DECOMPOSITION AND INTERSECTION OF SIMPLE SPLINEGONS

David P. Dobkin
Diane L. Souvaine
Christopher J. Van Wyk

CS-TR-051-86

August 1986

Decomposition and Intersection of Simple Splinegons

David P. Dobkin*
Diane L. Souvaine*t

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

Christopher J. Van Wyk

A T & T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A splinegon is a polygon whose edges have been replaced by “well-
behaved” curves. We show how to decompose a simple splinegon into a
union of monotone pieces and into a union of differences of unions of convex
pieces. We also show how to use a fast triangulation algorithm to test
whether two given simple splinegons intersect. We conclude with examples
of splinegons that make the extension of algorithms from polygons to spline-
gons difficult.

1. Introduction

A major failing of many results in computational geometry is that they
work only on well-behaved objects. This is a severe limitation in applying
computational geometry algorithms to practical problems since most real
shapes are not polygons at all, let alone convex polygons. Despite the proli-
feration of work in this area, a recent survey [LP84] and a recent book
[PS85] contain few results that involve curved objects.

To combat this, Souvaine [S86] has defined the splinegon as a generali-
zation of the polygon. Splinegons provide an analytical framework within
which to study algorithms on curved objects. Souvaine presents three
methods for extending polygonal algorithms to splinegons and applies them
to a broad class of examples. Here we focus specifically on algorithms for
decomposing simple splinegons into better-behaved pieces, and detecting
whether two simple splinegons intersect.

Let 7(n) be the time required to triangulate a simple polygon that has
n vertices. Computing a triangulation is linear-time equivalent to comput-
ing for each vertex v of a polygon the zero, one, or two edges that are inter-
nally visible to v in the horizontal direction [CI84] [FM84]. Tarjan and Van

*Partially supported by National Science Foundation Grants MCS 83-03926 and DCRS85-05517.
fPartially supported by an Exzon Foundation Fellowship.

-9

Wyk have given an O(nloglogn)-time algorithm for the problem of comput-
ing internal horizontal vertex visibility information [TV86], which by the
above-mentioned connection with triangulation shows that 7(n) =
O(nloglogn); no lower bound better than the trivial 7(n) = Q(n) is known.

Tarjan and Van Wyk also show that given both the internal and exter-
nal horizontal vertex visibility information for a polygon (both of which can
be computed using any triangulation algorithm), one can test whether the
polygon is simple in linear time. It is straightforward to extend both the
algorithms for internal horizontal visibility computation and for simplicity
testing to splinegons. We use both extended algorithms to obtain our
results.

This rest of this paper is organized as follows. We define splinegons for-
mally in Section 2. In Section 3, we extend the notion of monotone decom-
position from polygons to simple splinegons. This result is not difficult, but
it illustrates several pitfalls that one often encounters in computing with
curved objects.

In Section 4, we consider the problem of extending the convex decompo-
sition of a simple polygon to splinegons. We show that several extensions
fail because not all splinegons admit such decompositions. Our best result
is a method for decomposing a splinegon into a union of differences of
unions of convex pieces. This result uses the monotone decomposition of a
simple splinegon with a simple carrier polygon.

In Section 5, we use O(7(n))-time simplicity testing on splinegons to
derive an O(r(n))-time algorithm that detects whether the boundaries of
two simple rn-sided splinegons intersect. This result involves a novel appli-
cation of Jordan sorting [HMRT85]. Detecting whether the areas of two
splinegons intersect is a simple corollary of this result [CD86]. Heretofore,
even the restricted problem of whether two simple n-gons intersect was not
known to be solvable in o(rnlogn) time. We present this result in the frame-
work of splinegons in order to state it in a more generally useful form.

In Section 6, we discuss two limitative results on splinegons that shed

light on why they sometimes pose more difficult problems than polygons.
Section 7 contains brief concluding remarks.

