RELIABLE DISTRIBUTED DATABASE MANAGEMENT

Hector Garcia-Molina

Robert K. Abbott

CS-TR-047-86

August, 1986

Reliable Distributed Database Management

Hector Garcia-Molina
Robert K. Abbott

Department of Computer Science
Princeton University
August 1986

A reliable distributed database must manage dispersed and
replicated data, making it available to users in spite of
hardware failures. In this paper we study the algorithms and
techniques that can achieve this reliability. Three scenarios
are considered. In the first, data are distributed but not
replicated; in the second, data are replicated; and in the third,
both data and processing are fully replicated in an n-modular
redundancy strategy. Network partitions are not considered in
any scenario.

Keywords: distributed database, transaction, replication, reliability,
availability, consistency, concurrency control, serializability, atomicity,
commit protocol, crash recovery, deadlock, fail-stop, fail-insane, n-modular
redundancy, Byzantine Agreement

This work has been supported by NSF Grants ECS-8303146, DMC-
8505194, and ECS-8351616, New Jersey Governor’s Commission on
Science and Technology Contract 85-990660-6, and grants from DEC, IBM,
NCR, and Perkin-Elmer corporations.

A reliable database management system should provide its users with correct data whenever
they need it. Reliability can be achieved through distribution and replication of resources (e.g., data,
processors); distribution isolates failures and replication makes alternate resources available.
However, in order to actually achieve reliability, the distributed and replicated resources must be
properly managed by the system. In this paper we study such management.

Qur goal is to explain the basic principles of reliable, distributed data management, rather
than to exhaustively survey the field. Thus, in each section of the paper, we usually select one of the
many possible approaches or techniques because it is, in our opinion, either simpler to understand or
more commonly used in practice. Interestingly, the simple ideas are the ones that usually work best
in practice. This is especially true in reliable data management, where simpler means less prone to
errors and hence more reliable. Our presentation is informal since we believe that once the reader
understands the basic ideas, he or she can refer to the literature for details and proofs.

Since data replication is one of the keys to reliability, and affects in fundamental ways the
type of crash recovery that can be performed, our paper is organized by increasing levels of
replication. In section 1, we introduce the terms and basic concepts of database management,
including our definitions of reliability and failures. Section 2 considers data management in a
distributed system with no data replication. It lays the groundwork for section 3, which discusses a
system with replicated data. Finally, section 4 covers a system where both data and computations are
replicated.

1. Basic Concepts

A distributed system is a collection of autonomous computing nodes linked by a
communications network. The nodes may cooperate to provide the user a database management
system (DBMS) in which case the distributed system is called a distributed database. There is no
requirement that nodes be homogeneous either in terms of hardware, or in the data models used, or in
the database management systems. In reality, however, management of heterogeneous databases is

very difficult [CP84].

1 August 86

A distributed database is a collection of named data items, each with-an associated value. In
an unreplicated distributed database each item has exactly one value. In a fully replicated distfibuted
database an item has n associated values where n is the number of nodes in the system. Each value
for a given item is stored at a different node in the system. The values of the item should be the same,
but due to updating activity the values may be temporarily different. The values stored at a node
constitute the database of that node. A distributed database which is neither unreplicated nor
completely replicated is called a partially replicated distributed database.

In addition to items and values, a distributed database has a collection of consistency
constraints [EGLT76]. A consistency constraint is a predicate defined on the distributed database
describing the relationships that must hold among the items and their values. A consistency
constraint defined on a database for a bank might be that all balances must be non-negative.

Two operations that can be performed on data items are the read action and the write action.
A read action retrieves the current value of an item and a write action updates an item with a new
value. Operations on the data are grouped into a ¢ransaction, a program that issues read and write
actions. The items read by a transaction constitute its reads_et; tHe items written, its writeset. A
transaction may also have effects external to the database, such as dispensing money or printing a
report about the database. A read-only transaction issues neither write requests nor has external
effects.

Two transactions conflict if and only if they operate on a common data item and at least one of
the operations is a write. If one reads and the other writes, it is a read-write conflict; if they both
write, a write-write conflict. The order of execution of the actions of the two transactions is significant
(i.e., reflected in the database state) only if they conflict. Consider a database system that is used to
maintain savings account balances for a bank. Suppose there are three accounts A, B and C which
contain initially $50, $100 and $150 respectively. Let T1 be a transaction that transfers $10 from
account A to account B, and let T2 be a transaction that transfers $50 from account B to account C.

The situation is illustrated in figure 1 [Kohl81].

2 August 86

Initial account balances
A contains $50
B contains $100
C contains $150
Transaction T1
begin
1 read Aobtaining A__balance
2 read Bobtaining B_ balance

3 write A__balance — $10to A
4 write B__balance + $10to B

Transaction T2
begin
1 read Bobtaining B__balance
2 read Cobtaining C_ balance
3 write B__balance — $50to B
4 write C__balance + $50to C

Figure 1. Conflicting transactions.

Since both transactions are funds transfers, the sum of the balances after the transactions have run
should equal the sum of the initial balances, namely $300. If T2 is scheduled to run between the first
and second write actions of T1 then the resulting sum of the account balances will be $350. This
anomaly is called a lost update (the deduction of $50 from account B by T2 is lost) and is only one
example of anomalies that can arise from conflicting transactions [Gray79]. Conflicts must be
resolved correctly if consistency is to be preserved.

One solution for resolving conflicts would be to execute transactions serially, one at a time in
any order. This method preserves consistency because a transaction, when executed alone, transforms
an énitially consistent database state into another consistent state [TGGL82]. However this method
prohibits the concurrent execution of nonconflicting transactions and severely reduces system
performance.

A better solution is to execute transactions concurrently, but ensuring that from the users’
viewpoint, they appear as indivisible operations on the database. This property is called atomic
execution (also concurrency transparency) and is achieved by guaranteeing the following two

properties:

3 August 86

1. A transaction is an “all or nothing” operation. Either all its actions are executed and the effects
properly installed in the database, in which case the transaction is committed, or all effects of the
transaction are undone and the transaction is aborted. This property is known as atomic commitment.
2. The concurrent execution of several transactions affects the database as if they executed serially in
some order. The interleaved order of the actions of a set of concurrent transactions is called a
schedule. A schedule is serializable if the effect of running the schedule is the same as if the
transactions had executed serially in some order.

The first property is established by the commit and recovery algorithms of the database
management system; the second, by the concurrency control algorithm. Atomic transaction execution
together with the consistency-preserving assumption imply that the execution of any set of
transactions transforms a consistent initial database state into a consistent state. Atomicity is
appealing because of its simplicity and generality. It also corresponds to most users’ intuitive model of
processing - that of sequential processing.

1.1 Reliability

An important component of any computing system is reliability. In fact, a major motivation
for building distributed database systems is to increase reliability [Kim84]. When the computer for a
centralized database fails, the entire database is unavailable until the computer is repaired. When a
node fails in a distributed system, only a portion of the database is made unavailable. If that portion
is replicated at another node, then the entire database may remain available.

Intuitively, reliability is a measure of how well a system can tolerate and recover from
failures. (In this discussion we specifically mean hardware failures. All software is assumed to work
correctly.) Our discussion will focus on two aspects of reliability: correctness and availability.
Correctness is important because we want the system to maintain database consistency. Failures
may temporarily cause an inconsistent state but the recovery algorithms should restore the database
to a correct state. Issues related to correctness are serializability, atomicity and survivability.

Updates to the database should survive, i.e., failures should not cause updates to be “lost”.

4 August 86

The second aspect of reliability is availability. Failures will make portions of the datﬁbase
unavailable. However, by replicating data at independent computing nodes we can minimize (or even
nullify) the impact of node failures. The goal is to design a system that can sustain multiple node
failures and continue to process transactions promptly and correctly.

Reliability does not come for free. To some extent, reliability is achieved through redundancy,
and redundancy naturally increases the cost of the system. Intelligent design decisions will seek to
minimize the cost and maximize efficiency. A thorough examination of the issues of cost, efficiency
and fairness are beyond the scope of this paper.

1.2 Single site reliable database

In this section we outline some of the mechanisms used to achieve reliability for a single site
database. Specifically we discuss concurrency control in section 1.2.1 and crash recovery in section
1.2.2. It is by no means a comprehensive treatment of the subject. Rather the purpose is to familiarize
the reader with some of the problems and terms of concurrency control and crash recovery. When we
consider distributed databases, we will assume that individual nodes have the capabilities of a
centralized database system.

1.2.1 Concurrency Control

Most commercial database managerﬁent systems solve the concurrency control problem by
some form of explicit or implicit locking [Gray79, BG81]. A transaction locks an item to make it
inaccessible to other transactions while the database is in a temporarily inconsistent state. A simple
locking scheme uses two kinds of locks: read locks and write locks. A transaction uses a read lock if it
just reads an item and a write lock if it updates an item. Read locks are sharable; more than one
transaction can lock an item for reading at the same time. Write locks are owned exclusively and are
incompatible with any other type of lock.

In order to guarantee serializability all transactions must be well-formed and two-phase. A
transaction is well-formed if it
1. locks an item before accessing it,

2. does not lock an item in a way that is incompatible with existing locks,

5 August 86

3. before it completes, unlocks each item that it locked.
A transaction is two-phase if no item is locked after some item has been unlocked.

If a transaction attempts to lock an item in a way that is incompatible with existing locks
then it must either wait, abort itself or preempt the other transaction. When two or more transactions
are waiting, they may be involved in a deadlock. Figure 2 is a simple example of a deadlock; each

transaction is waiting to lock an item that is already locked by another transaction. Deadlocks are

Item A

T Item B

—3» exclusive (write) lock granted

""" > lock requested

Figure 2. Deadlocked transactions.

resolved by preempting one or more of the transactions that are involved. Methods for representing,
avoiding and detecting deadlocks are reviewed in [MM79, Ober82].

Two-phase locking is perhaps the best-known concurrency control mechanism but it is not the
only one. Concurrency control is a well-studied problem and many solutions have been proposed
[Ullm82].

1.2.2 Crash Recovery

A failure in a computing system is an undesired event which leaves the system in an
inconsistent or erroneous state. A failure can be relatively minor (e.g., transaction abort, deadlock,
timeout, or resource limit exceeded) or major (e.g., multiple node failures). Recovery management is
the process by which the system returns to a correct state after a failure. A recovery technique is a
mechanism that is applied to recover from a certain class of failures. There are many kinds of failure

and therefore many different recovery techniques.

6 August 86

The purpose of a recovery system is twofold [Gray79). First, the recovery system provides a
way to undo an in-progress transaction in the event of a minor error without affecting other
transactions. Second, in the event of a major error, the recovery system attempts to minimize the
amount of lost work as it restores the database to a previous correct state. We will describe one
approach to recovery, namely logging. Many other mechanisms for crash recovery have been proposed
[Verh78, HR83]. Deciding which method is best for a particular database system depends on how
many, and what kinds of transactions are being run [Kent84].

