves, as shown by
the heavy polygonal line (the dots show where the contour changes triangles, and
possibly direction). Since f is determined by its values at the vertices of the current
triangle, f is only evaluated at vertices of triangles through which the contour
passes; clearly, this involves one new function evaluation per triangle.

Figure 1 about here

In sections 3 through 6 the letter f will stand for the affine approximation of some
original, not necessarily differentiable, function from U C R" into R"*~!. Without
loss of generality, we assume that the contour that interests us is the inverse image
f710,...,0) of the origin. We assume further that we know a point zo in this
contour, and we denote by C' the connected component of the contour that contains
ZIg.

3. The Non-Degenerate Case

In order to motivate the algorithm, we start with its simplest possible case: trac-
ing a contour in two dimensions. We leave the triangulation unspecified, but assume
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that our function f : R? — R never vanishes at the vertices of the triangulation,
and is never constant on a triangle. This will avoid degenerate behavior, whose
treatment we postpone until section 6.

The procedure is iterative. At each step we consider the restriction of the function
to one triangle only, which we have just “entered” through an edge for which f is
positive at one endpoint and negative at the other (cf. Figure 1(b)). Let the vertices
of this triangle be (so,s1,52), and assume we entered it through the edge (s0,81),
where f(so) > 0 and f(s1) < 0. Two cases can occur: if f(s3) > 0, the contour
must exit the triangle through the edge (s1,32), and if f(s2) < 0, the contour exits
through the edge (so,52). In either case we can find the exit point by interpolation.
Then we fetch the third vertex of the triangle that lies on the other side of the
exiting edge, which becomes the entering edge of the new triangle. We're ready to
restart the cycle.

The iteration ends when we return to the initial triangle or exit the search domain
U. As for its beginning, if our initial point zo does not happen to lie on an edge of
the triangulation, we can also use interpolation to replace it by one that does.

To discuss the case of arbitrary dimension, we start by fixing some nomenclature.
Recall that an n-dimensional simplez (or n-simplez) o in an n-dimensional affine
space is a bounded intersection of n + 1 closed, affine half-spaces. The hyperplanes
determining these half-spaces, taken n at a time, intersect at the vertices of o;
there are n + 1 vertices, they are in general position (that is, there is no hyperplane
containing all of them), and their convex hull is o.

A k-dimensional face (or k-face) of o is the convex hull of any k vertices of o. If
the vertices of o are s,...,s, € R", we call &4, where A C {0,1,...,n}, the face
that is the convex hull of {s; : j ¢ A}; in particular, s; = ®(0,...,i-1,i+1,...,n)- Facets
are (n — 1)-dimensional faces; ® ;) is sometimes called facet i, that is, facets are
labeled with the index of the opposite vertex. An edge is a one-dimensional face
and a vertex is a zero-dimensional face. Notice that o = ®g is an n-dimensional
face of itself.

A k-face of o is clearly a k-simplex in the k-dimensional space in which it lies,
and we also say it is a k-simplex in the big space. A face’s interior is the set of
affine combinations, with strictly positive coefficients, of its vertices; its boundary
is what’s left.

A triangulation of R™ is a collection of n-simplices that cover the whole space
and whose interiors are disjoint. Here is a simple example of a triangulation in R",
for n arbitrary: Consider the collection of hypercubes whose vertices have integer
coordinates and whose edges have length one and are parallel to the coordinate
axes. We subdivide the unit hypercube [0,1]" into n-simplices by observing that,
for every permutation 7 = (i1, 12,...,1,) of the integers {1,2,...,n}, the set of points
(z!,...,2") that satisfy the constraints

i S:ci’ S"'S.’L‘i"
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is an n-simplex, and that these n! simplices triangulate the unit hypercube. The
vertices of such a simplex are

S0 =(O,...,0)

8 = {0 canlia i cll) (1 in the i,-th position),

83 = (0,...,1,...,1,...,0) (1 in the i,-th and $,_;-th position)

8= (Lyuuis )
notice that so and s, are shared by all simplices, and the edge they span is a main
diagonal of the unit hypercube.

We complete the triangulation of R™ by translating the triangulation of the
unit hypercube to all other hypercubes. Each simplex in this triangulation can
be uniquely referenced by the lowest-coordinate corner of the hypercube it’s con-
tained in, together with a permutation of {1,...,n}. There is, however, a simpler
way to reference each simplex, namely, by the coordinates of its center of mass
(which, when multiplied by n + 1, are integers). It is important to have a sim-
ple way to address simplices because, as we shall see later, we must keep track of
already-visited ones.

With these examples in mind, we now describe in detail a simple version of the
algorithm. Imagine that we have an arbitrary triangulation of R™. (There is no need
to compute the positions of all the simplices of this triangulation; all we will need is
a means of finding the simplices that abut a given simplex. Finding a triangulation
for which this is easy turns out to be an interesting problem in its own right, and we
take it up in the next section.) We will denote by C” the (non-empty) intersection
of the contour C' with a simplex o of this triangulation.

For this simple version we’ll want to avoid two types of situations. The first
occurs when C?, which normally is a line segment, has dimension greater than one.
The second is when C'?, which normally goes in and out of ¢ through the interior of
facets, happens to intersect also the interior of a face of dimension less than n — 1.
The first type of degeneracy implies the second; both are ruled out for the nonce.
In spite of this limitation, this version of the algorithm works surprisingly well—the
examples in section 7 were computed using it.

As in the two-dimensional example above, we work by keeping track of three pieces
of information, which together constitute the current state (o, k,b) and reflect the
situation as we are passing into a new simplex:

(1) the current simplez o with vertices sg,...,s, € R®;
(2) the index k of the current facet through which we'’re entering o (remember
that facets are indexed by the subscript of the opposite vertex); and

(3) the barycentric coordinates bin = (b,,...,b%), of the current position.

The current position is the point in the current facet where C enters o. The barycen-
tric coordinates b = (%,...,b") of a point z € R™ (with respect to an n-simplex
o) are defined by

Sab=(1), where S,:(l 1).
T 89 '+ Sp
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Since the current position lies on the current facet, the k-th barycentric coordinate
bk is zero.

As we go along the contour, then, our task is to compute the next state (o', k', b! )
from the current one. Notice that if a point is on a face common to two simplices,
its barycentric coordinates with respect to the two are the same, if all the common
vertices have the same indices in both simplices (otherwise they are the same up to
reordering). In particular, this will be the case if all the vertices of the triangulation
can be simultaneously assigned an index in {0,1,...,n} insucha way that, for each
simplex, the n + 1 vertices get all possible n + 1 indices. From now on we assume
the triangulation satisfies this property.

Under this assumption, finding b{, is the same as finding the barycentric coor-
dinates boyt of the point where C exits o, and finding k' is finding the facet to
which boy belongs. (We will freely use the barycentric coordinates of a point to
stand for the point itself, because at any one time we only work with one system of
barycentric coordinates.) In order to find bgy it will be useful to have the notion of
a barycentric direction, that is, a non-zero (n + 1)-tuple v whose elements have sum
zero. We call v a direction because by adding scalar multiples of it to a barycentric
position we generate further barycentric positions that represent points on a line
in R". Now provided that v, when anchored at b;,, points into o, the intersection
C? may be written as {by(t) = bj, +tv: ¢ € [0, 7]} for some barycentric direction
v and some positive 7 € R. In this notation we can easily write boys = by(7), and
the problem is to find v and 7 (as it turns out, k¥’ will be found at the same time).