2. Definitions

A splinegon S can be formed from a polygon P on n vertices,
V1,V9,...,U,, by replacing each line segment v;v; +; with a curved edge e;
which also joins v; and v; ;; and which satisfies the following condition: the
region S-seg; bounded by the curve e; and the line segment v;v;;; must be
convex.f The new edge need not be smooth; a sufficient condition is that
there exists a left-hand and a right-hand derivative at each point p on the
splinegon. The polygon P is called the carrier polygon of the splinegon S.

TSubscripts are always interpreted modulo n.

-3-

Splinegons form a rich class of geometric objects; Souvaine discusses
many examples [S86]. We note here only that the convexity of a carrier
polygon does not imply the convexity of its splinegon, and that the simpli-
city of a splinegon and its carrier polygon are completely unrelated. (See
Figure 1.)

Given an n-sided simple splinegon S, we classify its edges as concave-in
or concave-out. A line segment edge is concave-in. If ¢; is not a line seg-
ment, and for any point p€S-seg; a line segment that joins p to e; intersects
the interior of S, then e; is a concave-in edge. If ¢; is not a line segment and
for any point p€S-seg; a line segment that joins p to e; intersects the exte-
rior of S, then e; is a concave-out edge.

Geometric algorithms on linear objects use certain primitive procedures
(e.g. calculating segment-segment intersections) that can be done in con-
stant time. For splinegons, the analogous primitives are more complex and
may involve unsolvable problems (e.g. finding exact roots of fifth-degree
polynomials). We avoid this difficulty by postulating the existence of the
following oracles, which we use as primitive operations in our algorithms:

1 compute the intersection of two curved edges, or the maximum and
minimum separation between them;

2 compute the intersection of a line with a curved edge;

3 given a curved edge and either a direction or a point, report both
the point and the direction of a line that supports the edge at that
point; and

4 determine the line that supports a pair of curved edges.

All of the algorithms in this paper require ©(n) of these operations on an n-
sided splinegon, so we will not account separately for these operations in the
time bounds for the algorithms.

3. Monotone Decomposition

A splinegon S is y-monotone if there exist two points pjyy ,Ppign €S that
partition S into two chains that are monotone in the y-direction. In this
section we discuss the decomposition of an arbitrary splinegon S into y-
monotone splinegons. In the case of polygons, the decomposition is an easy
consequence of the horizontal-vertex-visibility decomposition [LP77] [CI84]
[FM84], to which we now turn.

Given a simple polygon, the horizontal line segments that join a vertex
to its visible edge or edges define a partition of the polygon into trapezoids.
This partition can be computed in O(r(n)) time on an n-sided simple
polygon [TV86]. Assuming that no polygon vertices have the same y-
coordinate, each trapezoid contains exactly two polygon vertices: one on its
top edge and one on its bottom edge. Given the horizontal-vertex-visibility
partition, one computes a y-monotone decomposition by adding an edge
between the polygon vertices of any trapezoid that has a polygon vertex
lying in the middle of a horizontal edge. In the rest of the paper we refer to
such vertices as y-notches.

-4 .

The algorithm for horizontal-vertex-visibility partition of a polygon
relies on two key properties of the edges:

(1) each edge crosses any horizontal line at most once;

(2) if a set of edges crosses two horizontal lines, the order in which they
cross the horizontal lines is the same on both lines.

Both properties are satisfied by simple splinegons whose edges are all mono-
tone in the y-direction. Thus we generalize the notion of horizontal-vertex-
visibility partition to splinegons by adding (at most two) vertices to each
side so that all sides are monotone in the y-direction. The horizontal line
segments that join vertices to visible edges partition the splinegon into visi-
bility cells; visibility cells are bounded by one or two horizontal edges and by
y-monotone portions of two splinegon sides; all splinegon vertices occur on
the horizontal edge of some visibility cell.