A transaction starts with a BEGIN action which establishes a recovery unit. Then it issues a
sequence of read and write actions on the database items, and terminates with an END action that
marks the end of the recovery unit. Once the last action is executed, the system commits the
transaction by making all changes to the database permanent, releasing all locks held by the
transaction, and making the changes public. The commit point occurs when the system makes the
decision to commit the transaction. At any time before the commit point the transaction can be
aborted. If a transaction is aborted, all the effects of the actions are undone and the database is
restored to its original values. This is known as transaction rollback. (Incidentally, note that in
addition to the two-phase locking requirement, locks on modified items should be held until after the
commit point.) Commitment and rollback are accomplished with the information stored in the
UNDO-REDO log (or audit trail) [Gray79]. Every actiqn that updates an item in the database writes
in the log an entry that includes the old and the new values of the item being changed. The
information should be sufficient to enable an action to be completely undone or redone. Since entries
for all transactions are written to a common log, each entry must include a transaction identifier. For
reliability, several copies of the log may be written at once. In addition, log entries are also written
when the transaction begins and when it reaches its commit point. A log also has the following
associated operations [Gray79]:

1. A DO operation that performs the action and also writes a log entry sufficient to undo and redo the
action.

2. An UNDO operation that undoes the action given the log entry written by the DO operation.

7 August 86

3. AREDO operation that redoes the action given the log entry written by the DO operation.

If an update is made to the permanent database and a crash occurs before the relevant log
entry is written to stable storage, then it is impossible to undo the update. The solution is to write the
log to stable storage before the update is done. This is known as the write-ahead log protocol [Gray79].

In the event of a crash, the log is used to reconstruct a consistent and up-to-date copy of the
database. If the database was not destroyed in the crash, the recovery system will redo (i.e., complete)
transactions that were committed but whose actions on the database had not fully completed (e.g., the
system may have not flushed out all updates to the database on disk). Similarly, the system will use
the log to undo transactions that had not committed but whose changes to the database could have
been executed. If the database is lost in the erash, then the system relies on the latest database dump
(a consistent but out-of-date copy of the database) and redoes all transactions that committed after
the time of the dump. The operations UNDQ and REDO must be idempotent, meaning that repeated
application on the data yields the same desired result. This is necessary because a node may
experience multiple failures during the course of transaction recovery.

Not every action of a transaction can be undone. For example, once an automatic teller has
dispensed cash, the money cannot be recovered. We call those actions that can be undone recoverable
actions. All other actions are unrecoverable.

1.3 Failures in a Distributed Environment

In order to design recovery mechanisms we first need to identify what kinds of failures the
system will protect against. Let's look at the types of failures that could occur in a distributed
database system.
® Processor failure. There are a number of ways in which a processor can cease to function normally.
It might simply halt. Or it could continue to execute instructions correctly but with intermittent and
abnormal delays. Finally, a processor can go “berserk” and exhibit wild, unpredictable behavior.
Systems that protect against this type of insanity are very reliable indeed.
® Storage failures. A computing system usually employs several types of storage media each with its

own failure characteristics. Nevertheless we can divide storage media into two broad classes. The

8 August 86

contents of volatile storage (e.g., main memory) do not survive processor failures. Nonvolatile storage
(e.g., magnetic disks and tapes) does. Storage devices can also experience failures which are unrelated
to processor failures.

® Network failures. These occur when messages between nodes are not transmitted properly. Let us
assume that the protocol for sending a message from node X to node Y is as follows: node X hands the
message to the communications subsystem at time t, and d seconds later X gets a response from the
communications subsystem. (Here we use time in an intuitive fashion but these concepts can be
formalized [Lamp78].) This response can be either positive (‘message has been delivered’) or negative
(‘message has not been delivered’). The delay d should be less than some predefined maximum
acceptable delay d,,. At node Y there are several possible outcomes: the message may never be
delivered; an erroneous message due to transmission errors may be delivered; the correct message
may be delivered before t+d but it may be out of sequence with respect to other X - Y messages; the
correct message may be delivered in sequence but after time t+d, and so on. This means that there
are a large number of combined outcomes (e.g., no response at node X by time t+dp, but message is
delivered at node Y in sequence before time t+d,).

@ Partitions. Node failures or network failures can partition the distributed database into groups of
isolated nodes. The nodes in each group can communicate with each other, but no node in the group is
able to communicate with nodes in other groups. Whenever partitions occur the correctness of the
database is threatened. For example, suppose the distributed database of a bank is partitioned into
two isolated groups of nodes P1 and P2. Before the partitioning occurred the Silicon Co. showed a
balance of $150. It is obviously incorrect to allow both a node in P1 and a node in P2 to submit a
transaction to withdraw $100 from the company account, even though each partition thinks there are
sufficient funds to allow the transaction.

® Malevolent failures. A malevolent failure occurs when a node acts maliciously and does not follow
the system protocols. An example would be if a node started generating and processing transactions

that do not preserve consistency. Clearly, it is very hard to protect against such failures.

9 August 86

® Multiple failures. A multiple failure means that more than one of the failures discussed so far has
occurred. If a transaction processing algorithm can still function properly after n failures, it is called
n-resilient. Algorithms that recover from multiple failures must guard against the situation where a
failure occurs when the system is recovering from a previogs failure.

@ Detectable failures. If all nodes directly affected by a failure can recognize or discover that a failure
has occurred, the failure is called detectable. But if the nodes continue to operate as if no failure
occurred, the failure is called undetected. For example, if a node’s database is destroyed (e.g., by disk
failure) and the node does not immediately recognize this, the hard node failure is called undetected.
Clearly, this undetected failure can cause serious problems, as the failed node may attempt to modify
other nodes’ data based on ifs own erroneous data. Similarly, an undetected failure occurs when a
node accepts as good a message that was altered by transmission errors.

For another discussion of possible failures and their problems, see [RGT77].

No system can protect, nor would we want to protect, against all types of failures. Some (e.g.,
flooding) may be unlikely to occur in a given installation. Others (e.g., an earthquake) may be deemed
too expensive to handle. Of the failures we would like to cover, some are easy to handle (e.g., out-of-
sequence messages); for others there are well-known techniques that make processor failures
“invisible” to transactions running at a single computer (e.g., logging, as discussed in section 1.2.2).
To avoid reinventing known solutions, and to focus system design on precisely the critical failures, it
is common to make assumptions about the components. We make ours in the following section.

1.4 Modeling Failures

Following [LS79], we divide all events which affect the computing system into two categories:
desired and undesired. Understandably, desired events are what we always hope for. Any kind of
failure is an undesired event. Undesired events can be further classified as expected or unexpected. A
processor failure or an undelivered message are typically undesired, but expected events. An
earthquake is usually both undesired and unexpected.

We next consider two components: a node (processor plus storage) and the communication

network, and present the most common failure models for each. Each model makes different

10 August 86

assumptions about the reliability of the components. We consider node failure models first and the
network model second.
1.4.1 Node Models

A node can be in one of four states. In the perfect state, a node experiences no failures. It
follows the algorithms it is given, and never pauses or halts. Furthermore, the algorithms it follows
are correct. In the perfect state a node responds promptly to messages from other nodes.

When a node is in the insane state, it can act in arbitrary ways. It can send any messages,
including garbled or misleading ones, to other nodes. It can refuse to send messages when it is
supposed to. It can even collaborate with other failed nodes in an attempt to subvert the entire
system. The node can also destroy all the data that it holds.

During recovery, a node executes a predefined set of algorithms which restore the database to
a consistent state. The node is perfect in the sense that it executes algorithms faithfully. However, the
node does not execute transactions because the database state is incorrect.

Finally, when a node is halted, it performs absolutely no actions.

Based on these four states, we now define two node models that tell us how transitions

between the states can occur.

i L Y 4 i
I 7\ |
perfect : halted . recovery perfect
v ¥
volatile stable
memory lost storage ok
time S

Figure 3. Fail-stop node model.

11 August 86

A node is defined to be fail-stop if it simply halts when it fails [SS83]. Figure 3 illustrates the
behavior of such a node. Before a failure, the node runs perfectly. The moment it fails, it simply halts,
without ever deviating from its algorithms. After some undetermined amount of time, the node is
repaired. When this happens it executes a predefined recovery procedure. When recovery is complete,
the node continues executing its application programs perfectly. (The node can fail during recovery,
in which case it again halts.) A fail-stop node has two types of storage. Main memory is volatile and is
lost at a crash. Stable storage is nonvolatile and updates to it are performed atomically. That is, if a
failure occurs during a write to nonvolatile storage, either the write will be performed entirely or
none of it will. There are a number of techniques for increasing the probability that a real node
behaves like a fail-stop one [SS83], but of course this probability will never be 1. For example, the
logging mechanism of section 1.2.2 can be helpful in making storage (i.e., the database) behave like
stable storage.

A fail-insane node operates perfectly until it fails (see node A in figure 4). During the failure
it is in the insane state. At some later point, the failure is detected and repaired. After a recovery

period, the node behaves perfectly again. (The node may fail insanely during recovery too.)

A | L | |
§) \ | 1
perfect insane recovery perfect
B
perfect
C
perfect
time 3

Figure 4. Fail-insane node model

12 August 86

‘A fail-insane node by itself is not very useful for- reliable computing. Thus, we assume that
there are 2m + 1 fail-insane nodes in the system, and that at any one time, at most m are insane or
recovering. This way, the majority of perfect nodes can perform useful work and rule out any incorrect
or misleading results produced by the insane nodes.

More details on the fail-insane model will be given in section 4, but note that it is a very
powerful model. It covers any conceivable failure, regardless of whether it was considered by the
system designers. It is the most conservative model, and any system that proteects against this type of
failure will be highly reliable.

1.4.2 Network Model

Computer communications networks are relatively well-understood today, and various
techniques for making them robust are known. It is also possible to model some communications
failures (e.g., lost messages) as failures of either the sending or receiving node. Thus, from the
distributed database point of view, it is common to model the network as a very reliable one.
Specifically, we make the following assumptions for a reliable network:
® Network does not lose messages. We assume that all messages will be delivered unless the
destination node is down.
® Inorder messages. All messages are delivered in the order in which they were sent.
® Guaranteed delivery time. We assume that a sending node will always get some response from the
communication network after at most d, seconds, and that a positive response means the message
has been delivered. A negative response from the communications subsystem means that the
receiving node is failed.
® No spontaneous messages. The network only delivers authentic messages sent by nodes in the
system. It does not spontaneously generate and send its own messages.
® No network partitions. The system does not split into isolated groups of nodes which cannot
communicate with each other.

Note that in this model there are no “persistent messages” (as in RELNET [HS80]). That is, if

the destination node is down, the network will not remember messages intended for it. The source

13 August 86

node must take this responsibi]ity. (We choose not to assume persistent messages because their
‘implementation is not simple. Furthermore, many distributed database systems will have logging
facilities that make persistent messages unnecessary.)

A second model that has been studied is the partitionable network. In it, network partitions
are considered a possibility. Specifically, the guaranteed delivery time assumption of the previous
model is relaxed. If a node is unable to send a message to another node, that other node may either be
failed or may simply be cut off. Note that network partitions can lead to some difficult data
management problems. For instance, if isolated groups of nodes update replicated data during a
partition, then the “copies” will diverge and will have to be integrated when the partition is repaired.

To limit the length of this paper, we will not study the partitionable network model.
Interested readers are referred to [DGS84] for a discussion of reliable distributed data management
under network partitions. Hence, we will study in a reliable network environment, data processing

with fail-stop nodes (sections 2 and 3) and with fail-insane nodes (section 4).

14 August 86

2. No Data Replication

In this section we discuss how to achieve reliability in an unreplicated distributed database.
Recall that in an unreplicated database there exists exactly one copy of each data item.

The model for the distributed system is a collection of fail-stop computing nodes connected by
a reliable, non-partitionable communication network. An unreplicated database cannot tolerate fail-
insane nodes. A fail-insane node can arbitrarily destroy any part of the database and, since there
exist no duplicate copies for any data items, the damaged items cannot be reconstructed.

Non-replication simplifies transaction processing because there is no need to propagate
updates to multiple copies. Conflict avoidance among transactions is also simplified. If item X is part
of the local database of node P, then access to X can be controlled exclusively by P. However, non-
replication also means that the availability of the data is limited. If node P is failed then all
transactions which reference X must wait until P is repaired.