To find v we observe that the value of f at a point z of ¢ with barycentric
coordinates b = 5;1(1) is given by the equality

Fabz(f(lx)), where F =(f(io) » f(in)),

because F;; represents the unique affine transformation that gives the right values

for z = sp,...,8n. Thus C7 is the set of points whose barycentric coordinates
b = (¥°,...,b") satisfy

F,b=| . and b >0 foralli.

Here the equality has at least one solution bj,, so the dimension of its set of solutions
is n + 1 minus the rank of F,. (Thus the first type of degeneracy mentioned above
occurs when F,, does not have full rank n.) The general solution of the equality can
be written b, + tv, where v is a non-trivial solution of the homogeneous equation

(*) ng = O.
Finding v is therefore just a standard linear algebra problem.
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To ensure that a barycentric vector anchored at b;, and pointing in the direction
v points into o, we simply look at the k-th coordinate v* of v and multiply v by —1
if this coordinate is negative. We observe for later use that a vector anchored in o,
and in the direction v, points away from facet 7 if v* is positive, points towards facet
i if v* is negative and is parallel to facet i if v' is zero. If v* were zero C would run
along facet £ and would intersect a lower-dimensional face, so we would have the
second kind of degeneracy mentioned above. Furthermore, since facet k is shared
with the previous simplex (unless we're just starting the process), this would imply
that in that simplex there was a degeneracy too.

It is now a simple matter to find the exiting facet in which bey, lies. In general,
by(t) lies on an extended facet of ¢ whenever it has at least one zero coordinate.
For ¢ slightly larger than 0, by(¢) lies in the interior of o (because v points into o),
so 7 is the smallest positive number ¢ for which one of the coordinates of by(t) is
0. In symbols,

(*x) 7 = min{—b}, /v* : v' £ 0,—b}, /v* > 0}.

The index k' that achieves the minimum gives the exiting facet, that is, —bk Jo¥ =
7. (If the minimum were achieved for more than one k' the contour would pass out
of o through one of its faces of dimension less that n — 1, and a degeneracy of the
second kind would occur.)

The simplex ¢’ into which C' now passes shares all but one of its vertices with
o, namely, sy». Thus to find o' we just need to compute the new sp:. In the next
section we show how our triangulation of R™ can be chosen in such a way that this
is very easy to do.

4. Triangulations

So far we have identified two properties that we would like our triangulation to
have: (a) it should be easy to find the simplex that shares a facet with a given
simplex; and (b) it should be possible to label the vertices of all the simplices at the
same time with indices 0,...,n, in such a way that each of the n + 1 vertices of an
n-simplex has a different label. Two more conditions are intuitively desirable: (c)
all simplices should have more or less the same size, and (d) their dimensions should
be roughly the same in all directions. The reasoning here is that, having normalized
the largest dimension of a simplex to the pixel size, say, we don’t want to cross too
many very small or very skinny simplices, because we would be progressing more
slowly for the same amount of computation. (Slowing down to gain in resolution
would be a good idea if we could do it only when the function requires it—this is the
variable step size approach. But since we're choosing the triangulation beforehand,
a large amount of variability in step size is wasteful.)

There is a whole class of triangulations, in all dimensions, that fit these re-
quirements beautifully, namely, monohedral triangulations generated by reflections.
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“Monohedral” means that all n-simplices are congruent, and “generated by reflec-
tions” means that they can all be obtained from a fixed one by successive reflections
in its facets. (Alternatively, if two simplices share a facet they are reflections of each
other in that facet.) Coxeter [1934] has enumerated all such triangulations, and this
section presents very briefly their unifying properties. Although this material is not
difficult, it is by nature more mathematical than the remainder of the paper, and
a reader interested only in the practical aspects of our algorithm can skip to the
paragraph containing formulas (%) and (**), at the end of this section.

A simplex in such a triangulation must have dihedral angles that are each a
submultiple of 7. In other words, for each pair of facets i and j of the simplex,
there is an integer p;; > 1 such that the dihedral angle between the two facets is
7/pij. To see why, consider the dihedral angle between two facets of one of these
special simplices, and imagine alternately reflecting the simplex in each of the two
facets. After a finite number of reflections we must arrive back at the original
simplex, in exactly the position in which we started; otherwise this simplex does
not triangulate by reflection. Thus an integer number times the dihedral angle
between our two faces is equal to 27. If we further demand that the last simplex in
this chain has the same orientation as the first (that is, a set of vertex labels on the
first simplex will get reflected back into position on the last simplex), this integer
number must be even—an odd number of reflections will reverse the orientation.

Coxeter introduced a shorthand way of identifying, up to similarity, a simplex of
one of our triangulations, and, by extension, the triangulation itself. The Cozeter
diagram of such a simplex is a graph with a node for each facet and with p; i—2
undirected edges connecting the nodes corresponding to facets i and j. Thus, two
nodes have no edges between them if the angle between the corresponding facets is
90°, a single edge if 60°, and so on.

Figure 2 is Coxeter’s enumeration, showing Coxeter diagrams and his names for
the simplices they represent (Pp,, Qm, and so on). The subscript in these symbols
stands for the number of vertices of the simplex, n + 1 in our notation; from now
on we will consistently use m = n + 1. The vertex and edge labels are explained
below.

Figure 2 about here

It is important to remember when interpreting a Coxeter diagram that each node
of the diagram corresponds to a facet of the corresponding simplex. This can be
particularly confusing for the 2-dimensional case; look at the diagram for P;. It
looks like an equilateral triangle, and in fact that is precisely what it represents,
but only by accident: the correct way to read the diagram is by observing that it
stands for a simplex with three edges (nodes), each pair of which have a 60° angle
between them (one edge in the diagram).

A sample of each of the three two-dimensional Coxeter triangulations, P;, Rz and
V3 is given in figure 3.
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Figure 3 about here

Notice that there are four families that have representatives in all but a few low
dimensions, namely, Pp,, @m, Rm and S,,. These are the natural candidates for an
algorithm that is meant to work in any dimension, although the remaining entries
in the list might be useful in their specific dimensions.

To wrap up the description of the iteration step of our algorithm, in section 3,
we needed to display a rule to compute the simplex that shares a given facet with
the current simplex. Here this boils down to finding the reflection of a vertex s; of
the simplex in the opposite facet. The reflection of a point p in a hyperplane H is
reached by going from p to its orthogonal projection 75 (p) on H, then once again as
far in the same direction: in symbols, 27 (p) — p. Finding 7y (p) is straightforward
given the equation of H and the coordinates of p, but it turns out that we can avoid
all of that because of the geometry of the simplices. Our treatment loosely follows
Coxeter’s [1973, p. 182-184]. :

Let m;(s;) be the projection of s; in the hyperplane containing facet i. We first
write 7;(s;) in barycentric coordinates with respect to the vertices of facet i: wils;) =
2 ok w;-" sj, with Zw;’ = 1. To figure out the wf , consider the plane containing
the edge that joins s; and s; and orthogonal to the opposite face ®4i,j}» which it
meets at u. The intersection of the simplex with this plane is shown in figure 4. In
this figure, w] is, by definition, the ratio between the length of the segment u;(s;)
and the side us;. Now the length of um;(si) equals the length of side us; times the
cosine of the angle at u, which is just the dihedral angle 8;; = 7/p;j; since the sides
of a triangle are inversely proportional to the corresponding altitudes, we can write
w] = cosb;;-(hi/h;), where h; and h; are the altitudes of the simplex corresponding
to vertices s; and s;.