Given the horizontal-vertex-visibility partition of a splinegon, there is
one more twist to computing a y-monotone decomposition. We cannot
extend the polygon algorithm directly because there might be no obvious
way to connect two vertices of a splinegon. (See Figure 2.) Thus we amend
the polygon algorithm as follows: for any visibility cell with a y-notch v, if
the line segment that connects the two vertices of the cell crosses either of
the two sides of the cell, let e be the edge that touches closer to v; let ' be
the line through v that is tangent to e at a relative interior point of e; add
the line segment from v to 'Ne as an edge of the y-monotone decomposition.
This operation adds a vertex to the splinegon; the total number of vertices
added in this way is at most the number of y-notches.

The result of this amended algorithm is a correct, y-monotone decompo-
sition of the splinegon. However, the carrier polygon of some of the y-
monotone pieces might not be simple. (See Figure 3.) Should one desire to
simplify the carrier polygon, it is easy to do so in linear time by scanning
from pjy to phign, adding new vertices horizontally opposite existing ver-
tices whenever necessary to keep the carrier polygon simple. This step adds
no more than one vertex per existing vertex.

We summarize the above results in the following theorem:

Theorem. An n-sided splinegon can be decomposed into y-monotone pieces
with simple carrier polygons in O (r(n))-time. The total number of vertices
in the decomposition is O (n).

4. Convex Decomposition

The problem of decomposing a simple polygon into convex pieces has
received attention in various forms for several years. [FP75, LP77, S78,
G83, CD85, KS85] The motivation for this decomposition is to solve prob-
lems on more complicated general polygons by combining the solutions to
the problem on convex subpolygons, so decomposition into an infinite
number of convex pieces is not interesting. Thus we use the term “convex
decomposition” to mean a decomposition into a finite number of convex
pieces.

-5.-

Any polygon can be decomposed into a union of convex pieces, UA;
[

[FP75, LP77, S78, G83, CD85, KS85]. Direct extension of any of these
results to the case of splinegons is impossible: the splinegon in Figure 4a
cannot be decomposed into a finite number of convex pieces.

However, Figure 4a also suggests a promising amendment to the prob-
lem. For any representation of a splinegon S, each of the regions S-seg;’s is
convex, so we could try to decompose the splinegon into a difference of two
unions of convex sets: UA;—UB;. Sets A; would include some convex

i

i
decomposition of the carrier polygon, together with the S-seg’s of concave-in
edges of S. Sets B; would be the S-seg’s of concave-out edges of S.

There are several problems with this scheme. Existing algorithms
work only on simple polygons, but a simple splinegon can have a nonsimple
carrier polygon (Figure 1b). Even if the carrier polygon is simple, however,
the scheme of decomposing S into a difference of unions of convex sets,
UA; —UB;, is flawed. Figure 4b shows a simple splinegon with a simple car-
L i

rier polygon; no matter how much the carrier is refined, any convex decom-
position of the form UA; —UB; must be incorrect near vertex v;.
4 i

If the carrier polygon were simple, then we could form a kind of
“chained” convex decomposition of S: begin with a convex decomposition of
the carrier polygon, then unite in the concave-in edges and subtract out the
concave-out edges in order. For example, we might write the splinegon in
Figure 4a as ((AUS-segy)—S-seg;)—S-segy. Although it is correct, this
decomposition has several disadvantages: it is guaranteed to consist of Q(n)
convex pieces, and the ordering of the union and subtraction operations
makes it awkward to parallelize algorithms that use it. Another disadvan-
tage to requiring that the carrier polygon be simple is discussed in Section
6: there exist n-sided splinegons whose smallest simple carrier polygons
have Q(n?2) vertices.

All of these examples lead us to suggest an alternate scheme for decom-
posing a splinegon into convex pieces. First, apply the algorithm of the last
section to produce a decomposition into y-monotone pieces with simple car-
rier polygons. Each of these pieces can be decomposed into convex pieces in
several ways. The result of any of these efforts is a decomposition of the
splinegon interior in the form U(LL_}AU - LiJBij), with convex A;; and B;;.