Because data availability is limited, we will concentrate on the mechanisms used to maintain
correctness. Specifically these are the concurrency control mechanism, (discussed for the single node
case in section 2.1), and the commit protocol (section 2.2), which are used to achieve atomicity. To be
reliable these algorithms must operate correctly in the face of multiple node failures. Likewise, the
associated recovery algorithms must also be immune to failures.

We model a distributed transaction as a collection of processes, or sub-transaétions (often
called cohorts) which execute at various nodes in the network. An instance of a transaction is created
by the arrival of a transaction request message which initiates the construction of a process from a
transaction descriptor. The ¢ransaction descriptor provides complete instructions for building an
instance; it indicates what sub-transactions are needed, how to schedule the transaction, what
recovery and locking mechanisms should be used, and so on [Kohl81].

The simplest way to organize the sub-transactions is sequentially. In this model only one sub-
transaction of a transaction executes at any time in the network. If the sub-transaction acquires all
necessary resources and is able to successfully complete its portion of the transaction, it spawns the

next sub-transaction to be executed. The entire transaction completes successfully only if the last sub-

15 August 86

transaction in the sequence completes. Otherwise each sub-transaction in the sequence is rolled back.
This means that no sub-transaction can make its database updates available to other transactions
until it is determined that the entire transaction has been successful. A sub-transaction that executes
at the same node as its parent can access the same objects as its parent. In this way a sub-transaction
can “see” the actions of its predecessor.

Rothnie et al. have proposed another model for a transaction [Roth80]. In this model the sub-
transactions are spawned and managed by a single process known as the transaction coordinator. The
transaction coordinator does not itself perform any database operations. This model does allow sub-
transactions to execute concurrently.

Our model of a distributed transaction is more general. A transaction initiated at the start
node spawns a set of sub-transactions. Similarly each sub-transaction can spawn its own set of

cohorts. These relationships are shown in figure 5. Notice that concurrent execution of sub-

——— Sub-transaction spawned

e ¥ Communication

Figure 5. Distributed transaction model

16 August 86

transactions in the more general model enables sub-transactions at different nodes and of different
parentage to share results through the explicit passing of messages. In this model a transaction
completes successfully if all of the sub-transactions are successful. Coordinating the sub-transactions
so that either all of them commit or none of them do is known as the distributed commit problem.

2.1 Concurrency Control

We have seen that the key to achieving database correctness is to execute transactions
atomically. The first step towards this goal is to ensure that all executions are serializable.
Serializability is attained by processing conflicting operations in certain relative orders. In addition,
a good concurrency control mechanism for a distributed system should be resilient to node failure and
incur modest computational and storage overhead. There are many concurrency control mechanisms
for distributed database systems; [BG81] is one survey of this area. Our goal is not to survey but to
illustrate how concurrency control is affected by failures. Thus we summarize the best-known
distributed concurrency control mechanism, namely two-phase locking, and use it to discuss failure
management. We encourage the reader to consult the original papers for more formal presentations of
the problems and proofs that the techniques we describe are indeed correct.

In a centralized database two-phase locking is implemented by a lock manager that receives
lock requests and lock releases and processes them according to the rules of two-phase locking
(section 1.2.1). The basic way to implement two-phase locking in a distributed database is to
distribute the lock managers along with the database; placing a lock manager for data item X at the
node where X is stored. A transaction that updates X must first spawn a sub-transaction to execute at
the node where X is stored. The sub-transaction requests an exclusive lock for X from the local lock
manager. If the lock is granted then the sub-transaction proceeds to update X. Once the lock has been
granted no other transaction can access X until the lock is released. Similarly, shared locks must be
requested before reading item X, and this lock is sharable with other readers. Sub-transactions and
the local lock managers follow the rules of two-phase locking to ensure that executions are
serializable at each node. Two transactions conflict only if they spawn at least one pair of conflicting

sub-transactions. Because data is not replicated the conflicting sub-transactions compete for locks at

17 August 86

the same node in the network. The lock manager for that node will resolve the conflict and serialize -
the execution of the conflicting sub-transactions. Thus the serializability of local executions is
sufficient to guarantee the serializability of global executions.

Lock requests which cannot be granted immediately are placed in a waiting queue for the
desired item. As in a centralized database, uncontrolled waiting can lead to deadlocks. In a
distributed system the local lock managers cooperate to help detect global deadlocks. There are a
number of techniques for handling deadlocks in a distributed system. As in a centralized system they
are characterized by the cautious approach of deadlock prevention and that of deadlock detection. For
a thorough discussion of deadlock avoidance and detection see [CP84, MM79, Ober81].

The mechanism described so far synchronizes conflicting operations when there are no
failures. Failures, however, do occur and can disrupt normal transaction processing. While a node is
halted, there can be no conflicts over the items stored there since there is no activity. However, at
recovery, the lock table no longer exists. During normal processing the lock table, which records what
locks have been granted to which sub-transactions, is usually kept in main memory. (The main
reason for this is efficiency.) Thus when a failure occurs the lock table is lost. After a node is repaired,
and before it can resume normal processing, the lock table must be reconstructed to reflect the state of
the system as it was just before the failure. We now discuss one way that this can be accomplished.

When a node recovers, there exists a set of sub-transactions which were active when the
failure occurred. (This set can be constructed by examining the log and identifying sub-transactions
which have recorded a BEGIN action but have not entered an END action.) Before these pending
sub-transactions can resume execution, the lock table which existed at the time of the crash must be
reconstructed. Using the information in the log this task is easily accomplished. For each pending
sub-transaction Tj, the recovery procedure will
1. If possible, commit Tj;.

A node can commit a pending sub-transaction T; if it can determine that the transaction to which T;
belonged reached its commit point. How a node can determine upon recovery when it is possible to

commit (or abort) a pending sub-transaction is discussed in the next section. If T; has committed, the

18 August 86

node must ensure that Ty's changes are safely stored in the database. Since T; has finished all of its
processing, it no longer needs any locks. Thus, the reconstructed lock table need not contain any
entries for T;.

2. Else if possible, abort T1

A node can abort a sub-transaction if it can determine that the transaction to which T; belonged
aborted (see section 2.2). In this case, the node aborts T;; after the abort T; holds no locks, so it will
have no lock table entries.

3. If T can be neither committed nor aborted, then the node locates in the log the BEGIN entry for T;.
Reading forward in the log, the node sets an exclusive lock for each item modified by T;. These locks
are held until the fate of T} can be determined. Note that shared locks for items read do not have to be
set. This is because we are not attempting to restart the transaction and let it continue processing. If
the transaction had managed to finish before the failure it will be committed; else it will be aborted.

When all pending sub-transactions have been reviewed and the above actions applied, then
the lock table has been reconstructed, and it is safe to resume normal proceésing.

2.2 Commit Protocols

We have modeled a distributed transaction as a set of sub-transactions which execute
concurrently at nodes in the network. For correctness we require that either all the sub-transactions
complete successfully and commit their actions or that none of them do. Atomic commitment is the
second step toward achieving atomic execution of transactions. This section discusses commit
protocols which handle the distributed commit problem.

To facilitate the discussion of commit protocols we introduce a more formal model of execution
for a sub-transaction. The model consists of a set of possible states which the sub-transaction can
enter and a set of rules which clearly define state transitions. The states and transitions are shown in
Figure 6. The fail-stop model and the logging mechanisms at each node ensure that the state
transitions in the diagram are, in essence, atomic. Each transition is defined to occur when the

appropriate log record is written to stable storage, something that is assumed to occur atomically (see

19 August 86

section 1.4.1). Thus, for example, the transition to state C (comrhit) occurs when the commit record is

written.

EXEC COMMIT

S

ABORT

EXEC, FAILURE FAILURE
FAILURE

Figure 6. Sub-transaction model

Let the state of sub-transaction T; before it begins execution at node P be called the initial
state INIT. In the INIT state, T; is a process waiting to be scheduled by the database system. From
the INIT state T; begins execution. It requests locks from the local lock manager and for every action,
writes UNDO and REDO entries to the log. Execution has two possible outcomes: success and
failure.

Failure can be caused by a concurrency control problem discovered by either the local lock
manager or the global deadlock avoidance and detection algorithm. Using the log information, Tj is
rolled back to the INIT state and scheduled for restart at a later time. Alternatively, T; can decide to
unilaterally abort. Using a banking example, Tj might discover that there are insufficient funds to
cover a withdrawal. In this case, Tj may be cancelled and its effects undone. Finally, a processor
failure can halt the execution of T;. When P is repaired a recovery algorithm rolls back T; to its INIT
state before it is restarted.

Successful execution means that T has received all necessary resources and its computations
have completed. All actions have been recorded in the log and Tj is ready to commit. A successful
execution moves Tj to an intermediate wait state (W). In the wait state T; has waived its right to

unilaterally abort. From the wait state, depending on the outcome of the commit protocol, T; enters

20 August 86

the commit state-(C) or is aborted. (Aborting a sub-transaction rolls it back to the initial state.) In the
commit state locks on resources are released and the actions of T; are made visible to other
transactions.

Note that there is no transition out of the commit state. A transaction that is Eommitted can
never be aborted. This must remain true even when failures occur. Assuring that failures cannot
cause state transitions is easily done by recording state changes in the log. Upon recovery,
examination of the log determines the state of each sub-transaction at the time of the failure. The
transitions of sub-transactions to either the abort or commit state must be coordinated by the commit
protocol, so that either all sub-transactions commit or all abort. We first discuss the canonical commit
protocol: the centralized two-phase commit. Then we discuss its variants.

2.2.1 Two-phase Commit

The canonical commit protocol is the two-phase commit with centralized coordinator. In this
algorithm one node is designated coordinator and the other participating nodes are slaves. For
simplicity we assume that the coordinator is 1ocﬁted at the originating site of the transaction. The
coordinator for transaction T does the following.

Commit Coordinator

® Phase 1. Broadcast an EXEC message to each sub-transaction of T. Write WAIT to the log and wait
for a reply from each sub-transaction. (Each sub-transaction will send a reply only after it has
completed its part of the transaction and written the appropriate UNDO-REDO log to stable
storage.)

@ Phase 2. If any slave sends a negative reply (NOK) or a timeout expires, then write ABORT in the
log and broadcast ABORT to the slaves. This will cause the slaves to undo the transaction. Else if all
the slaves respond positively (OK) then write a COMMIT entry to the log and broadcast a COMMIT
message. This terminates the protocol for the coordinator.

A slave in the protocol does the following.

Slave:

21 August 86

® Phase 1. Wait for an EXEC message from the coordinator. If the sub-transaction éompletes
successfully then write WAIT in the log and send an OK message to the commit coordinator. If
unsuccessful, write ABORT to the log and send a NOK message to the coordinator. An abort
terminates the protocol for the slave.

@ Phase 2. Wait for the commit decision from the coordinator. If the verdict is ABORT then undo the
transaction, write ABORT to the log and release all locks. If the verdict is COMMIT then write
COMMIT to the log and release locks. This terminates the protocol for the slave.

Figure 7 shows the state diagrams for the coordinator and the slave protocol [Skeen82]. The label on
each arc describes the transition. The top part of the label is the event(s) that triggers the transition;
the bottom part is the message(s) that is sent out once the transition occurs. An asterisk means that a

message must be received from all the slaves or sent to all the slaves.

EXEC
go EXEC NOK

EXEC * OK
OK * _

NOK, timeout

COMMIT ABORT
COMMIT *
ABORT *
Coordinator Slave

Figure 7. Centralized two-phase commit.