Figure 4 about here

n-

To calculate the altitudes h;, we first show that Y7 —h—*

1

unit vector normal to facet 7 and pointing out. This equality can be verified by

considering its inner product with each vector s; — so: we have n; - (s; —s9) = 0

unless ¢ = 0 or j, in which cases the inner product is hg or —h;, respectively. Since
the n vectors sj; — so form a basis for R™, this implies the equality.

= 0, where n; is the

We have just shown that the expression ||E?___0 n,-a:"”2 vanishes when the z* are
inversely proportional to the altitudes h;. Now this expression is a quadratic form

in (z°,...,z"), and the entries a;; of its associated matrix A are just the inner
products n; - n; of the unit face normals of the simplex. More precisely, we have
{ 1 =7y,
aij = .
" —cosw/pi; ifi#j.

Because the n;, taken n at a time, are linearly independent, A has rank n, and its
kernel is one-dimensional: in other words, all vectors in the kernel are proportional,
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and if we find any one of them we can get the altitudes (up to scaling) by taking
the reciprocals of its coordinates. This, of course, needs to be done only once
for each triangulation, and in fact figure 2 shows these numbers for all the Coxeter
triangulations: the node labels of the diagrams represent the coordinates of a vector
in the kernel of A.

For example, here is A for P;, R3 and Vj:

2 -1
e A T (S = 2
1
~y =g 1 0 -2 0 -¥ 1

2

The vectors in their kernel can be taken as (1,1,1), (1,v/2,1) and (1,2,/3), as
shown in figure 2.

To complete the determination of the weights w we just need to apply the
formula w! = cos §;; - (hi/h;). Notice that w? Va.mshes when facets ¢ and j meet at
right angles, so we only ha.ve to keep track of pairs (%, j) whose corresponding nodes
in the Coxeter diagram have an edge between them. At this point, each edge of
the Coxeter diagram has two weights associated with it, corresponding to the pairs
(¢,7) and (j,%), but, because there are no loops in the diagrams (except for the case
of Pp,, when all the vertices are equivalent anyway), we can arrange to match the
two weights associated with each edge by scaling each set of weights associated with
a vertex by the same factor. (Then the weights no longer have sum 1, and we must
remember to scale them back before using them.) Thus we get a single set of edge
labels for the Coxeter diagram that describe all the projections, and hence all the
reflection rules. These edge labels, too, are shown in figure 2.

As an example of how simply these edge labels describe the reflection rules, we
consider the valence-three vertex of Ty. The edge labels say to weight the three
adjacent vertices with weights 9/36, 12/36, 15/36, to get the projection onto the
opposite facet. The reflection through that facet is then easy, as described above:
just add the three adjacent vertices with weights twice as heavy, and subtract the
valence-three vertex.

At this point it is worthwhile to spell out a prototype simplex and the reflection
rules for two important families of triangulations, P,, and R,,. The vertices of an
Ry, simplex can be taken to be s; = (1,...,1,0,...,0), where the first ; coordinates
are 1. (Here we assume the nodes of the Coxeter diagram are numbered in order,
with 0 and n at the two ends.) The vertices of a Py, are s; = (m — ¢)((m(m —
1)1, ((m—1)(m—2))"1/2,...,((m—i+1)(m —1))~1/2,0,...,0), where the first
¢ coordinates are non-zero. (Here the nodes of the Coxeter diagram are numbered
in order around the circle, with 0 and n next to one another.) The reflection rules
for P,, are extremely simple: to reflect vertex s; in the opposite facet,

(%) replace s; by 8;—1 + Si+1 — 3i
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where we agree to take the indices modulo m whenever we talk about P,, simplices.
The next simplest rules occur for R,,:

231 — 8o ifi1=0,
() replace s; by ¢ Si—1 +8i41—8; if0<i<n,
28p—-1 — Sn if i =n.

Once we have expressed a particular set of reflection rules in the form s; «
: i wj]s;, we can apply them to an arbitrary simplex, having nothing to do with
the Coxeter triangulation. The rules will no longer describe reflections, but they will
generate a triangulation of R", because the rules are preserved by affine transfor-
mations and we can always find an affine transformation to transform the Coxeter
simplex into our newfangled simplex. Thus it is that, if we apply the P,, reflection
rules to an R,, simplex, we get the example triangulation in section 3. Like - i
but unlike R,,, it has the same number of simplices incident at each vertex, as illus-
trated by figure 5 in the case m = 3: in (a), R3 with Rj rules, and in (b), Ry with
Py rules. (These two triangulations are referred to as K and H in the fixed-point
literature; see, for example, [Todd 1976].) Notice that, in general, triangulations
obtained in this way from arbitrary simplices are not monohedral, and so may be
inferior from the point of view of criterion (c) at beginning of this section; but such
is not the case with the ones in figure 5.

Figure 5 about here

5. Some Implementation Details

To complete the non-degenerate algorithm, we must choose a triangulation of
the appropriate dimension from figure 2, then find an appropriate instance of the
prototype simplex containing the given starting point. We also need a test to
determine when we have found the entire contour. We take up each of these points
in turn.

5.1. Choice of Triangulation

We have seen that all Coxeter triangulations satisfy criteria (a)—(c) at the begin-
ning of section 4. We now evaluate them according to criterion (d), namely, whether
the simplices are nice and chunky or long and skinny. Since this criterion is a bit
fuzzy, we use three different, but related, measurements in the evaluation. As it
turns out, the P, family comes out slightly ahead according to all three. Todd
[1976] contains a discussion of the efficiency of triangulations, and could profitably
be compared with the presentation here.

Perhaps the most direct of the three measures is the expected step size along the
contour, that is, the average distance traversed within a simplex. This should be
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compared with the greatest possible step size—the diameter of the simplex—if we
are scaling the triangulation to make sure that the step size is never more than a
fixed length. (This may be the length represented by one pixel of the output device,
for example. See below for alternative normalizations.)

To estimate the average step size, we assume the contour is a long, randomly
placed straight line segment. The number of simplices visited by this segment is
equal to the sum, over all the families of parallel hyperplanes defined by facets, of
the number of elements of the family that the segment crosses. For a family H
whose elements are separated by distance dyy and have normal n H, this number is
roughly L [ng - x| /dg, where L is the length of the segment and x a unit vector
in its direction. As we average over X, we get a constant, which depends only
on the dimension, times L/dy. Thus the average distance traversed within each
simplex is a constant divided by 1 1/du, where H runs through all the families
of hyperplanes containing facets of the triangulation. (Explaining how to determine
the number of such families and the separation between hyperplanes in them would
take us too far afield.) The results are summarized in table 1, where we show
the ratio between maximum and expected step sizes for Coxeter simplices up to
dimension 8. The Qn, Ry and S, families have asymptotically the same value,
and the P, family has asymptotically half that value.

P Qm Ry, Sm Trm Unm Vin
2.21 3.07 5.68
4.24 6.27 4.97

6.57 7.20  10.60 8.90 12.30

9.74 11.86 16.05 13.95
13.20 17.64 22.63 20.14 19.96
17.50 24.55 30.34 27.45 34.10
22.09 32.59 39.18 35.89 49.39

0O -1 O Ot i O S

Table 1. Maximum over expected step sizes for Coxeter simplices

Another simple measure of the nonregularity of a simplex is the ratio between
the radii of its circumscribed and inscribed spheres, normalized to one for the reg-
ular simplex of the same dimension. Table 2 shows this value up to dimension 8,
and again the pattern is already clear: the Qm, Ry, and S,, entries are virtually
indistinguishable from one another (asymptotically they are the same) and more
than 50% bigger than those for P,, (the asymptotic ratio is v/3).