J

A naive way to perform the convex decomposition of a y-monotone
splinegon with a simple carrier polygon is to form the convex decomposition
of the carrier polygon, then unite in the concave-in S-seg’s and subtract out
the concave-out S-seg’s. This results in a decomposition whose size is Q(n).

An approach that offers greater promise for decomposing a y-monotone
splinegon S is to form a splinegon S’ by replacing each concave-out edge of
S by a line segment that joins its two vertices. Splinegon S’ is readily
decomposed into the smallest possible number of convex pieces, opt(S’).

-6 -

Theorem. Splinegon S’ can be decomposed optimally into the union of con-

vex pieces (with or without Steiner points) using existing polygonal algo-
rithms [G83, CD85, KS85].

Proof. Form polygon @ by replacing each concave-in edge of S’ by a con-
vex polygonal chain each of whose edges is tangent to the curved edge. The
edges added to decompose Q are identical to the edges added to decompose
S',soopt(S') = opt(Q). W

Given the convex decomposition of S’, the concave-out S-seg’s can be
subtracted from the result to give a convex decomposition of S.

Corollary. A monotone splinegon S can be decomposed into the union of
the convex decomposition of S’ (as defined above) and the difference of the
concave-out S-segs. The number of pieces in the convex decomposition is
opt(S')+v(S), where v(S) is the number of concave-out S-seg’s in S.

5. Intersection Detection

Given two n-sided simple splinegons K, and K5, we wish to detect in
O (1(n)) time whether their boundaries have any points in common. The
previous best known result related to this problem is that detecting the
intersection of simple polygons can be performed in O(nlogn) time [SH76].
For convex polygons, 2(n) is a lower bound on the time to detect boundary
intersection, even if preprocessing is allowed; however, area intersection can
be detected in O (logn) time [CD86].

Our approach is to create from K; and K5 a merged splinegon M such
that the boundaries of K; and Ky are disjoint if and only if M is simple.
Splinegon M consists of the edges of K; and Ko together with a “bridge”
between them that is composed of a constant number of edges. One way to
find such a bridge was proposed by Hershberger [H86]; it requires a linear-
time algorithm for computing the convex hull of a simple splinegon [SV85],
and uses two cases depending on whether the convex hull of one splinegon
contains the other. Our method for finding a bridge uses Jordan sorting
[HMRTS85], an algorithm that plays a crucial role in O (7(n))-time simplicity
testing.

Algorithm for Intersection Detection

(1) Find the y-extent (minimum and maximum y-coordinates of any point)
of K1 and K. If the y-extents of K; and K9 do not overlap, then
KiNKy = @. Otherwise, choose a value y,; that lies in both y-
extents. Assume without loss of generality that each edge of K; and
K, intersects the line y = y,,; in no more than two points.

(2) Fori = 1,2,

(a) Find the sequence of points (p;) at which K; crosses y = y., in the
order in which they appear around the boundary of K;.

(b) Let o; be the sequence (p;) sorted in order of increasing x-
coordinate.

-7.

(¢) Scan o; in order of increasing x, labelling each point. The label
assigned to point p; should be touch; if the boundary of K; does not
Cross ¥ = Yy at pj; in; if the interior of K; lies to the right of pj;
and out; if the interior of K; lies to the left of p;.
(3) Merge o, and o into a single sorted sequence o.

(4) Scan o for a consecutive pair of crossing points ¢;€K; and gq9€K 5 that
are labelled with different subscripts.

(5) Pry each splinegon K; slightly open at g;, so that g; is split into two
points g;+ and q; —, with g; + above ¢q; —. Let M be the splinegon con-
sisting of the “slightly opened” K; and K, together with two non-
intersecting segments that join g;+ to gg+ and ¢g;— to gg9—. The
boundaries of K; and K, intersect if and only if M is not simple.