22 August 86

When a slave fails, it remains in its last state until the recovery. If the coordinator is in the W
state, it can abort the transaction when it realizes that a node is not responding. If the coordinator is
in the C state (i.e., the slave failed after it sent out the OK message), the transaction remains
committed. When the slave recovers, it must establish communication with the coordinator to
discover the outcome of the transaction. Fortunately, there can be no conflict between the state of the
slave after the crash and the instructions received from the coordinator. If the coordinator says
“Commit”, then the slave must have responded OK before the crash and therefore is ready to commit
its sub-transaction. If the coordinator says “Abort”, then the slave could not have been in the C state,
so it can still rollback the sub-transaction.

A failure of the coordinator, unlike that of the slave, may postpone the commit or abort
decision until the failure is repaired. This can degrade system availability as the unfinished
transaction T may interfere with the processing of other transactions because T holds resources that
are needed by the other transactions. To illustrate, consider a transaction T which is executing at
nodes A, B and C. Let node A be the coordinator for the commit protocol. Assume that T is in the
second phase of the commit protocol; nodes B and C have sent their replies to A. Assume that node C
voted ‘OK’. The coordinator collects the replies and sends a commit (or abort) message to node B and
then crashes. Node B receives the message from A, performs the indicated action and then crashes.
Node C, the sole operational site, cannot safely terminate the commit protocol. If either node A or B
aborted the transaction then C should abort, otherwise C should commit T. Because C does not know
how nodes A and B voted, it cannot determine the appropriate action. The successful termination of T
at node C depends on the repair of either A or B. Only then can C determine whether or not to commit
T. A protocol which cannot be terminated successfully until failures are repaired is called blocking.
Conversely, a protocol that can always be terminated, as long as the number of failures is finite, is
termed non-blocking [Skeen82]. A non-blocking protocol will be studied in section 2.2.2.

The protocol we have described belongs to a group of two-phase commit protocols where one
node is designated coordinator and the decision to commit is centralized. Other versions of two-phase

commit exist within this group and are distinguished by their communication topologies. The class of

23 August 86

hierarchical commit protocols is obtained by generalizing the communication structure of the
centralized version to a full tree. (The communication structure of the centralized commit protocol
forms a tree of one level.) A single designated coordinator is at the root aﬁd messages flow along the
links of the tree. The coordinator broadcasts to the slaves by sending a message to its immediate
descendants. Each descendant similarly relays the message to nodes in its sub-tree. A leaf node sends
its response to its parent. An internal node in the communication tree collects responses from its
descendants and, based on these responses, sends a single message to its immediate ancestor.

A degenerate case of the hierarchical class is whére each node has one parent and at most one
child. In this case the communication topology is a simple linear chain. A phase in a linear commit
protocol consists of a message propagating from one end of the chain to the other. The role of the
coordinator alternates between the two nodes at the ends of the chain.

The centralized coordinator commit protocols are similar in that the number of messages
needed to complete the protocol in the absence of failures is a linear function of the number of
participating sites [Skeen82]. (The linear protocol uses the least number of messages.) The number of
end to end message delays, however, varies greatly and is related to the depth of the communication
tree. The centralized version has a shallow tree (one level) while the linear protocol forms a tree with
as many levels as there are participating nodes. The number of end to end delays is a measure of the
degree of parallelism of a protocol. In the centralized version nodes process and vote on a transaction
in parallel. In the linear protocol sites process the transaction sequentially. Increased parallelism
means that a transaction can be completed more quickly. Fast.er commit protocols are less likely to
experience a failure before a transaction is committed.

The centralized coordinator may represent a potential bottleneck in the protocol. A heavily
loaded coordinator might unnecessarily delay the termination of the protocol if it cannot process
response messages as quickly as they arrive. Distributing the role of the coordinator is one way to -

eliminate the bottleneck. This leads us to the decentralized two-phase commit protocol:

24 August 86

® Phase 1. The originating site spawns the necessary subtransactions as before. When a cohort
finishes its subtransaction it broadcasts its reply'(OK, NOK) not just to the originating site but to all
the other participating istes.
® Phase 2. Each site waits until it receives replies from all cohorts and then it appropriately commits
or aborts.
Note that there is no central decision maker; each node independently commits or aborts the
transaction based on the votes received from the cohorts. In the absence of failures all nodes will
receive the same set of messages and make the same decision. However, if there are failures or
timeouts, the participants cannot make unilateral decisions like the centralized coordinator did.
Instead, each cohort must delay its decision until it gets all missing messages. If a message is missing,
a cohort can request it from any node that has already received it.
2.2.2 Three-phase Commit

The three-phase commit protocol is the simplest non-blocking protocol. It is very similar to
the two-phase commit, differing by an extra round of message passing. The states and transitions are
shown in figure 8. |
Coordinator:
Phase 1. Is the same.
Phase 2. If any slave replies to abort the transaction or failed before replying, the c;)ordinator sends
ABORT messages. Otherwise the coordinator broadcasts a PREPARE message directing the slaves
to enter a committable state P. The slaves send an acknowledgement to the coordinator. (In two-
phase commit the nodes moved directly to commit the transaction.)
Phase 3. When the coordinator has received acknowledgements from all the slaves, it sends a
COMMIT message to the nodes. The slaves commit the transaction.
Slave:

Phase 1. is the same.

25 August 86

@ EXEC
go EXEC NOK
EXEC * 0K
OK * u
N SO— PREPARE ABORT
PREPARE * B
ACK
ACK * COMMIT
COMMIT *
Coordinator Slave

Figure 8. Three-phase commit

Phase 2. If the coordinator sends a PREPARE message then move to state P and send an
acknowledgement (ACK) to the coordinator. Else if the coordinator sends an ABORT message, then
abort the sub-transaction.
Phase 3. When the coordinator sends a COMMIT message enter the commit state (C) and commit the
sub-transaction.

The algorithm can be altered to produce the hierarchical, linear and fully distributed versions

of three-phase commit. Note that the extra phase of this protocol raises the cost of using it. Both the

26 August 86

total number of messages needed to commit and the number of end to end message delays are
increased. The extra cost does buy us something, namely the non-blocking property. (Recall that a
non-blocking protocol can always be terminated as long as the number of failures is finite.) We now
discuss how a termination protocol takes advantage of the non-blocking property in order to safely
complete a transaction after the coordinator node has failed.

2.3 Termination

A termination protocol is an algorithm that is invoked to recover from the failure of the
coordinator node during the commit protocol. The purpose of the termination protocol is to safely
terminate, by either committing or aborting, unfinished transactions at active slaves. (An active node
is one that has never experienced a failure for the duration of the transaction.) The success of a
termination protocol depends on whether the commit protocol is a non-blocking one. As shown
previously, terminating a transaction under two-phase commit is not always possible. Under three-
phase commit however, active slaves can kalways terminate a transaction. Here is why.

Consider the state of a transaction T as represented by the log information at the active nodes
after some of the participating nodes, including the coordinator, have failed. Clearly, if any one of the
active nodes has committed T then it is safe for the other active nodes to commit T. Similarly if any
one of the active nodes has aborted T then it is safe for the other nodes to abort T. Likewise, if any one
node is in the wait state W then it is safe for the nodes to abort T. This follows from the fact that all
nodes must enter the prepared state P before any one node can commit the transaction. The fact that
a node is in state W means that the transaction could not have been committed by any node and
therefore can be safely aborted. Finally, if one of the nodes is in the prepared state P then T can be
safely committed. This follows from the fact that a node enters state P only if none of the nodes voted
to abort the transaction. The fact that a node is in state P means that all of the nodes had previously
entered state W. Thus the transaction was not aborted by any of the nodes.

We can now design a termination protocol with the following guidelines. The protocol must
use or continue the three-phase commit in order to protect against future failures. Here is an outline

of a centralized version of the termination protocol.

27 August 86

Central site termination:

@ Step 1. Elect a new coordinator for T from among the active nodes. Electing a unique coordinator in
a distributed system is the subject of [Garc82a].

o Step 2. The new coordinator polls the active nodes to learn what state T is in at each of the nodes.

@ Step 3. If any of the nodes committed T, send COMMIT messages to the active nodes. If any node
has aborted, send ABORT messages. In either case the protocol ends.

® Step 4. Otherwise, if a P state is observed, send PREPARE messages to the active nodes that are
not in state P, and continue the three-phase commit protocol aé a coordinator in the wait (W) state.
Similarly, if no P state is observed, then send ABORT messages to the active nodes.

If the new coordinator fails before T is completed then the termination protocol is invoked
again. This can be repeated as long as there exist active nodes for T. On recovery a failed node must
consult an active node to learn the outcome of T. Moreover, a failed node is not allowed to participate
in the termination protocol if it recovers before the protocol has finished. The information that a
failed node brings to the protocol is outdated and should not be used. This means that if all the
participating nodes for T fail before the transaction has completed, then the system must wait until
all the nodes recover before making a termination decision. Only then can the system determine the
node or nodes which failed last and thus have the most recent state of the termination protocol. Also
note that the worst case delay for successful termination involves n-1 sequential coordinator failures
where n is the number of participating nodes.

2.4 Partial Rollback

So far, the recovery strategy used to handle an aborted transaction T has been to completely
UNDO all sub-transactions of T. This can be an expensive procedure especially if T has already
consumed a lot of computer resources. A goal of recovery management is to minimize the amount of
work that has to be undone and consequently redone.

Immediate savings on recovery costs can be realized from the recognition that complete
rollback of a transaction might be unnecessary if one or few of the sub-transactions initiated the

abort. Consider for example the transaction shown in figure 5. Let us say that sub-transaction T4 was

28 August 86

unsuccessful and voted to abort. The obvious solution is to abort only T4 and then restart it. The other
cohorts remain in the wait state until the outcome of T4 is known. If Ty, after several tries, is unable
to complete successfully then the entire transaction is aborted and undone. This technique of aborting
and restarting only some of the sub-transactions is known as partial rollback.

Partial rollback requires that the system maintain a record of the communication between
sub-transactions. On restart the system retransmits the appropriate messages to the restarted sub-
transaction. In the example the messages from T3 would be resent to T4.

Sometimes the rollback and restart of a failed sub-transaction can cause the rollback and
restart of successful ones. This phenomenon is called cascading rollbacks. Again consider figure 5 and
let us say that sub-transaction T3 was unsuccessful. The restart of T3 requires the restart of sub-
transactions that either were spawned by T3 or received messages from Tg. This includes T4 and Ts.

A number of other techniques are closely related to partial rollback. For example, a
checkpoint saves an intermediate state of a transaction so that processing can be resumed at that
point. In our terminology, a sub-transaction (or a transaction) can be further decomposed into a
sequence of smaller sub-transactions, where the end of a sub-transaction is a checkpoint. Recovery
requires only that the transaction be backed up to the latest checkpoint. For example, an interactive
transaction could establish checkpoints after each user message is processed. If bad input is
discovered it would be sufficient to back up to the last checkpoint and re-request the last input. This is
clearly preferable to undoing the entire transaction.

Similarly, in a nested transaction mechanism, transactions are decomposed into sub-
transactions, but sub-transactions are restricted in the ways they can communicate [Moss81]. These
limitations make it easier to decide what sub-transactions must be aborted.

We conclude this section by mentioning one more way to increase reliability without data
replication. The method is primarily a hardware technique which uses dual-ported disks. A dual-
ported disk is a storage device that can be controlled by either of two processors. The idea is that if the
primary processor fails then the backup processor will start up and take control of the storage device.

The data remains available and processing continues while the primary processor is repaired. For

29 - August 86

this method to work, copies of the transaction programs and the transaction descriptors must be kept
on stable storage and be available to the backup processor. The backup recovers by loading the
appropriate programs and scanning the log to build the lock table and determine the states of
transactions. Dual-ported disks are used in this fashion in several commercial systems, most notably
in one built by Tandem [HC85].

Of course, reliability can also be improved by making copies of the data. This is the subject of

the next section.