The third, and subtlest, measure of nonregularity is the condition number of
the covariance matrix of a random point, uniformly distributed inside the simplex.
(The condition number of a matrix (for the Euclidean norm) is the ratio between
its largest and smallest eigenvalues. The condition number for regular simplices is
always 1, so no normalization is necessary here.) The logs of these numbers are
given in Table 3, again up to dimension 8 only because the relative behavior after
that is the same:
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Pn  Qm  Rm Sm T Unm Vin
1.00 1.21 1.37
1.05 1.39  1.61

112 150 156  1.61 1.81

1.18 1.70 1.71 1.76

1.25 1.86 1.85 1.90 2.00
1.31 2.01 1.98 2.03 2.32
1.37 2.14 2.10 2.15 2.72

0O 1O Ot i O S

Table 2. Normalized ratios of circumscribed to inscribed spheres

0.00 2.20 3.18
1.39 3.53 4.29
1.92 3.22 4.50 4.09 5.70

2.17 4.64 5.27 5.03

3.24 5.54 5.91 5.76 5.74
3.84 6.22 6.46 6.36 7.33
4.23 6.78 6.94 6.87 8.72

00 ~I O OV WS

Table 3. Logs of the condition numbers of Coxeter simplices

All measures seem to indicate that P,, has a somewhat better geometry for our
purposes than all other Coxeter triangulations. It also has the simplest reflection
rules. However, it has one slight disadvantage over R,,, in that it requires messier
arithmetic to pass from real-world coordinates to simplex coordinates.

5.2. Starting Simplex

Once a triangulation has been chosen, we must find a simplex containing the
starting point zo. We listed at the end of section 4 a prototype simplex for the
Py, and R, families. The other two families are equally easy: the S,, simplex can
be obtained by gluing two R,, simplices along their facet 0, and the Q,, simplex
by gluing two S, simplices along their facet n. Instances of simplices for the
remaining triangulations are described in table 4; the second row indicates the
labeling (cf. figure 2), L is the diameter of the simplex, and the e; are elements of
the canonical basis of R™.

(For those who insist on having the whole story, here’s how you might find the
simplices yourself: First compute an n X m matrix V whose columns n; are unit
face normal vectors, by recalling that the matrix A defined in section 4 equals
V*'V; completing squares in the form x*Ax leads to V. Next observe that, by
construction, the inner product of n; with the vector going from the center of a
sphere of radius 1 to a vertex s; of the simplex circumscribed around that sphere,
and having the n; as face normals, is 1 if ¢ # j and 1 — h; if 1 = j. Since you
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Vi Us Ty Ts Ty
L B 0-1-2-7-5-4-3 [0-1-3-4-5-6-7-8
0=1-2 [0-1=2-3-4 5 1 I
‘1 6 2
7 2 2vV'3 12V'5 12V5 6vV'70
50 0 0 0 0 0
81 e \/'3-91 3\/%&1 4\/591 3\/375—131
32 || +\/§e2 31 +eq 8 +15\/2-eg 81 +4\/;e3 31 +7\/5_e2
53 82+\/§-I33 %(331 +2sz)+6\/§e3 82 +20e; ;—(431+382}+2\/;€E3
™ s3+V6ey %(31 +33)+9V5e, ;—(332+233)+4\/Ee.! s3+2V21e,
55 ;—(31 +33+34)+ 3V 10e; ;—(ag+a4)+2\/ﬁe;, 54+ 3V 14e;5
56 T(so+s3+35)+ V30eq Fs2 +35)+4V5e6 35 +V 210eq
57 ’ ;—(352 +3s85+2s¢)+ \/ger sg +2\/me-;
558 37+6\/3_5-es

Table 4. An instance of Tp,, Uy, and V,, simplices

now know the inner products of this vector with a basis of R, consisting of, say,
the first n unit normals, you can determine all the vertices by inverting the basis
matrix.)

Then we have to scale the prototype simplex to give a reasonable step size. As
mentioned above, a reasonable strategy is to normalize the maximum step size to
the desired resolution. Another possibility is to make the expected step size equal
to the resolution, or perhaps half the resolution; the expected step size can be
determined as explained at the beginning of subsection 5.1.

Finally, we have to find an instance of the scaled simplex that contains the starting
point. This can be done in two ways, depending on the application. If only one
contour of the function is to be traced, we can translate our scaled prototype simplex
so that z¢ equals, say, the barycenter of its facet n. Then we initialize the state
accordingly (k = n, bijn = (1/n,...,1/n,0) and o as appropriate). If, on the other
hand, we are computing several contours, we may desire them all to use the same
triangulation, rather than computing a separate translation of the triangulation for
each contour. In this case, we must fix one particular instance of our triangulation
and find, for each contour to be traced, the particular simplex that contains the
starting point. This can be a little tricky; a nice treatment of essentially the same
problem is given in [Conway and Sloane 1982]. Unless z¢ happens to lie on a simplex
face already, we also have to find our first b;, and k; as the reader can easily verify,
this is accomplished by solving for v and 7 as in section 3 (formulas (*) and (%),
with bi, replaced by the barycentric coordinates of zo in the latter), then adding
TV to xy.
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5.3. Termination

Termination of the algorithm occurs in two cases: when the contour exits the
region U of interest, and when it loops. An out-of-bounds check is straightforward;
we stop, say, when one vertex of o falls outside the region of interest (f may not
be defined there anyway). Then we restart the algorithm from , in the opposite
direction; having saved the initial state (o, k, bi,) we just have to replace ¢ by its
reflection in facet k.

There is a simple integer test for loops as well. In a basis given by n edges
Si — 3o of a fized simplex of the triangulation, the coordinates of the barycenter
of any simplex (minus 5y) are integral multiples of 1/m, so we can multiply these
coordinates by m to obtain an integer vector that uniquely identifies a simplex.
As a matter of fact, it can be advantageous to work with coordinates in the basis
{8i — 30} for other computations as well, including applications of the reflection
rules; this avoids possible accumulation of roundoff errors.

Checking if we're back to the start, then, is trivial: we just compare the integer
coordinates of the current simplex with those of the starting simplex, and stop if
they are equal. It may also be useful to keep a hash table of the simplices that
have been visited; for example, if we have a method of generating starting points on
different components of the same contour, we will probably want a test for whether
two starting points lie on the same component.

6. The Degenerate Case

Having completed the description of the non-degenerate algorithm, we now tackle
the degenerate case. Recall first that two sorts of degeneracies can occur: the first
is when F, has rank less than n for the current simplex o, and the second when C
passes through a face of o of dimension less than n — 1. The following notation will
be useful: r is the dimension of the kernel of F,, and ¢ is the codimension of the
face of o through which we are exiting the simplex (this will be made more precise
later). The two types of degeneracy correspond to r > 1 and ¢ > 1, respectively.