(See Figure 5.)

Theorem. This algorithm correctly detects whether the boundaries of two
n-sided simple splinegons intersect in O (7(n)) time.

Proof. First we show that the algorithm is correct. Splinegon M is con-
structed by adding two edges to splinegons K; and K5. These edges do not
cross each other, and they are chosen so that they do not cross any edge of
K or Ky. Since K; and Ky are both simple, M is nonsimple if and only if
an edge of K; and and edge of K5 have nonempty intersection.

Next we show that the total work done by the algorithm is O (r(n)).
Step (1) can be performed in linear time. The definition of splinegons
implies that the output of step (2a) has size at most 2n, and that this output
can be computed in O (n) time. The algorithm of [HMRTS85] can be used to
perform step (2b) in O(n) time. Steps (2¢), (3), and (4) involve linear-time
scans of lists of length O(n). Step (5) can be performed in O(r(n)) time
using the algorithm of [TV86]. W

It is easy to extend this result to detect area intersection [CD86].

Corollary. It is possible to detect in O(7(n)) time whether the areas of two
n-sided simple splinegons intersect.

Proof. Use the above algorithm to detect whether the boundaries of the
two splinegons intersect. If they do not, we can determine whether one
splinegon lies inside the other as follows. Let ¢’ be o with the points
labelled fouch; removed. If the interiors of the two splinegons are disjoint,
then ¢’ must consist of repeated pairs of the form <in;,out;>. If K lies
inside K9, then ¢’ contains sequences of pairs of the form <inj,out;>
nested within pairs <ing,outgs>. If K4 lies inside K, then ¢' contains
sequences of pairs of the form <ing,outy> nested within pairs <ini,out;>.
These three cases exhaust the possible relationships between K; and K,
since their boundaries are disjoint.

Although it is not mentioned in the algorithm, the scan of step (4) can
even obviate step (5): If o' contains a sequence of the form
<iniy,ing,outi,0ut9 >, then the boundaries of the two splinegons intersect.

-8 -

The assumption that the splinegons intersect the cutting line only in
isolated points can be removed by having the splinegon oracle report only
the leftmost and rightmost points of each connected component of the inter-
section. This technique is a generalization of that used by Van Wyk [V].

6. Limitative Results

Topologists often refer to “curvilinear triangulations” of surfaces [D66,
HY61, L49]. In the context of splinegons, it is natural to consider construct-
ing such a subdivision using additional edges that enjoy the same property
as splinegon sides. The visibility cell of Figure 2 shows that this is impossi-
ble if we do not permit the introduction of additional vertices or “Steiner
points.” Thus, a curvilinear triangulation of an n/2-sided splinegon could
have as many edges as a curvilinear triangulation of an n-sided splinegon.
This has implications for the translation to splinegons of algorithms that
proceed by divide and conquer triangulation [K83].

We now show that simplifying the carrier polygon can be quite expen-
sive by constructing an n-sided splinegon G whose smallest simple carrier
polygon has Q(n?) vertices. Begin by constructing an equilateral, equiangu-
lar polygonal path C of k segments, with vertices vy, vy,...,vp_1, 2>2,
such that C together with the line segment v30; 1 bounds a convex region.
Let R be the (possibly infinite) open region bounded by vgv, —; and the lines
that contain vgv; and vp _gvp —1, whose intersection with C is empty. Let
h1 be a point interior to the region bounded by C and vgvz_; and k9 be a
point in region R; let H = h1hy. Let p and ¢ be points in R such that pvy
and quy —; do not intersect H, but pg does intersect H. The following lemma
implies that we can construct a splinegon edge from p to g that fits C “very
tightly” in that any inscribed path must contain at least & segments:

Lemma. There exists a curve D that joins p and g such that
(1) D does not intersect H,
(2) DUpgq bounds a convex region, and

(3) any polygonal path inscribed in D that does not intersect HUC contains
at least & segments.