30 August 86

3. Daté Replication

Failures in an unreplicated distributed database cause some data items to be unavailable to
transactions. Throughput is decreased because transactions must wait until failures are repaired.
Replicating data is the obvious way to increase availability and throughput. If a transaction is unable _
to access X at one node, it may be able to access it at another site.

Our model for a replicated database is as follows. Let F be some set of data items which are
replicated in the same way. There exist anywhere from 1 to n copies of F where n is the number of
nodes in the network. Each copy of F is stored at a different node. The set of all copies of F is called a
fragment. Again the model of the distributed system is a collection of fail-stop computing nodes
connected by a reliable, non-partitionable communication network. As the next section will show,
more than just data replication is needed to tolerate the actions of fail-insane nodes.

Though data replication increases availability, it also creates some new problems for
maintaining correctness. Chief among these is concurrency control. Access to a data item is no longer
controlled exclusively by one node but rather is distributed across every node in the fragment.
Concurrency control is now a distributed problem, the solution to which requires the cooperation of
several sites. This cooperation leads to increased costs as the communication among participating
nodes multiplies.

A second problem concerns ensuring that all nodes eventually receive all updates.
Correctness requires that every copy of an data item contain the same value. Replication, however,
allows transactions to continue to update an item even when some of the nodes in the fragment are
down. Recovery management must provide a way for a recovering node to receive these “missed
updates”.

This section will discuss solutions to these and other problems. The goal is to achieve atomic
execution of transactions and, at the same time, to take full advantage of the availability gained by
data replication. We begin by examining transactions which operate on a single fragment. Later, we

extend the discussion to include transactions which operate on multiple fragments.

31 August 86

3.1 Simple Strategies

One solution for concurrency control is to treat each copy of an item X, in a fragment F, as an
independent data item. To read or write X a transaction must have locks on every copy of X. This is
accomplished by spawning sub-transactions to execute at each node that stores a copy of X. The sub-
transactions communicate with the local lock managers as described in section 2. Note that this
solution simply multiplies the number of items that a transaction must read or write. As in the
unreplicated case there is the strict requirement that all necessary items are accessible in order for a
transaction to proceed. As before, distributed deadlocks may occur because transactions compete for
shared resources. We assume that local lock managers cooperate to detect and resolve global
deadlocks.

One benefit to this approach is that we can use the algorithms of the unreplicated case to solve
the problems of distributed commit and crash recovery. Also, like the unreplicated case, a single node
failure can render data unavailable. This is because a transaction must lock all copies in the
fragment; one unavailable copy makes the entire fragment unavailable. Clearly this solution does not
take advantage of data replication. Moreover costs are increased by the extra copies of the data and
the additional sub-transactions needed to access the copies. Thus cost, not reliability has increased.

A somewhat better solution to the concurrency control problem is to have readers lock only a
single copy of X and writers lock all copies. Simultaneous read and write operations will conflict at
one node in the fragment. The lock manager at that node will serialize the conflicting transactions.
Simultaneous writes will conflict at every node in the fragment. But only one transaction at a time
can hold the locks for all copies of X. Thus write-write conflicts are also serialized. This approach also
allows the use of mechanisms from the unreplicated case.

This method represents an improvement in data availability for read operations. Item X is
available to a reader as long as one node in the fragment is active. Write operations, which must lock

all copies, are still blocked by the failure of a single node in the fragment.

32 August 86

3.2 ‘Primary Copy

There is another method to solve the concurrency control problem [Ston79]. Let one copy of a
fragment F be designated the primary copy. The node that stores the primary copy is called the
primary site. Let the other copies of F be called backup copies. Backup copies are stored at backup
sites. A main feature of a primary copy solution is that transactions request write locks only at the
primary site. Thus if there are n nodes in a fragment, the probability that a transaction blocks for a
write lock because of node failure is exactly the probability that the primary has failed. This is likely
to be far less than the probability that any node in the fragment has failed. This represents an
improvement in availability over the previous strategy where the failure of any node would render
the fragment unavailable.

We present two variations of the primary copy solution to concurrency control. They are
distinguished primarily by how read locks are obtained and how the commit protocol is implemented.
In the first, read locks are requested at the primary site and the data is also read at the primary site.
In the second, transactions lock and read data at backup sites. Of course the failure of the primary
site is a major problem because it renders the entire fragment unavailable. Initially, we assume that
the primary copy is permanently fixed. Later in this section we consider methods to move the site of
the primary copy from a failed node to one that is active.

3.2.1 Read Locks at Primary

In our first version of the primary copy scheme, lock management for a fragment is performed
at the primary site. Transactions may execute at any node in the fragment but requests for read and
write locks are sent to the primary site for approval. Moreover, the reading and writing of data
values is performed at the primary site. Because lock management is centralized, all read-write and
write-write conflicts will occur at the primary site and will be resolved by the lock manager to
produce a serializable schedule.

When a transaction is ready to commit, it notifies the primary site which commits the
updates to the database. At this moment the updates are reflected only in the primary copy of the

fragment. The primary site, not the transaction, is responsible for ensuring that the updates are

33 August 86

propagated to the backup copies. It accomplishes this simply by sending messages to the backup sites
with instructions to install the new values for the data items. A backup node installs the updates in
an atomic fashion, in the same sequence they were generated.

The failure of a backup node is not difficult to handle as it is not the locus of lock activity.
When a backup node recovers it must gather the updates to the database which it missed while it was
failed. Sequence numbers are useful for accomplishing this. Since transactions are committed only at
the primary site, we can assign a unique sequence number to each transaction that commits. When a
backup node recovers it tells the pfimary node the sequence number of the last transaction recorded
before the failure and requests the updates of all committed transactions with a higher sequence
number.

There are a number of advantages to the primary copy strategy. One advantage is that it
produces a single known sequence of updates to the database. Also the overhead of locking is reduced
because transactions lock a single copy, not multiple copies. Another benefit to centralized locking is
that distributed deadlocks are less likely. (Inter-fragment deadlocks between nodes can still occur,
but deadlocks involving one fragment can all be detected at the primary node.) A disadvantage of
centralized locking is that it places a large share of the workload at the primary site.

As we have described this strategy, read-only transactions must also request locks at the
primary site. However, it is also possible for read-only transactions to execute entirely within the
backup node. The idea is to perform all the writes of each update transaction as an atomic operation.
This can be achieved with local locks (different from those at the primary site) in the same way a
centralized database system ensures that (local) transactions are atomic. It is then possible for the
read-only transaction to read local locks to obtain a consistent, though possibly out-of-date, view of
the fragment. (For each update transaction, its changes to the fragment will either be fully reflected
in the view, or they will be entirely invisible.)

3.2.2 Read Locks at all Nodes
Our gecond version of primary copy concurrency control is similar to the simple strategy

discussed in section 3.1. Transactions are allowed to set read locks and read data at any node; write

34 August 86

locks are requested at “all copies”. However, we now interpret “all copies” as all available copies, i.e.,
copies at functioning nodes. This of course improves availability: a writing transaction can complete
even when nodes are down. However, it complicates data management because the set of nodes that
have locks is changing dynamically.

To help cope with the changes we refer to a primary node. (A version of this strategy that does
not use a primary site is discussed in section 3.3.) The main function of this primary site is to keep a
list U that records the active nodes in the system. (We still assume that the primary is fixed.) We also
use the primary site for backup recovery. That is, the primary will be in charge of giving a recovering
node the ordered list of updates it missed.

When U is not changing, the protocol is straightforward. A transaction can get read locks and
read data at any node in U. To update, the transaction requests write locks at and updates all nodes in
U, including of course the primary. All read-write and write-write conflicts are hence avoided.

However, when nodes fail or come up, the primary changes U and complications can arise. For
example, suppose that a transaction T requests read locks at a node P1, but then the node fails. When
the primary removes P1 from U, other transactions will fail to request write locks at P1. Hence a
conflict between T and the subsequent transactions may not be detected.

As another example of what can go wrong, consider the recovery of a node P2. It requests the
missed transactions from the primary. The primary returns say Ty, Tg, ..., Tn and adds P2 to U. At
the same time a transaction T + 1 is in the process of committing. Since it has the old U set, it does not
write at P2. Transaction Ty, + 1 does write at the primary, but this occurs after Ty, Ty, ..., Ty were sent
to P2. Th1'15 P2 installs the updates of Ty, Tg, ..., T, but misses Ty + 1.

These and other problems can be avoided by carefully committing transactions. This works as
follows. When a transaction T starts at node P1, it requests a copy of U from the primary site. Call the
copy U’. While T executes, U may change and U’ my become out-of-date. Thus, when T goes to lock at
one of the U’ sites, that site may be down. In this case, T can either abort or can request a new copy of

the U set. (Note that when T starts, U’ does not necessarily have to be obtained from the primary. For

38 August 86

instance T could use the U’ list of the last transaction that executed at P1. In the infrequent case that
U’ is out-of-date, T will abort or get the latest U value from the primary.)

When T is ready to finish, it initiates its commit protocol. For simplicity we assume that this
protocol is two-phase and coordinated by P1. (It could also be three-phase and/or distributed.) Node
P1 sends phase one messages to all sites involved with T, i.e., all the sites in U’. (Unless T was a read-
only transaction, it requested write locks at all U’ sites.) When the primary site receives this
message, it saves T’s updates and acknowledges by sending U back to P1.

If P1 gets a U set that is ﬂifferent than U’, then T is aborted. (As an alternative, T could be
salvaged by requesting read and/or write locks from nodes in U - U’. We do not discuss this here.) If
U’ matches U and P1 gets positive acknowledgements from all sites involved, then T can be
committed. This is because any node P not in U will see T when it recovers. If P recovers after the
primary received and acknowledged T, then the primary will inform P of T’s updates. If P recovered
before the primary received T, then P must have been in the U set sent to P1, and hence is getting Ts
update directly from P1 through the commit protocol. So, since it is safe to commit T, P1 sends phase
two commit messages to all participants.

When a node P recovers from a failure, it first disables all read and write lock requests. As
discussed earlier, the missing updates are requested from the primary. The primary sends missed
committed transactions Ty, Tg, ..., T, as well as the iaending transactions Ty 41, <.y Trn in the ‘process
of committing. Node P installs Ty, Tg, ..., Ty in the database, and sets write locks for all the objects
updated by Tp41, «-» Tm . Since these transactions have not committed yet, P holds off their
installation until the primary site later informs it of their outcome. At this point, P is open for
business again and can start issuing read and write locks to new transactions.

When a node fails, obviously, it does not have to do anything. However, the primary must
remove the node from the U list. (While the node is down and in the U list, transactions cannot
complete.) The primary site can detect failures by periodically polling the backup sites or by requiring
backups to send “I am alive” messages at fixed intervals. No response to a polling action or the

omission of a message would indicate that a node has failed.

36 August 86

In this scheme, read-only transactions always see a consistent view of the data because
updates are installed using local locks. Moreover, the view is up-to-date because updates are installed
when a transaction commits.

We have presented two primary site mechanisms. The first centralized both concurrency
control and crash recovery; the second only centralized crash recovery. The second mechanism
distributes read locking to all nodes. This makes reading easier, but as we have seen, also makes
writing harder and crash recovery more complicated. It is also worth pointing out that there are a
number of variations and possible performance improvements of these two strategies.

3.2.3 Electing a new Primary

Up to now we have assumed that the primary site is fixed for all time. We now discuss what
has to be done to select a new primary when the old one fails. When a primary node fails, all update
activity ceases. Let us say that at this time the committed transactions are Ty, Tg, ..., Tn and the
pending transactions are Tp 41, ..., Tm (i.€., these transactions have blocked during their commit). In
recovering the system to a new configuration, two problems must be solved. First a new site must be
chosen to be the primary site. And seéond, we must ensure that the new primary site as well as the
active backups have seen the effects of all committed transactions, namely Ty, Té, ..., Ty, and are
aware of all pending transactions Ty, 4 1, «.., Tm. The first problem can be solved by holding an election.
Elections in a distributed system are discussed in [Garc82a). The second problem requires that the
effects of all committed transactions are permanent. The following example illustrates the problem of
impermanent updates.