An apparently simple idea to resolve degeneracies is to jitter a bit the value of f
at some of the vertices of o, thereby restoring genericity. The problem with this is
that the particular direction and amount of jitter will determine the exiting facet of
o, so it is critical to apply the same jitter to any vertices shared by ¢ and the new
simplex, lest we lose the contour. Now if we are holding these values in the matrix
F, this will happen automatically for the next simplex; but if the contour, at some
later time, passes through a simplex that shares one or more jittered vertices with
o, the jittering information will have been lost. We could try keeping a hash table
of which vertices have been jittered and which haven't, effectively “freezing” the
changed (and unchanged) values of f at all vertices of all simplices already visited,
but this still wouldn’t work, since a jitter might very well be required while we're
in a simplex all of whose vertices have already been frozen on visits to adjacent
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simplices. For this reason we use an approach that does not require altering the
value of f.

Whenever it is non-empty, C” is a polytope of dimension at most r, and equal
to r if C intersects the interior of . The 1-skeleton of C? is the union of all its
edges, and the I-skeleton of C' is the union of the 1-skeletons of C”. The algorithm
described below draws the 1-skeleton of C. It uses a depth-first search, so it can
easily be adapted to stop after drawing, say, a path in the 1-skeleton that starts
and ends at the boundary of the region of interest (or loops back). Of course, in
the non-degenerate case, the two outputs are equivalent, and also equivalent to the
output of the partial algorithm described before, since then C is its own 1-skeleton.

The description of the 1-skeleton uses the fact that the open faces of a triangu-
lation, that is, the interiors of the faces (remember that n-simplices are faces, too),
partition R”. For example, in R?, each point lies either on a vertex, or along an
edge of a triangle (but not on a vertex) or inside a triangle (but not on an edge). To
describe the 1-skeleton we give information about its vertices, which we call nodes
to avoid confusion with the vertices of the triangulation, and about its edges, which
we call links. The nodes are output as points in R®, but they are remembered by
the algorithm as open faces, because an open face cannot contain more than one
node of C—otherwise it would contain a whole link, and the nodes would actually
be in lower-dimensional open faces. The links don’t need to be stored, and they
only need to be output when they connect something other than the previously
output node and the next.

We will keep a three-part state (o, A, bjy), where o and by, are as in section 3
and A C {0,...,n} indexes the face through which we entered o. It is an invariant
of the algorithm that ® 4 intersects C in a single point, that is, 4 N C is a vertex
of the polytope C,; furthermore A is never empty.

6.1. Crossing a Simplex

Our task after entering a simplex o through a face ® 4 is to find at least one not
previously visited link starting at the current point b;, and contained in o. Let’s
first consider how to characterize segments in C, that start at the current point,
then how to characterize the condition that such a segment is a link.

A direction v € ker F,, anchored at the current point, points into ¢ if and only
if v* > 0 for all i € A. In addition, not all of these v' can be zero, otherwise
v is parallel to @4, which implies that C' intersects &4 in more than one point.
Since we're only interested in v up to a factor, we can express this last condition
by saying that 3 ;. , v* = 1. Thus finding a segment in C, starting at the current
point reduces to finding v = (v°,...,v") € R"*! such that

(1) Fpv =0,

(i) Y;eav’=1,and

(iii) v* >0 for i € A. 7

By definition, such a segment S, = {bin +tv:te[0,7]} determines a link—an
edge of C'?—if and only if it does not intersect any segment whose endpoints by, b,
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are in C7 but not in Sy. We claim that, if By = {i € A : v' = 0} is the set of A
coordinates of v that vanish, this condition is equivalent to saying that there is no
solution v’ # v to (i) and (ii) above with By C B,s. Geometrically, By is the label
of the smallest face of o that contains Sy, and the claim is that S, determines a
link if and only if ®p, N C? has dimension one.

For suppose there is such a v': then there are solutions to (i)—(iii) on both sides of
v,say vi = (1—¢)v+ev' and vy = (1+¢e)v—ev’, for € > 0 sufficiently small. For ¢
sufficiently small, b; = b;, +tv; and by = b;, + v, belong to C?, and the segment
b b, intersects Sy, so Sy is not a link. Conversely, assume there is a segment in C7
whose endpoints b; and b do not lie in Sy; then v is a convex linear combination
of the directions v; and v, corresponding to b; and b, and since, by assumption,
v{ > 0 and v§ > 0 for i € A, this implies B, C By, and B, C Brys

In order to identify directions v such that &5, N C? has dimension one, we define
the following routine:

solve(F, A, B)
{
(try to find v = (¢%,...,v") € R**! such that Fv =0, 3", ,v* = 1, and
v' =0 fori € B);
if (v exists) {
if (v is unique) {
if (v > 0 for alli € A) return v;
else if (v <0 foralli € A) return —v;
else return FAIL;
}

else return oo;

}

else return FAIL;

}

By the preceding paragraphs, any vector returned by solve points along a link.
If solve returns oo, there might be several links contained in & B, and we have to
decrease ®p, that is, increase B, in order to locate them. Finally, if solve returns
FAIL, there is no link in ®p.

(Since solve is part of the algorithm’s inner loop, it should be as fast as possible.
Fortunately, it does little more than trying to solve a linear system of equations,
so one can rely on routines from existing packages such as LINPACK [Dongarra, et
al. 1979], which will also provide the necessary information about the rank. But it
may be worthwhile for solve to reduce the order of the system, by screening out the
variables not in B, before calling the equation-solving routine.)

We are now ready to enumerate all the links that go out of the current position
and into the current simplex. This is done by repeatedly calling find_link, which
returns the direction v of one such link, or FAIL if no more links exist. Basically,
find_link calls solve(F,,A, B) for B ranging over all subsets of A, in some order,
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until it either gets a vector, which is returned, or runs out of subsets, in which case
FAIL is returned. When find_link returns a vector, it remembers what subspace it
was working on, so the next invocation of find_link starts its investigation where
the previous one left off.

As stated, this leads to one invocation of solve for each subset of A, of which
there can be up to 2", but we can actually skip many of them. Namely, when
solve(Fy, A, B) returns FAIL or a vector, we can skip all supersets of B, because we
already have the unique solution in & (or the certainty that there is none), so there
is no sense in looking for solutions in smaller faces. Similarly, when solve(F,, A, B)
returns co or a vector, we skip all subsets of B, because a face bigger than &5
contains either infinitely many solutions or a unique solution that we already know.
In particular, in the non-degenerate case, solve(F,, A, D) returns either a vector or
FAIL, and we can skip all other values of B. In the fully degenerate case (f=0
and A is a vertex), find_link calls solve 2n — 1 times, and finds n links.

There is a total order on the set JB(A) of subsets of A that makes the implementa-
tion of these ideas particularly simple. To compare two sets B, B' € P(A), we write
the elements of B and B’ in ascending order, and declare B < B' if and only if the
word thus obtained for B comes before the word for B’ in dictionary order. For ex-
ample, the ordering on B({0,1,2}) is & < {0} < {0,1} < {0,1,2} < {0,2} < {1} <
{1,2} < {2}. To find the successor of B in this order, we write B = {by, ... ,bi} in
ascending order and, assuming for simplicity that 4 = {0,1,...,k}, we set:

{bUs-'°abi—2,bi—1:bisbi+1} if b; <k,
successor(B) « < {bo,...,bi—2,bi—1 +1} if b = k and 7 > 0,
FAIL ifb; =k and i = 0.

Skipping supersets of B is also easy:

{bo,...,bi—2,bi_1,b; + 1} if b; <k,
nezt_non_superset(B) «— < {bo,...,bi—2,bi—y + 1} if b; = k and 7 > 0,
FAIL ifb; =k and: =0.