Proof. Erect perpendicular bisectors to each of the segments of C. Define
points w; on these perpendicular bisectors as follows: w_; = p; for
0=i<k —1, let w; be the intersection of the line through w;_; and v; and
the perpendicular bisector of the edge v;v;+;. Take D to be any convex
curve between p and g that passes between each point w; and the
corresponding segment of C.

The perpendicular bisectors containing the points w; define sectors with
respect to the center of the curve C. The key observation to the proof of the
lemma is that any inscribed path in edge D that does not cross H must have
a vertex in each of these sectors: any segment with endpoints on D that are
not in adjacent sectors must intersect C by the way the points w; were
chosen. Since there are & sectors, any inscribed path in D that does not

cross H has at least k& vertices. i}
(See Figure 6.)

Notice that any curve that lies between D and C has the same
inscribed-paths property as D. The way to construct splinegon G is now
clear: we pack many edges between C and D; each edge adds only one vertex
to G, but adds at least % vertices to any simple carrier polygon.

To be more precise, put % vertices on the line segment vyp and k ver-
tices on the line segment v, _1q. Join vy to hy, and g to kg, by line seg-
ments. Construct 2k +1 curved edges that complete the boundary of G by
joining vy 1 to p so that
(1) the boundary of G is simple;

(2) each vertex on vgp, except for v, is adjacent to two vertices on v _;g;
(3) each vertex on v, _;q, except for g, is adjacent to two vertices on vp.

Splinegon G has 3k +4 vertices. Let Pg be a simple carrier polygon for
G. By the above lemma, Pg has at least k vertices on any curved edge of G,
of which 2 —2 are not original vertices of G. Since G has 2k +2 curved
edges, P has at least (2& +2)(k —2)+3k +4 = 2k2 +FE vertices.

This construction can obviously be modified to construct splinegons
whose number of vertices when divided by three leaves a remainder of 0 or
2. Thus we have the following theorem.

Theorem. For any n, there exist splinegons whose simple carrier polygons
have Q(n?2) vertices.

7. Conclusions and Open Problems

In this paper we have seen two kinds of splinegon problems. Decompo-
sition into monotone or convex pieces presents challenging difficulties not
encountered in the polygon case, whereas detection of intersections is a rela-
tively straightforward extension of the result for polygons.

We have also shown a negative result on the potential complexity of
finding a simple carrier polygon for a splinegon. This result demonstrates
that a simple splinegon is a more powerful object than a simple polygon in
its ability to represent shape information.

The techniques in this paper are likely to have wider application in
turning polygon algorithms into splinegon algorithms.

-10 -

References

[CD85]

[CD86]
[CI84]

[D66]
[FP75]

[FM84]

[G83]

[H86]

B. Chazelle and D. P. Dobkin, Optimal convex decompositions,
Machine Intelligence and Pattern Recognition 2: Computational
Geometry, G.T. Toussaint (ed.), Elsevier Science Publishers,
North Holland, pp. 63-133, 1985.

B. Chazelle and D. P. Dobkin, Intersection of convex objects in
two and three dimensions, Journal of the ACM, to appear.

B. Chazelle and J. Incerpi, Triangulation and shape-complexity,
ACM Transactions on Graphics 3(2), pp. 135-152, 1984.

J. Dugundji, Topology, Allyn and Bacon, 1966.

H-Y. F. Feng and T. Pavlidis, Decomposition of polygons into
simpler components: feaure generation for syntactic pattern
recognition, IEEE Transactions on Computing C-24(6), pp. 636-
650, 1975.

A. Fournier and D. Y. Montuno, Triangulating simple polygons
and equivalent problems, ACM Transactions on Graphics 3(2), pp.
153-174, 1984.

D. H. Greene, The decomposition of polygons into convex parts,
Volume 1 of Advances in Computing Research, JAI Press, pp.
235-259, 1983.