Let F be a fragment containing three copies of X, one copy being stored at each of nodes P1,
P2 and P3. Initially P1 is the primary site, both P2 and P3 are failed and transaction T1 updates X
at P1. Then P1 crashes and for some time all copies of X are unavailable. Later P2 and P3 recover,
and P2 becomes the new primary site. Since P1 is still failed, P2 and P3 do not learn of the update by
T1. Now T2 updates the copies of X at P2 and P3. When P1 recovers, it updates its copy of X to agree
with the value at P2 and P3. The net result is that the update done by T1 is not reflected in the state

of the database. T'1 successfully committed but its actions were not permanent.

37 August 86

One solution to this problem is to require that the new primary site be a fully recovered node.
By definition, a fully recovered node has seen all the update activity and therefore has the current
state of the database. If there is no fully recovered node, then we must wait until all nodes in the
fragment have been repaired. When this is done the nodes consult each other to determine which node
was the last primary site and thus has the latest database state [Skeen83]. (In the exémple above,
neither P2 nor P3 can recover since there is no primary site from which to gain the missed updates.
Both must wait until P1 recovers before processing T2.)

Another way to solve the problem of impermanent updates is to introduce a new commit
protocol, the majority commit. To implement a majority commit we assign votes to each node in the
fragment. As before, the commit coordinator will commit a transaction only if all participating sites
agree to commit, with the additional proviso that the participating sites hold a majority of votes for
the fragment. For example, if there are five copies of X and each node in the fragment has one vote
then at least three nodes in the fragment must be active in order for a transaction to update X. Two
nodes do not hold a majority of the votes and therefore are not allowed to update X by themselves.

As nodes fail and recover and new majority groups are formed, the majority commit assures
that at least one node from the old majority group will be a member of the new majority. The fact that
successive majority groups overlap means that updates are propagated from the old majority to the
nodes in the new majority. Thus all updates are “remembered” and permanent. In our previous
example, if P1, P2 and P3 have a vote each, P1 will be unable to process T1 if P2 and P3 are down. If
instead P1 and P2 are up, then T1 can execute. In this case, P2 will have a record of T1. After P1
fails, P2 and P3 can elect a new primary, since this primary, say P3, will get T1 from P2 before it
starts processing new transactions.

An advantage of using the majority commit protocol over the previous method is that should
all the nodes in the fragment fail we only have to wait for a majority of them to recover before
processing can resume. The disadvantage is that a majority must exist in order to commit a

transaction. The first method allows us to commit a transaction even when only one node is active.

38 August 86

On recovery the active backups plus the new primary must contain at least one fully
recovered node or must have a majority of fragment votes before they can fully recover and resume
processing. If the old primary failed during a commit protocol, then the new primary node initiates
the termination protocol to finish pending transactions and create a new lock table (see section 2.3).
When the old primary recovers, it does so as a backup copy. Since it is no longer the center of lock
activity, the old lock table can be safely forgotten. Updates that occurred during the failure must be
gotten from the new primary node.

3.3 Available Copies

Qur first primary site algorithm centralized concurrency control and recovery. The second
only centralized recovery management. If we distribute both concurrency and recovery control we
arrive at the so-called Available Copies mechanism [Good83, BG83, BG85]. As before, read locks are
requested at any available node, write locks at all available nodes. The difference is that the functions
of the primary site ére distributed.

In particular, the U set is now stored at all operational sites. When a node wishes to add itself
to U, it runs a special transaction that updates all U sets as an atomic operation (i.e., it uses a commit
protocol for this). This ensures that all copies of the U set are identical. When a node P fails, one of the
remaining nodes runs a transaction to delete P from U atomically. Clearly, P is not involved in
committing this transaction, even though it is a member of the original U. (If more than one node
fails, a single transaction has to be run to update U.) Note that if the commit protocol to update U can
block, then U and the entire system could be unavailable for an indefinite amount of time. When
transactions commit, they utilize the same protocol described for the primary site version, except that
now they can get U from any site.

When a node P recovers from a failure, there is no primary site to help, but this does not
represent a problem. P can request the missed updates from any active node. If this node sends P all
pending and committed updates up to the point that P is added to U, then P will not miss any
updates. (Note that different nodes can observe different commit orders for two transactions T1 and

T2. This can only happen when T1 and T2 do not conflict with one another. Hence P can install them

39 August 86

in any relative order.) With this approach, any active node can help in recovery, so all active nodes
must remember the updates they performed and their order.

If a recovering node finds no active node, then it must wait until all nodes are operational (or
until a majority is operational, if a majority commit was used). As before, the group of recovering
nodes must propagate to each other all committed (and pending) transactions before becoming active.

In summary, we have presented a number of strategies for managing replicated data within a
fragment. (There are of course still other options and variations not discussed here.) Given the
choices, selecting one approach for a given application or system is difficult. Each mechanism we have
described has its advantages and disadvantages, i.e., there is no one that is best. The decision between
centralizing and distributing the various functions is also hard. Distribution does not necessarily
make the data more available (see section 3.1); centralization does not necessarily imply low
availability (the primary site can move, as discussed in section 3.2.3). About the only general
comment we can make is that as the protocols yield higher availability, they become more complex.
3.4 Multiple Fragments

So far we have discussed transactions that update a single fragment of data. To expand the
techniques to handle multiple fragments the following two points must be considered.

1. Transactions must follow the concurrency control and crash recovery strategies for each fragment.
Whether locking all copies or only the primary copy, the techniques for a single fragment must be
applied individually to each fragment.

2. The commit protocols for each fragment must be integrated. When using the majority commit, a
majority of each fragment updated by the transaction must agree to commit in order for the
transaction to commit. This assures that updates are permanent in each fragment.

Two interesting problems arise when considering multiple fragments: the first concerns
update transactions and the second read-only transactions. In the single fragment environment, an
update transaction T that requested réad locks at a node P1 would also request write locks at P1.
When there are several fragments, T can request read locks at P1 and no write locks (it updates a

fragment not stored at P1). We could now be tempted to exclude P1 from T’s commit protocol since it

40 | August 86

has nothing to install in its database. The following example shows that this should not be done
[BG83, BG85, Good83].

Consider a system with nodes P1, P2, P3 and P4. Nodes P1 and P2 hold a copy of fragment
F1; P3 and P4 hold F2. Using the available copies algorithm (section 3.3), a transaction T1 read locks
and reads F1 at P1. At the same time, T2 read locks and reads F2 at node P3. Now both P1 and P3
fail. Next, T1 decides to write F2 and T2 wishes to update F1. Transaction T1 updates and commits
F2 at the only available site P4, and T2 commits its changes to F1 at P2. In a serial execution, this
could have never occurred: either T1 would have read the output of T2 or vice versa.

This problem can be corrected by requiring a transaction like T to involve all sites that
participated, including read sites, in the commit. In our example, T1 would send phase one messages
to P1 (where it is holding read locks) and P4 (where it is writing). When T1 fails to receive an
acknowledgment from P1, it realizes that its read locks there evaporated. Thus, there is no longer a
guarantee that the data from F1 is current. Hence, T1 aborts. Transaction T2 would run into a
similar problem and abort also.

The second problem is that the execution of multiple-fragment read-only transactions may
lead to non-serializable schedules under some of the concurrency control mechanisms we presented.
However, the schedules will be weakly serializable [GW82]. An execution is weakly serializable if the
schedule of the update transactions (ignoring the actions of the read-only transactions) is serializable
and if every read-only transaction obtains a consistent view of the database (one that satisfies all
consistency constraints.) We illustrate this with an example (see figure 9).

Consider a system with two nodes P1 and P2. An item A, member of one fragment, is
replicated at both nodes. Similarly, an item B, member of a different fragment, is located at both
nodes. The fragment for A is managed with P1 as a primary site (section 3.2.1). The B fragment is
managed in the same way by P2. Let T1 be a transaction that executes at node P1 to update item A.
Similarly, let T2 be a transaction that executes at P2 to update item B. T1 and T2 execute
concurrently without conflict and are committed at roughly the same time. Because T1 and T2

execute independently and without conflict, there is no mechanism to force the schedule at P1 to be

41 August 86

NODE P1 NODE P2

0 ITEM A 0
0 ITEM B 0

T1adds 5to A T2adds 3to B
5 ITEM A 0

time
0 ITEM B 3
QlreadsA=5,B=0 Q2readsA=0,B=3

T2 reaches P1 T1 reaches P2
5 ITEM A 5
Y 3 ITEM B 3

Figure 9. Weak serializability

the same as that at P2. Specifically, T1 could commit at P1 before T2 and at node P2, T2 could
commit before T1. The central boxes show the database state after this occurs. At this time, identical
queries Q1 and Q2 are submitted at sites P1 and P2 respectively. Since Q1 and Q2 are read-only
transactions, they are allowed to read their data locally. Q1 sees the effects of T1 and not T2 while Q2
sees the effects of T2 and not T1. Both Q1 and Q2 obtain consistent and correct views of the database.

However these views could not have resulted from a single serializable schedule.

42 August 86

Weakly serializable schedules arise when read-only transactions are allowed to read
consistent but possibly out-of-date data from a fragment. In the mechanisms discussed here, it oceurs
with a static primary that simply propagates updates to the backups (as in the example above), and
with a dynamic primary that uses a majority commit (updates may be delayed to copies that are
active but were not used to form a majority). Weak serializability also arises in other mechanisms

[Chan&5].

43 August 86

4, Full Repﬁcaﬁon

To this point we have considered reliability under a limited failure model, namely fail-stop
nodes. These nodes fail in a clearly defined way, thereby simplifying the techniques needed to handle
the failures. We now consider data processing in a distributed computing system compesed of
processing nodes that can fail in arbitrary ways, i.e., fail-insane nodes. Achieving reliability in a fail-
insane environment requires techniques that are radically different from those presented in sections
2 and 3. We will first discuss the general solution, usually called n-modular redundancy. We then
discuss how this‘ solution can be applied to achieve a reliable database system. The communication
network is assumed to be reliable and non-partitionable.

Clearly, tolerating fail-insane nodes is impossible in a system where the database is
unreplicated or centralized. A single insane node could destroy its database; the damage would be
irreparable. Neither can we allow one node to control all copies of the database, or even of a single
item. What is needed to to tolerate insane no&es is complete data and transaction replication or n-
modular redundancy.

The basic strategy of n-modular redundancy is shown in figure 10. N independent and
identical tasks execute in parallel and send their outputs to one node called the voter. The voter
selects the output that was produced by a majority of the tasks. N-modular redundancy requires
2m + 1 copies or tasks in order to tolerate m insane failures. With m failures the voter can still detect
the correct output from the majority m + 1 good nodes.

Task independence is an important aspect of n-modular redundancy. Each node has all the
resources necessary to complete the assigned task. Both hardware and software are duplicated at
every site. In the database world, this means that each node has a copy of the entire dgtabase.
Resources are not shared because an insane node could gain control of a resource and refuse to
relinquish it, thereby denying the resource to good nodes. Another important requirement is that all
nodes receive the same input. Inputs and outputs and the associated problems are discussed in section

4.1.