We also need to keep a list of values of B for which solve returned oo or a vector,
called the hit list, so we can skip all subsets of sets in this list. Whenever solve
returns co or a vector for some B, we add B to the hit list. We also delete any
existing subsets of the newly added B from the hit list, as they are now redundant:
in future tests, any subset of such a subset will also be a subset of B.

When describing the non-degenerate algorithm, we mentioned that we might
want to keep a hash table of simplices already visited. Here such a table becomes a
necessity, in a slightly different form: we must store each pair (o, A), together with a
pointer to a structure B(,, 4) that contains the hit list and the value of B at the end
of the last call to find_link(o, A). This structure is read every time find_link (o, A) is
invoked—these invocations being non-consecutive, since we're conducting a depth-
first search—and destroyed when find_link knows there are no more vectors to be

21



returned. (Actually, B, 4) may not be created at all if we only have to call solve
once, with B = @.) A pair (o, A) in the hash table is called dead if B(, 4y no longer
exists; otherwise it is called alive.

find_link(o, A)

if (B(,,4) exists)  /* we have seen these arguments before */
(get B and the hit list from B, 4) );
else (set B to & and the hit list to the empty list );
while (B # FAIL) { /* there are still faces to examine */
if (B C B’ for some B’ in the hit list) {
B « successor(B); [+ skip this B x/
continue;  /* go back to beginning of while loop */
}
v «— solve(F,A,B); [+ look for solutions in ®p */
if (v=FAIL) { /* no solution */
B «— nezt_non_superset(B); /* skip this B and all its supersets */
continue;

}

/* at least one solution */ '
(delete subsets of B from the hit list );
(add B to the hit list );
if (v=00) { /* too many solutions */

B « successor(B); continue;
) :
/* exactly one solution v */
B « next_non_superset(B);
if (B = FAIL) (destroy B, 4)); /* this pair is dying */
else (update B and the hit list in Bo,4) );
return (v);
}
(destroy B, 4)); /* this pair is dead */
return (FAIL);
}

Assume, then, that find_link has returned a barycentric direction v; our next
task is to find the exiting face Z and the barycentric coordinates boy¢ of the exiting
point. Just as in section 3, boy is of the form by(7) = by, + 7v, where

7 = min{—b /v’ : v' # 0,-b_ /v’ > 0}.

There is, however, a difference: the minimum may be achieved for several values of
¢. In fact, since b},, = 0 whenever 7 = —b! /v*, the exiting face is given exactly

by Z = {i : 7 = —b}_/v'}; its codimension is g, by definition. It is a good idea to
declare equal all values of —b} /v* that are very close to the minimum, because of
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numerical error: this makes the exiting face lower-dimensional, and, as we shall see
below, it is safer to make ¢ > 1 and search for the next simplex than to assume
g = 1 and exit through the wrong facet.

We remark that bey is the unique point of ® 7 on the contour, so it is safe to make
Z and boy the last two components of the new state (cf. the paragraph preceding
this subsection). To complete the new state, we must move on to another simplex,
as described in the next subsection; but first we look back and check if (¢, Z) is in
the table of visited pairs, adding it if necessary. This pair is dead if ¢ =1 and alive
if ¢ > 1, in which case we initialize or update its hit list with the intersection AN Z.

6.2. Finding the Next Simplex

When the exiting face has codimension ¢ = 1, the contour must perforce enter
the unique simplex that shares this face with o, and this new simplex is easily found
with the reflection rules. The situation is more complex when ¢ > 1, because then
there are many n-simplices sharing the exiting face, and & priori we don’t know
which one to go to next. The star of a simplex ® in a triangulation is the union of
all simplices that have ® as a face; our task is to find what simplex (or simplices)
in the star of the exiting face ®z, in addition to o, intersects C.

One candidate is most likely: the simplex oopp opposite to o (with respect to
Z). This opposition is defined by extending through ®; the ¢ facets of o that
contain ® z; more precisely, d,pp is the only n-simplex (other than o) having ® 7 as
a face and such that, for all i € Z, facet ¢ of o,pp and facet i of o lie in the same
hyperplane. Notice that oopp, may not be the reflection of ¢ through &7 in the
geometric sense, because this reflection is not always a simplex in the triangulation
(think of the 60°-vertices in figure 3(c)); if it is, it coincides with gopp.

As seen from a point in ®z, the set of directions that point into opp is opposite
the set of directions that point into o, which means that when the direction of C
changes little at ®z chances are good that C' goes into o4pp. But this is by no
means always the case, because, in principle, f can take any value at the remaining
vertices of aopp. For a concrete example, consider f = (22 + y2)/n? on R2, for n
an integer, and the R3 triangulation whose vertices form the lattice Z2 C R2. The
lattice point (0,n) (together with (n,0), (0,—n) and (—n,0)) lies in C, and it is
easily seen that the two triangles which intersect C' and have (0,n) as a vertex are
not opposite with respect to (0,n).

This situation tends to occur when, as in this example, the intersection C7 is
very close to one of the facets of o. It also occurs more often as n or ¢ increases,
simply because the measure of the set of directions that point into oopp from a point
in a codimension-q face decreases as a fraction of the measure of the total set of
directions.

Our problem, then, is the following: as we’re exiting a simplex ¢ through a face
of codimension > 1, we want to find o,pp quickly, and, if it turns out that C%er is
empty, we want to examine as few as possible of the other simplices containing the
face before we find one where the contour continues.
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To do this we will again consider Coxeter triangulations. Readers who skipped
the discussion in section 4 are encouraged to go back and read it now, or they can
skip this one too, going down to the paragraph containing formula (x).

Imagine applying to ¢ all the symmetries of the triangulation that leave the face
® 7 fixed. These symmetries evidently form a group G, which is finite because its
elements are in one-to-one correspondence with the simplices in the star of ®.
Furthermore, G is generated by reflections in the ¢ facets of o that contain ®.
The identity 1 of G represents o, and some element # 1 of G of order two, which
we call —1, represents Oopp:

One extreme case of this procedure occurs when ¢ = 1, and then the group
reduces to {1,—1}. The other extreme is ¢ = n, that is, ®z is a vertex: then G can
be seen as a group acting by reflections on an (n — 1)-dimensional sphere around
®z, and determining there a spherical triangulation. Spherical reflection groups
and spherical triangulations can be assigned Coxeter diagrams, following the same
conventions as their Euclidean counterparts. By the very nature of this construction,
the Coxeter diagram for the group that leaves fixed a vertex s; = Po,...,i-1,i+1,...,n}
of o can be obtained by removing from the Coxeter diagram of ¢ the node that
represents facet ¢, plus any edges that end at that node. Observe that this can
yield a disconnected diagram; in this case the face group G is a direct product
of smaller groups corresponding to the pieces of the diagram, because the absence
of an edge between two nodes means that the angle between the respective facets
is m/2, so reflections in these two facets commute. A list of connected spherical
Coxeter diagrams can be found on page 297 of [Coxeter 1973].

Something similar occurs for all other values of g. The Coxeter diagram of G can
be obtained by starting with the Coxeter diagram of o and, for each vertex s; in the
fixed face @z, or, equivalently, each ¢ ¢ Z, deleting from the diagram the node that
represents facet ¢, together with any edges that end at that node. There remain
one or more pieces of the original diagram, each of which is the Coxeter diagram
for some spherical reflection group, and whose direct product is G. (In particular,
when ¢ = 1, the Coxeter diagram of G is a single node, and G = {1, -1} is indeed
the reflection group of the zero-dimensional sphere.)