J. Hershberger, private communication.

[HMRT85] K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sort-

[HY61]
[K85]

[KS85]

[K83]

[L49]

[LP77]

[LP84]

ing Jordan sequences in linear time, Proceedings of the Sympo-
sium on Computational Geometry, pp. 196-203, 1985. To appear
in Information and Control.

J. G. Hocking and G. S. Young, Topology, Addison-Wesley, 1961.

J. M. Keil, Decomposing a polygon into simpler components,
SIAM Journal on Computing 14(4), pp. 799-817, 1985.

J. M. Keil and J. R. Sack, Minimum decompositions of polygonal
objects, Machine Intelligence and Pattern Recognition 2: Computa-
tional Geometry, G.T. Toussaint (ed.), Elsevier Science Publishers,
North Holland, pp. 197-216, 1985.

D. Kirkpatrick, Optimal search in planar subdivisions, SIAM
Journal on Computing 12(), pp. 28-35, 1983.

S. Lefschetz, Introduction to Topology, Princeton University
Press, 1949.

D. T. Lee and F. P. Preparata, Location of a point in a planar
subdivision and its applications, SIAM Journal on Computing
6(3), pp. 594-606, 1977.

D. T. Lee and F. P. Preparata, Computational geometry—a sur-
vey, IEEE Transactions on Computers C-33(12), pp. 1072-1101,
1984.

[PS85]
[SV85]
[S78]

[SH76]

[S86]
[TV86]

[V84]

-11 -

F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag, 1985.

A. A. Schaffer and C. J. Van Wyk, Convex hulls of piecewise-
smooth Jordan curves, Journal of Algorithms, to appear.

B. Schachter, Decomposition of polygons into convex sets, IEEE
Transactions on Computers C-27(11), pp. 1078-1082, 1978.

M. I. Shamos and D. Hoey, Geometric intersection problems,
Proceedings of the Seventeenth Annual IEEE Symposium on
Foundations of Computer Science, pp. 208-215, 1976.

D. L. Souvaine, Computational Geometry in a Curved World,
Princeton University Ph.D. Dissertation, to appear, 1986.

R. E. Tarjan and C. J. Van Wyk, An O (nloglogn)-time algorithm
for triangulating simple polygons, manuscript, 1986.

C. J. Van Wyk, Clipping to the boundary of a circular-arc
polygon, Computer Vision, Graphics, and Image Processing 25(3),
pp. 383-392, 1984.

(a)

(b)

Figure 1. Two four-sided splinegons, with dashed lines showing -carrier
polygons. In (a), the carrier polygon is convex, but the splinegon is neither sim-
ple nor convex; in (b), the splinegon is simple, but the carrier polygon is not.

Figure 2. A ten-sided splinegon divided into five y-monotone pieces. Dashed
lines indicate the visibility cell relevant to this decomposition.

Figure 3. A y-monotone splinegon with eight sides and a non-simple carrier
polygon (using the long dashed edge and the seven solid line segments) can also
be represented as a ten-sided splinegon with a simple carrier polygon (using the
three shorter dashed edges and the seven solid line segments).

Vi +1

(b)

Figure 4. Simple splinegons that cause various decomposition schemes to fail.
The splinegon in (a) cannot be represented as UA; for any finite choice of convex
]

A;; in (b), the edges incident to v; are tangent at v;, so a decomposition of the
form UA;—UB; for any finite choice of convex A; and B; must be incorrect in a
L

L
neighborhood of v;.

Figure 5. Illustrating intersection detection for
Point ¢ is labelled touch 1, ¢1 1s labelled out,
to build M will be constructed between g, and

simple splinegons K, and K,,
and q; is labelled in,. The bridge
qz2.

Figure 6. Illustrating the proof of the lemma: Any path inscribed in D that does
not intersection either the polygonal path vg, ..., v4 or the line segment H must
contain at least 5 segments.