44 August 86

INPUT

VOTER

OUTPUT

Figure 10. N-modular redundancy

N-modular redundancy has been used to design and build very reliable computing engines
[Siew82]. More recently it has been used at the application level to develop reliable control systems.
For example, the computers of the space shuttle use n-modular redundancy at both the hardware and
the application levels [SG84]. This discussion concentrates on using n-modular redundancy to build
reliable database systems. Note that n-modular redundancy is expensive, so we would expect it to be
used on relatively small databases, e.g., a critical portion of a larger database or possibly a system
directory.

As suggested, n-modular redundancy can be used at several levels. At the circuit level, figure
11, logic gates are duplicated to produce identical circuits which operate in parallel. The outputs are
sent to a voter circuit. At a higher level, the method is applied to each of the main components (i.e.,
processor, memory, storage device) of a computer. A reliable component is built from the set of copies

and a voter, figure 12. A reliable computer can be built using reliable components. Finally at the

45 August 86

Figure 11. Circuit level redundancy

<

P vote H 4| vote M
P M
vote ’
processor memory
disk

Figure 12. Component redundancy

application level, computers themselves are the unit of duplication. Computers operate

46 August 86

independently and in parallel on identical tasks. The outputs are sent to a voter which selects the

majority, figure 13.

Figure 13. Application level redundancy

At which level to implement n-modular redundancy is a design choice influenced by a number
of factors. Some of them are:
@ Size of task output. If the tasks have small inputs and produce relatively small outputs, then a voter
mechanism at the application (software) level could reduce communication overhead and would be
efficient. If, however, tasks produce very large outputs then the voter mechanism would be more
efficiently implemented at the computer or circuit level.
e Application independence. When a machine is built using n-modular redundancy at either the
circuit or computer levels, the result is a reliable computer. No additional mechanisms are needed as
the reliability is built into the hardware. Such a machine is general purpose; it guarantees the same
level of reliability to all applications.
¢ Simplicity. Implementing n-modular redundancy at the circuit or computer levels requires special,
hence more expensive, hardware. By contrast, n-modular redundancy at the application level can be
achieved by using standard off-the-shelf computer components.

As stated earlier, we are interested in building reliable database systems. If we have n-

modular redundancy at the computer level then all our problems are solved. We simply run a

47 August 86

centralized DBMS on the reliable computer. However, since in this paper we are interested inr
distributed data management, we will focus exclusively on application level replication.

Furthermore, many database systems typically run transactions that have short descriptions (e.g., a
relational language statement) and short outputs, and can benefit from this approach. Some of the

distributed data management problems which warrant special attention are:

e Input and output (or voter) nodes. In database applications it is reasonable to consider the

input/output nodes separately from the processing nodes. We will see that input/output nodes require

a different failure model from processing nodes.

® Input agreement. In order for n-modular redundancy to work correctly, all processing nodes must

execute the same transactions in the same order. In other words, execution schedules must be

identical. This is necessary to ensure that a transaction sees the the same database state at each node

and hence produces the same output.

® Recovery. Repairing an insane node enables the system to sustain additional failures at a later

time.

We will now discuss these topics.

4.1 Input and Output Nodes

In many database applications input and output usually occurs at a single node that is
separate and distinct from the processing nodes in the system. For example, in a banking system,
most transactions are submitted by a teller at a personal terminal. The input/output node is now a
critical component and cannot fail insanely. Otherwise it could invalidate the results of the
processing nodes by conveying garbage to the users. An insane input node could submit bogus
transactions.

This problem is easily “solved” by assuming that input/output nodes are always perfect.
However this seems overly restrictive: so far we have required only that m+1 out of 2Zm+1
processing nodes be perfect, yet now we are requiring that all input/output nodes be perfect.

There are basically two ways out of this dilemma. The first is to make the user be the

input/output node. That is, the user could submit his transaction at 2m + 1 different terminals. He

48 August 86

could also directly examine the 2m + 1 results of his transaction and perform the majority operation
himself. This seems unsatisfactory for two reasons: firstly, the burden of failure should be placed on
the system rather than the user. Secondly, users themselves are not always perfect.

The other alternative, and the one we take here, is to relax the failure model for the
input/output nodes. Since an output node performs a very simple function it is easy to see what
failures it could tolerate. It could lose or modify the outputs of some processing nodes as long as the
majority, correct result is not altered. It could also crash giving the user his results later, or not giving
them at all. The crash of an output node is acceptable. When a user fails to get the output, he can
submit a query (directing the output to a different device) to see if his transaction committed and if so,
what the results were.

The function of an input node is to encapsulate the user’s transaction and distribute it to the
processing nodes. We must require that an input node encapsulates a user transaction correctly and
faithfully. It does not alter the transaction nor does it spontaneously generate bogus transactions.
The input node can fail when distributing the transaction to the processing nodes. We will see that
failures during distribution can delay the execution of a transaction but has no effect on database
correctness.

4.2 Input Agreement

Input agreement is the next problem that we consider. Let us study a simple version initially.
Suppose a single input node I at time 0 wishes to broadcast a single transaction T to ém + 1 nodes for
execution. Since we are using the fail-insane model, up to m of these nodes could be insane. In
addition, the input node could also fail. We will only find two outcomes acceptable: either all nodes in
a perfect state execute precisely T, or none of them do. This problem has been called the Byzantine
Agreement (BA) problem. (Incidentally, the name “Byzantine” refers to a military scenario that was
initially used to describe the problem [LSP83].) We will not study the BA algorithm formally or in
detail but rather present the basic idea. We gradually arrive at the BA solution by first examining
some methods that do not work. (After studying this problem, we return to the multiple input node,

multiple transaction case.)

49 August 86

Clearly we cannot rely on input node I alone to distribute transaction T to the processing
nodes. Node I could send T to the first processing node and then fail. Only one of the processing nodes
has received and executed the transaction. Let’s modify the method by adding one level of forwarding.
Now I sends T to all the processing nodes, and each processing node forwards the transaction it
receives to all the other processing nodes. As shown in figure 14 this method also fails to ensure that
all good nodes receive the same value. I could fail after sending T to P1 and P1 could fail after
sending T to only some of the remaining nodes. Thus some of the good nodes received and executed T,

and some did not.

-
.

—P message sent

----- > sender fails

Figure 14. One level forwarding

To solve the problem, we can require th#t nodes like P2 and P3 forward T even when they get
it from other processing nodes. This is what the BA algorithm does (or at least one version of it), but it
also keeps track of the number of times a transaction has been forwarded in order to avoid “infinite
forwarding”. Before we describe how the algorithm limits the number of times a transaction is
forwarded, we must introduce some new assumptions.
® Nodes in the perfect state have accurate and synchronized clocks. Specifically, at any instant the

clocks differ at most v time units. A signal from a very reliable clock can be periodically broadcast (by

50 August 86

radio or a dedicated line to avoid network failures) to synchronize the clocks. Alternatively, a reliable
clock synchronization protocol can be used [LM84, L1.84, HSSD84].
@ The processing time of perfect nodes can be bounded. Given a sequence of code s we can compute the
maximum amount of time t5 that a perfect node will take to execute the code.
® Messages are authenticated. All messages are signed and encoded by senders, in such a way that
the receiver can determine unéquivocally who sent the message and what it contained. A third node
that simply forwards the message cannot alter it in any way. A node may refuse to forward the
message. (Actually Byzantine Agreement is possible without authentication [LSP83]. The resulting
algorithms are less efficient, though. Since authentication is practical and well understood, we will
keep this assumption.)
From these assumptions and the guaranteed delivery time of reliable networks (section 1.4.2), we
derive another:
® There exists a maximum send-receive-forward time A. If perfect node P; sends a message to perfect
Pj at time 0 then by time A, P; has received, and signed the message and forwarded it to another node.
The basic solution works as follows: input node I signs a message containing a descriptor for
transaction T and sends it to the processing nodes at time 0. When a processing node Pj receives a
message it counts the number of signatures on it. If there are s signatures and the clock time is less
than or equal to s-A then P; signs the message and forwards it to all nodes that have not signed it so
far. (Since signatures cannot be forged, the presence of one indicates that the node already received
the message.) If, however, the clock time is greater than s-A then P; ignores the message. Node P;
does this because the message arrived later than expected and thus must have come from an insane
node. Messages from insane nodes are, of course, ignored. The rounds of message passing, one every A
or less time units, continue until at most time (m +2)-A. (The usual BA algorithm stipulates m+1
rounds of forwarding. This would be the case if there were just processing nodes. In our situation the
extra round of forwarding is actually the initial distribution of the transaction by the input node.) By
time (m + 2)-A, either all perfect nodes will have received T, or none will have. Thus at this time, if a

node has received a transaction, it executes.

51 August 86

To see why this algorithm works, let us place ourselves in the situation of the fail-insane
processing nodes, and let us try to subvert the algorithm. If any one of us sends T to a perfect node A
seconds before the end of the algorithm (end is at time (m + 2)-A), the perfect node will have sufficient
time to forward T to all other perfect nodes. So then we must try to send T at the “last minute”, i.e., A
or less seconds before the end. However, we must send T in a valid message. At this stage, a valid
message must have m + 2 signatures, and they must all be from fellow failed nodes. (If a perfect node
is in the list of signers, it would have already correctly distributed T.) Unfortunately, we are at most
m failed processing nodes and one failed input node, so there are not enough to sign.

We have described a synchronous BA protocol; all the correct nodes begin the agreement
protocol at exactly the same time. Recently, Bracha and Toueg [BT85] have described an
asynchronous BA protocol. Because it is asynchronous it is possible that some correct nodes initiate
the protocol and reach agreement while other nodes are not yet aware that the protocol has begun. Of
course, all correct nodes will eventually agree on the same value.

There are many different solutions to Byzantine Agreement, but they all have the following
two characteristics:

e In all algorithms, the worst case delay for reaching agreement is (m +2)-A time units. However
from a practical point of view, this delay is not critical because in most cases (when there are no
failures) agreement can be reached much sooner. That is, the algorithm we sketched above can be
modified so that a node processes a transaction as soon as it receives valid messages from all nodes in
the system [DRS83]. Also note that the worst case delay for reaching agreement is similar to the
worst case delay of the termination protocol for fail-stop nodes presented in section 2.3.

e In all solutions the message traffic is high, for the message received by a processing node from the
input node must somehow be transmitted to all other processing nodes. This represents the essence of
Byzantine Agreement: no single node is trustworthy, so all nodes must collect all information and
make decisions for themselves. Batching several transactions in one message is one way to alleviate
the high message traffic.

We make two observations about Byzantine Agreement:

52 August 86

1. Perfect nodes cannot agree on the identity of the insane nodes. A given node P; may establish with
certainty that some other node P; is insane (because it failed to forward a message). However, Pj may
appear perfect to other nodes, and P; has no foolproof way of convincing these other nodes that P; is
indeed insane.

- 2. Any node can abort a transaction if the abortion is initiated by the transaction itself. This would
occur, for example, when a transaction discovers there are insufficient funds to cover a withdrawal.
The transaction would self-abort at all perfect nodes. However, a node itself may not abort a
transaction because of local information e.g. resource deadlock. Consequently the transaction
manager at each node must prevent such causes for abortion.

For the multiple input node, multiple transactions scenario, we can easily extend the solution
we have presented. As we commented above, BA usually is initiated at fixed intervals. If an input
node receives several transactions during an interval, it can package them together and broadcast
them as a unit at the next BA. Having multiple input nodes does not present further complications
either. All nodes can initiate BA at the same time and run the algorithm in parallel. At the end of
each BA interval, the processing nodes will end up with n packages of transactions, where n is the
number of input nodes. (If a node has no transaction to send, it sends a null package.) Next, the
processing nodes sort the transaction in a pre-agreed upon way, so that all transactions are executed
exactly in the same order at all perfect nodes. For example, the transactions from input node 1 could
go first, followed by those of node 2, and so on.