This allows us to state explicit reflection rules for finding the simplex a,,, oppo-
site to o with respect to an arbitrary face ®z of 0. We will examine in detail the
case of Pp, for m = n 4 1 arbitrary. The Coxeter diagram for this triangulation
(figure 2) is an m-gon, all of whose edges have weight 1. By removing some vertices
from this diagram, we are left with several simple chains, but right now we assume
that there is only one, with k nodes, whose indices may be taken to be 1,2,..., k.

By formula () in section 4, the reflection r; in facet i of a P,, simplex takes s;
into s;—; + siy1 — $; (remember our convention about indices being taken modulo
m) and leaves the remaining vertices fixed. Another way to describe this rule is by
saying that the differences s; — s;—; and s;4+; — s; get permuted, while the others
remain unchanged. If we now consider the group G generated by the reflections r;,
for:=1,2,...,k, we see that it must be the group of permutations G4 on k +1
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objects, because two generators r;,r; commute if i — j| > 1 and satisfy ririr; =
rjrirj if [i — j| = 1; these are the same relations satisfied by transpositions. (This
reasoning would fail if we were considering all the reflections r; for i = 0,...,m,
because ry and r,, don’t commute, while the first and last transposition of a set of
m + 1 elements do.)

Furthermore, it is easy to see that the permutation that corresponds to Topp 18
the inversion, which replaces the first difference, s; — sq, by the last, s k+1 — Sk, the
second by the last-but-one, and so on. In other words, to obtain ¢,y we should
replace s; by sg + sg4+1 — i, forevery i =1,..., k.

When the Coxeter diagram of G has more than one piece, G is the direct product
of several permutation groups, and we just repeat this procedure for each factor.
More precisely, we have the following rule to find the opposite of a simplex o with
respect with a face @z in a P, triangulation:

(%) ' for: e Z, replace s; by sa + b — Sa4b—i,

where a is the first index in the sequence i — 1,7 —2,... that does not belong to Z,
and b the first such index in the sequence i +1,: +2,....

Having discussed how to obtain o4pp, we turn now to the harder problem of what
to do when the continuation of the contour does not lie in oopp. One approach
is to inspect every n-simplex in the star of ®z; but this can be onerous—there
are m! simplices to inspect if ®7 is a vertex of a Py, for example—and generally
unrewarding, because C is likely to continue through only one of them. For this
reason we will propose an alternative method for finding at least one link leaving
Bz.

(But first, a word of caution. If we insist on tracking all of the 1-skeleton of C,
we do have to examine the star of ® 7 exhaustively—even if C intersects Oopp- This
is because C can actually intersect any number of simplices in the star, and there
is no way to tell by looking at some of them what C will do in the others: for
example, think of f defined in one simplex ¢ in such a way that C is a vertex plus
an interior line segment, then extend f to the star of this vertex by applying to o
the group of symmetries that fix the vertex.

Thus, in addition to keeping a list of active pairs (o, A), one could keep a list of
active node faces: all exiting faces of codimension ¢ > 1 whose stars have not been
completely examined yet. One could define a procedure find_simplez (®), similar to
find_link, that would go through all the n-simplices in the star of such a face @,
in some order, and return all those that intersect C, one at a time. Obviously, it
would be advantageous to have things organized in such a way that, given a current
node face @, all pairs (o, A) such that & = ® 4 in simplex o are easily accessible: by
consulting the hit lists of such pairs one could avoid calling solve on faces that had
been examined previously. Better yet would be to merge find_simplez and find_link
into one procedure that examines all the simplices, of any dimension, that have ®
as a face.)

Here’s the alternative method. The corona of a simplex ® in a triangulation is
the union of all simplices that are faces of simplices in the star of ®, but do not
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have ® as a face: in some sense, the simplices “opposite” ®. (The word “link” is
sometimes used for this concept, but here it would be terribly confusing.) Thus, if
¢ contains a node of C, the links of C starting at this node end at points on the
corona of ®. In particular, the point bj, where we got into the current simplex o
and from which we drew a link to the exiting face ®z lies on the corona of that
face. Since @z is where we got into trouble, we will try to skirt it altogether by
navigating on its corona.

To do this, we relax momentarily the condition that the last component of f
vanishes, and follow the mini-contour defined by the first n — 2 components of f
on the corona of &z, starting at b;,. If all goes well, somewhere along this mini-
contour we will find another zero for the last component of f. This is a point where
C exits the star of &z, and we can resume our previous contour tracing, leaving
®z behind. Conceptually, then, we’re reducing the dimension of the problem, by
solving for the contour of a function having n — 2 components and defined on an
(n — 1)-dimensional space, the corona of & .

This may sound complicated, but algorithmically it is not, because we can use the
whole machinery developed so far with very little change. First observe that a point
in the star of @z is on the corona if and only if its k-th barycentric coordinate is
zero, for some k ¢ Z. Thus tracing the contour of the first n —2 components of f on
the corona of ®z is more or less like tracing the contour of Jay = (..., "2, 0%)
in R™, where f!,..., f*~? are the components of f and b* is the function that
gives the k-th barycentric coordinate of a point with respect to the current simplex.
However, k may change during this process.

We start by stashing away the current state, and adapting a copy of it to be the
current state for f;). The adaptation is needed because a current face for fa1y must
have codimension at least two, that is, its label A; must have at least two elements.
If A happens to have more than one element, we can copy the old state (o, A, bj,)
without change; otherwise, we make the current simplex o; equal to o, but we take
for A; an appropriate superset of A, and choose the current point accordingly on
®4,, just as we did at the end of 5.2 to initialize the original state. Then we set
the auxiliary index k to an element of A; that is not in Z.

Next we call find_link(oy1, A1), with f(;) replacing f in the definition of F,; and
we move in the direction returned by find_link until we hit an exiting face &z,
which again must have codimension at least two. Assume for now that the exiting
face has codimension exactly two, say Z; = {k, k'}, so that we have described a link
in the interior of facet k of ;. Where will the next link be? The answer depends
on whether or not k' belongs to Z: if it does, going beyond ®7, on the corona of
® 7 takes us to facet k of a new n-simplex o}, the reflection of oy in its facet &'; but
if k' ¢ Z, we’ll just be taken to facet k' of the same simplex ¢;. In sum, to update
the state we do this:

oy « reflection of oy in face k', if k' € Z;

ke—Fk, if k' ¢ Z.
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The reflection rules, of course, are the same ones discussed in section 3 (formulas
(*) and (*#), for example).

Before we move on to the next simplex, however, we check whether the last
component f"~? of f has changed sign along the link just described. If it has, we
have found a simplex o; containing the continuation of the contour of f. We can
conclude our detour by fetching the current state that we had saved and modifying
it to reflect the new situation: the current simplex becomes oy, the current face
becomes Z and the current point becomes boy¢. The temporary current state that
we used to describe our progress along the contour of fa) can be discarded. In
the event it seems we needn’t have saved the current state at the beginning of the
detour, but there are weird situations in which a loop in the the contour of f) does
not contain other points where f*~2 = 0, so we have to try other loops beginning
at the entry point b;,.

A little while ago we assumed that the exiting faces ®7, we meet in our detour
have codimension two. What if they don’t? It will come as no surprise that we may
need to make a detour from our detour, having first saved the auxiliary current state
right next to the original one: in other words, we need a stack. (Here it doesn’t
make sense to try the simplex opposite 0;.) We have sunk to yet another level of
degeneracy. The details of this recursion will be left to the reader.

7. Examples

We give two sets of examples of the algorithm in action, in dimensions 2 and
4. The first illustrates robustness in theé presence of high curvature of the contour,
and the second in the tracing of contours of non-regular values. In each case the R
triangulation was used with the P reflection rules, as outlined in section 4.

Consider the complex function ¢, : C — C defined by g¢.(z) = 22 + ¢, where ¢
is a fixed complex number. Fix a positive integer £ > 0 and define f : C —» R
by f(z) = |qf(z)|, where g7 is the r-th iterate of ¢., that is, ¢l(z) = g¢.(z) and
q:t1(2) = qc(qf(2)) for r > 1. If we now consider f as a function from R? into R,
it becomes a candidate for the contour tracing procedure. For the two values of ¢
used in the examples below, any sufficiently large real number is a regular value of
f. In addition, the corresponding contour is a single closed curve.

This example is interesting because if we compute a sequence of contours for a
fixed value of f, for increasing values of k, they will converge to the so-called Julia
set of g. [Blanchard 1984|, which is a fractal. Thus, as k increases, the curvature
of the contour increases without bound, and the contour would be very difficult to
trace with an infinitesimal method. This behavior is not surprising since f is the
absolute value of a polynomial of degree 2*.

Figure 6 shows f~!(9) for k = 15 and for two values of c. Notice that in Figure
6(a) the contour comes very close to itself in many places. If the resolution of the
underlying triangulation is not high enough it is possible for the contour tracer
to make a “mistake” at one of these points and cross over to the other part of
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the contour. But when the tracer comes back to this point again it makes the
opposite mistake, and carries on to the end of the contour. This can be seen (in
two dimensions) by making a few sketches to enumerate the possibilities.

Figure 6 about here

In our second set of examples, we are interested in values of ¢ and z for which
z is a fixed point of ¢¥, that is, ¢¥(2) = z, and for which the derivative of q*
evaluated at z has absolute value 1. So we define ¢ : C x C — C x R to be
g(c,z) = (¢¥(2) — 2,1(¢¥)'(2)|); thinking of g as a function from R* into R?® our
desired points now form the contour ¢g=1(0,0,1). Unless k = 1, the value (0,0,1) is
not regular.

The interest in the contours ¢=1(0,0,1) lies in that their union for all £ > 1 is
related to the Mandelbrot set M [Blanchard 1984]; more exactly, the projection of
this union onto the c-coordinate plane is the boundary of the interior of M. This,
admittedly, is not a good method to draw M, because g~1(0,0, 1) is not connected
for k > 2, so in addition to tracing the contours we must worry about starting
points. Still, it is instructive to watch the algorithm drawing the largest component
of g71(0,0,1), which contains the point g(i,O, ;—, 0) = (0,0,1) for all k: see figure
7, where the projections of this largest component onto each of the two coordinate
planes are shown for several choices of k.

For example, the contour tracer begins at (1,0) in Figure 7(c) and at (%,0) in
Figure 7(d). As it sweeps out the top half of the cardioid in (c), it traverses the top
half of the circle in (d). It then traverses the small circle in (c) twice as it makes the
lemniscate in (d) and ends by sweeping out the bottoms of the cardioid and circle.
At the point (—%, 0,—2,0) the contour intersects itself and the derivative of g is 0.
This degeneracy is reflected in the fuzziness of the computed contour in the (d). In
7(f) there are multiple points of self-intersection, and the computed contours are
even more fuzzy at some of those points.

Figure 7 about here

8. Extensions

We have mentioned several ways in which the ideas presented here can be ex-
tended, or applied to more general problems with slight changes. First of all, we
can immediately generalize the algorithm to deal with functions f : R® — R, for
k < n —1: this is like dealing with degenerate cases of functions f : R* — R"~1,
However, some refinements might be desirable, because we can no longer view the
issue of efficiency in searching for links when r > 1 or ¢ > 1 as peripheral, as we
tacitly did in section 6, under the excuse that degeneracies were relatively uncom-
mon. Furthermore, the method as stated will only give a wire-frame description of
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the contour, and we might want to output also the higher-dimensional cells. (This
generalization, however, is not difficult.)

We touched on the possibility of dynamically changing the triangulation, in order
to approximate regions of high curvature more closely. One idea is to subdivide
our simplices into 2" subsimplices in regions where greater resolution is desirable.
Unfortunately, this destroys the simplicity of our reflection rules, and increases the
amount of bookkeeping necessary to recognize when we have been somewhere before
(for instance, we must ensure that the same fineness of triangulation is used when
we return to a previously visited region).

A more exciting possibility is to use a so-called quasiregular triangulation. These
arise by orthogonal projection of a regular lattice in Euclidean space onto some
linear subspace (see [Duneau and Katz 1986]). The projection of the entire lattice
is generally dense in the subspace, but if the subspace is chosen to be invariant under
some subgroup of the symmetry group. of the lattice, and if only the lattice points in
a tubular neighborhood of the subspace are projected, the result is a quasiregular
lattice in the subspace: the Delaunay triangulation of this lattice consists of an
infinite number of copies of a finite collection of congruent triangles. Furthermore, as
the thickness of the tubular neighborhood is increased, only triangles that are similar
to ones in the original collection are introduced. We can obtain a variable density
triangulation by using a tubular neighborhood with variable, rather than constant,
thickness: greater thickness means more lattice points would be projected, yielding
a denser triangulation. The thickness would be controlled by the desired resolution.
The basic drawback with this approach is that the computations involved in passing
from one simplex to the next are a good deal trickier.

Finally, there is the matter of finding starting points. There is much literature
on this subject, and here we limit ourselves to briefly describing the method used
by plotline, a program by one of the authors that implements the ideas described
here. (A presentation of this program is in preparation.) This method is simple
and blends well with the rest of the algorithm; it does not intend to be optimally
efficient. The idea is to restrict the search space first to one dimension, until we
find a zero of some component of f; then to two dimensions, where we trace the
contour of this component until finding a zero of another one; and so on until we
find a point where all the components of f vanish. Notice that this is very similar
to what we did in 6.2, where we traced the contour of some components of f on a
subset of R™ of appropriate dimension.
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Figure 1

Two approaches to the problem of tracing contours. In (a) derivative information is used to
take a step, while in (b) local values of the function are used to guide the tracing.

Figure 2

Coxeter diagrams for all simplices in all dimensions that triangulate by reflection.

Figure 3

Portions of the three possible triangulations by reflection of R2: (a) Poi DRy 0V,

Figure 4

Finding the barycentric coordinates of the projection of a vertex onto the opposite face.

Figure 5

Two triangulations using R3; (a) shows triangulation by reflection and (b) just replicates the
squares, which is equivalent to using P 3 reflection rules on an R3 triangle.

Figure 6

Two contours that approximate Julia sets. The parameter values are approximately (a)
¢ =-0.156546 + 1.03226i and (b) ¢ = —0.122561 + 0.744862i. The boxes are 3 units wide in
each direction. The R3 triangulation was used, with step size (short sides of each triangle)
equal to .0002.

Figure 7

Six contours associated with the Mandelbrot set. The values of k are 1 for (a) and (b), 2 for
(¢) and (d) and 6 for (e) and (f). The first of each pair is the projection of the contour onto
c-space and the second is the projection onto z-space. Each box is 2.5 units wide and 2 units
high. The R triangulation was used, with step size (short edges of each simplex) equal to
.002 in (a) through (d) and .00025 in (e) and (f).
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