The mechanism we have just described has been called the state machine approach [Lamp84,
Schn82]. This is because the system behaves like a finite state machine: at each time interval, inputs
are received and the database is transformed from one state to another.

4.3 Recovery from Insanity

Up to this point we have assumed that insanity is a permanent node property. However, it is
desirable to repair insane nodes so that the system can then tolerate additional failures [GPD84].

Figure 15 illustrates on a three node system what we mean. In this case, only a single insane

failure can be tolerated. Suppose that P3 fails at time t;. From that point on its database may be

53 August 86

ruined and its results are not trustworthy. If P3 is not repaired, no failures of P1 or P2 can ever be

tolerated. This is clearly not desirable.

P1
ts
P2 IS 1
t; to t3 tq
P3

. —— Failure occurs
Failure occurs

Failure detected

Recovery begins

DB reconstrueted

Figure 15. Recovery from insanity

As discussed earlier, the perfect nodes cannot be responsible for detecting an insane node like
P3. Instead we must assume that P3 detects its own failure. This is most easily accomplished by
monitoring the outputs of all nodes. If its own output is different from that produced by a majority of
the nodes, P3 would identify itself as faulty. Alternately, the nodes could periodically compare their
copies of the database. Of course, the comparisons could be made directly or through the use of
database “checksums” or “signatures”. In all cases node P3 must detect its own failure.

By time tg, the failure has been detected and P3 must reconstruet its database copy. (P3 may
also have to repair other components, such as its clock or internal state tables, but we concentrate on
the repair of the database itself.) Let us assume that BA intervals are numbered. First, P3 selects the
number of a future BA interval and broadcasts it to the other nodes. At the end of the appointed

interval, each node takes a “snapshot” of its local database copy. This copy reflects all transactions

54 August 86

executed up to this BA interval. Since nodes process the same batch of transactions in each interval,
the snapshots should be identical. The snapshots are sent to P3. Through voting, P3 eliminates the
effects of the other insane nodes, and then installs the new database locally. (In our 3 node example,
voting is unnecessary since more than one insane node cannot exist.) Also, if P3 can identify the
portions of the database that are incorrect, only those portions need be copied [GPD84]. During the
snapshot exchange period, t3 to t4, the perfect nodes must continue processing transactions, even if at
a reduced rate. Insane failures should never halt the system.) Therefore, P3 must record any
transactions which arrive after time t3, postponing their processing until time t4. After time ty, P3
must catch up to the other nodes in the system. At any time after t4, even before P3is fully caught up,
the system can toleraté a second failure, say at time ts.

5. Conclusions

In this paper we have studied the principles of reliable distributed database management.
The algorithms we have presented make it possible to mask out or contain the effects of failed
components, making a system reliable.

In closing, we would like to point out that there still remain many challenging problems in
this field. In particular, we have not covered network partitions here. They make it difficult to
achieve both correctness and availability. That is, to improve availability, we would like to allow
local users to access copies of a database that are cut off from each other. However, doing this can
compromise the correctness of the data [DGS84].

In addition, this paper has focused on coping with hardware failures. There are, of course,
many other sources of problems, and a truly reliable system should also try to avoid or cope with these
[RLT78, Gray85]. For example, many failures in commercial systems are caused by operator errors
(the operator accidentally reformatted all disks), by bugs in the application code (the program to
cancel a bank account forgot to check that the balance was non-zero), or by system bugs (the system
got confused with its pointers). It is often harder to deal with these problems than the hardware

failures that we have discussed here.

55 August 86

5. References

[BG81]

[BG83]

[BG85]

[BT85]

[CP84]

[Chan85]

[DGS84]

[DRS83]

[EGLT76]

[Garc82a]

[Gare82b]

[Good83]

[GPD84]

[Gray79]

[Gray85]

Bernstein, Philip A. and Nathan Goodman, “Concurrency Control in Distributed
Database Systems,” Computing Surveys, vol. 13, pp 186-221, June 1981.

Bernstein, Philip A. and Nathan Goodman, “The Failure and Recovery Problem for
Replicated Databases,” 2nd ACM Symposium on Principles of Distributed
Computing, August 1983.

Bernstein, Philip A. and Nathan Goodman, “A Proof Technique for Concurrency
Control and Recovery Algorithms for Replicated Databases,” Technical Report
TR-85-21, Wang Institute, December 1985.

Bracha, Gabriel and Sam Toueg, “Asynchronous Consensus and Broadcast Protocols,”
Journal of the ACM, vol 32, pp 824-840, October 1985.

Ceri, Stefano and Giuseppe Pelagatti, Distributed Databases, Principles and
Systems, McGraw-Hill, 1984.

Chan, Arvola, and Robert Gray, “Implementing Distributed Read-only Transactions,”
IEEE Transactions on Software Engineering, pp 205-212, February, 1985.

Davidson, Susan B., Hector Garcia-Molina, and Dale Skeen, “Consistency ina
Partitioned Network: A Survey,” Technical Report 320 Dept. of Electrical Engineering
and Computer Science, Princeton University, August 1984.

Dolev, D., R. Reischug, and R. Strong, “Early Stopping in Byzantine Agreement,” IBM
Tech. Report RJ3915, June 1983.

Eswaran, K. P.,J. N. Gray, R. A. Lorie, and I. L. Traiger, “The Notions of Consistency
and Predicate Locks in a Database System,” Communications of the ACM, vol. 19, pp
624-633, November 1976.

Garcia-Molina, Hector, “Elections in a Distributed Computing System,” IEEE
Transactions on Computers, vol. C-31, pp 48-59, January 1982.

Garcia-Molina, Hector, “Reliability Issues for Fully Replicated Distributed
Databases,” IEEE Computer, pp 34-42, September 1982.

Goodman, Nathan et al., “A Recovery Algorithm for a Distributed Database System,”
2nd SIGACT-SIGMOD Symposium on Principles of Database Systems, March 1983.

Garcia-Molina, Hector, Frank Pittelli, and Susan Davidson, “Applications of
Byzantine Agreement in Database Systems,” Technical Report 316 Dept. Computer

Science, Princeton University, June 1984.

Gray, J. N., “Notes on Database Operating Systems,” Operating Systems : An
Advanced Course, R. Bayer et al. editors, Springer-Verlag, pp 393-481, 1979.

Gray,J. N., “Why Do Computers Stop and What Can Be Done About It?,” Tandem
Technical Report, June 1985.

56 August 86

[GW82]

[HR83]

[HS80]

[HSSD84]

[HC85]

[IM80]

[Kent84]

[Kim84]

[Kohl81]

[Lamp78]

[Lamp84]

[LL84]

[LM84]

[LSP83]

[LS79]

Garcia-Molina, Hector, and Gio Wiederhold, “Read-Only Transactions ina
Distributed Database,” ACM Transactions on Database Systems, vol. 7 pp 209-234,
1982.

Haerder, Theo and Andreas Reuter, “Principles of Transaction Oriented Database
Recovery,” Computing Surveys, vol. 15, pp 287-317, December 1983.

Hammer, Michael and David Shipman, “Reliability Mechanisms for SDD-1: A System
for Distributed Databases,” ACM Transactions on Database Systems, vol. 5, pp 431-
466, December 1980.

Halpern, J., B. Simons, R. Strong, and D. Dolev, “Fault-Tolerant Clock
Synchronization,” Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing, pp 89-102, August 1984.

Horst, Robert and Tim Chou, “The Hardware Architecture and Linear Expansion of
Tandem NonStop Systems,” Tandem Technical Report 85.3, April 1985.

Isloor, Sreekaanth S. and T. Anthony Marsland, “The Deadlock Problem: An
Overview,” IEEE Computer, pp 58-78, September 1980.

Kent, Jack and Hector Garcia-Molina, “Performance Evaluation of Crash Recovery
Mechanisms,” Tech. Report 329, Dept. of Computer Science, Princeton University,
November 1984.

Kim, Won, “Highly Available Systems for Database Applications,” Computing
Surveys, vol. 16, pp 71-98, March 1984.

Kohler, Walter H., “A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems,” Computing Surveys, vol. 13, pp 149-183, June
1981.

Lamport, Leslie, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, vol. 21, pp 558-564, July 1978.

Lamport, Leslie, “Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems,” ACM Transactions on Program- ming Languages and Systems, vol. 6, pp
254-280, April 1984.

Lundelius, J. and N. Lynch, “A New-Fault Tolerant Algorithm for Clock
Synchronization,” Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing, pp 75-88, August 1984.

Lamport, Leslie and P. M. Melliar-Smith, “Byzantine Clock Synchronization,”
Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, pp 68-74, August 1984.

Lamport, Leslie, R. Shostak, and M. Pease, “T'he Byzantine Generals Problem,”
Journal of the ACM, vol. 30, pp668-676, July 1983.

Lampson, B. and H. Sturgis, “Crash Recovery in a Distributed Data Storage System,”
Xerox Research Memo, Xerox PARC, April 1979.

57 August 86

[MM79]

[Moss81]

[Ober81]

[RLT78]

[RG77]

[Roth80]

[SS83]

[Schn82]

[Siew82]

[Skeen82]

[Skeen83]

[SG84]

[StonT79]

[TGGLS82]

[Ullm82]

[Verh78]

Menasce, D. A. and R. R. Muntz, “Locking and Deadlock Detection in Distributed
Databases,” IEEE Transactions on Software Engineering, SE-5:3, 1979.

Moss, J. Eliot B., “Nested Transactions: An Approach to Reliable Distributed
Computing,” Ph.D. Thesis, MIT Dept of Electrical Eng. and Computer Science, April
1981.

Obermarck, R., “Distributed Deadlock Detection Algorithm,” ACM Transactions on
Distributed Computing, 7:2, 1982.

Randell, B, P. A. Lee, and P. C. Treleaven, “Reliability Issues in Computing System
Design,” Computing Surveys, vol. 10, pp 123-165, June 1978.

Rothnie, J.B., and Nathan Goodman, “ A Survey of Research and Development in
Distributed Database Management,” Third VLDB Conf., Tokyo, pp 48-62, 1977.

Rothnie, J.B., et al., “Introduction to a System for Distributed Databases (SDD-1),”
ACM Transactions on Database Systems vol. 5, pp 1-17, March 1980.

Schlicting, Richard D. and Fred B. Schneider, “Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems,” ACM Transactions on Computing
Systems, vol. 1, pp 222-238, August 1983.

Schneider, Fred B., “Comparison of the Fail-Stop Processor and State Machine
Approaches to Fault-Tolerance,” Dept. of Computer Science, Cornell University,
November 1982.

Siewiorek, D. P., and R. S. Swarz, “The Theory and Practice of Reliable System
Design,” Digital Press, 1982.

Skeen, Dale, “Crash Recovery in a Distributed Database System,” Ph.D thesis,
Electronics Research Laboratory, May 1982.

Skeen, Dale, “Determining the Last Process to Fail,” 2nd SIGACT-SIGMOD
Symposium on Principles of Database Systems,” March 1983.

Spector, Alfred and David Gifford, “Case Study: The Space Shuttle Primary Computer
System,” Communications of the ACM, vol. 27. pp 872-900, September 1984.

Stonebraker, M. “Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES,” IEEE Transactions on Software Engineering, pp 188-194,
May 1979.

Traiger, Irving, Jim Gray, Cesare A. Galteri, and Bruce Lindsay, “T'ransactions and
Consistency in Distributed Database Systems,” ACM Transactions on Database

Systems, vol. 7, pp 323-342, September 1982.

Ullman, Jeffrey D., Principles of Database Sytems, Computer Science Press, Inc.,
1982.

Verhofstad, Joost S. M., “Recovery Techniques for Database Systems,” Computing
Surveys, vol. 10, pp 167-195, June 1978.

58 August 86

