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Abstract

The problem of sorting n elements on k linearly connected processors is examined. We reduce the
communication complexity (measured in units of single data transfers between adjacent processors)
by a factor of two from the previous best bound [Baud78] while maintaining the same (asymptotically
optimal) number of comparisons. The result holds even if only unidirectional communication
between processors is allowed (a unidirectional ring architecture). This result is significant because

communication time dominates computation time in most realistic parallel sorting problems.
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Introduction

Linearly connected multiprocessor architectures have become increasingly prevalent. Many
linear Systolic Arrays [Kung82], general purpose linearly connected multiprocessors [Hori86], and
ring connected machines [Wilk79] [Farb75] have been designed and built in recent years. This paper

examines sorting algorithms on these types of machines.

We present a modification of the Neighborhood Sort [Baud78] which is a generalization of Odd-
Even Transposition Sort (described in [Knut73]). This modified algorithm matches the
asymptotically optimal nlogn/k (¢ = number of processors, n = number of elements) number of

comparisons for Neighborhood sort while reducing the number of communication steps from 2n to n.

At first glance it would seem that nlogn/k comparisons would dominate O(n) communication steps.
This is in general not the case for realistic parallel sorting problems. Communication operations
involve expensive processor to processor data transfer operations which can take orders of magnitude
more time than fast register to register computation steps [Wilk79]. It is also likely that & is close to
logn (e.g & = 20, n = 1 million). In which case the number of comparison operations is O(n). In the
extreme cases where n is very large and  is very small then the nlogn/k comparison steps will clearly

dominate. However, if k is very small then little parallelism can be exploited.

Section 1 of this paper presents a model for parallel sorting on a linear array of processors. In
Section 2 our parallel sorting algorithm is presented. This algorithm is extended to a simpler
unidirectional ring communication model in Section 3. A detailed analysis of communication and
comparison complexities is provided in Section 4. In Section 5 we discuss the dominance of

communication complexity in realistic parallel sorting problems.

1. Model and Problem

We assume our computing system is composed of & processors connected in a linear chain (Figure
1). Processors can communicate only with adjacent processors, and each unit distance communication
operation takes time ¢,. Concurrent data movement is allowed as long as it is all in the same
direction. This is how many systolic architectures operate [Fish83]. In each processing step ¢, each of
the k processors can perform one comparison operation. Complexities will be evaluated in terms of ¢,

an £, time units.
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Figure 1 Linear Processor Array

We assume the machine is SIMD (Single Instruction stream Multiple Data stream [Flyn66]
although the results still apply to tightly coupled MIMD (Multiple Instruction stream Multiple Data
Stream), and loosely coupled distributed MIMD systems [Wilk79].

Initially the n unsorted elements are distributed evenly between the k processors so that each
processor contains n/k elements in its local memory. The goal is to produce the final sorted list of n

elements distributed evenly along k contiguous processors.
2. Algorithm

The algorithm is a modification of Neighborhood Sort [Baud78], which is a generalization of Odd-
Even Transposition Sort (described in [Knut73]). Odd-Even Transposition Sort is an algorithm that

sorts n elements with n processing steps on n processors. It works in the following manner.

Assume S = 5,5, 5,5, -, s, is the sequence to be sorted where each s; is an individual element.
First the even pairs (sj,s;.7) (wherej = 2,1 = i < Ln/21) are compared, and exchanged if 5; > s;41.
Then the odd pairs (s;,s;+1) (j = 2i,1 = i = Ln-1/21) are compared and exchanged. This process is

repeated n times until all of the elements are sorted. A proof that this works is contained in [Knut73].

This algorithm can be generalized to merging n/k sorted lists instead of performing individual
comparison-exchanges [Baud78]. LetS = s .5, ..., Sk be a sequence of sorted lists where each s;is a
sorted sequence of size n/k. The algorithm proceeds in the same fashion except that the comparison-
exchange steps are replaced by merge-splitting steps. During a merge splitting operation, two lists s;
and s;+1 are merged into a larger list which is then split into two halves. The lower half is assigned to
s; and the upper half is assigned to s;+1. The proof that this results in a sorted list after £ merge

splittings can be found in [Knut73].



We have made the optimization of including two merged sequences at each processor node,
thereby decreasing the communication complexity by factor of two. Our algorithm proceeds in the
following manner:

Step 1: Each processor sorts the n/k unsorted elements which are initially contained in its local

memory. The sorted list is then divided into two sorted lists (upper half and lower half) of size
n/2k.

Step 2: All processors P; transmit their upper list to processor P; 1.

Step 3: The upper list form P; is merged with the lower list from P;. The resulting sorted
sequence is divided into an upper and a lower sorted lists of size n/2k.

Step 4: All processors P; transmit their new lower list to processor P; ;.

Step 5: The lower list from P;;; is merged with the upper list from P;. The resulting sorted
sequence is divided into an upper and a lower sorted list of size n/2k.

Steps 2 through 5 are repeated k times until the entire sequence S is sorted. Note that the boundary
processors may be periodically inactive. An example for the case where n = 12 and £ = 3 is shown in

Figure 2. Note that that & = 3 iterations of steps 2 through 5 are not required in this example.

Processor 1 Processor 2 Processor 3
Start: Unsorted 12 3 8 10 4 7 2 1 9 6 1 5
Step 1: Initial Sort 3 8 10 12 2 4 7 11 1 5 6 9
Step 2: Transfer 3 8 10 12 2 4 7T 11 1 5 6 9
Step 3: Merge-Split| 3 8 2 4 10 12 1 5 7 11 6 9
Step 4: Transfer 3 8 2 4 10 12 1 5 T 11 6 9

Step 5: Merge-Split| 2 3 4 8 1 5 10 12 6 7 9 11

Step 2: Transfer 2 3 4 8 1 5 10 12 6 7 9 11
Step 3: Merge-Split 2 3 1 4 5 8 6 7 10 12 9 11
Step 4: Transfer 2 3 1 4 5 8 6 7 10 12 9 1

Step 5: Merge-Split| 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2 Our Parallel Sorting Algorithm



3. Unidirectional Extension

This algorithm works even when communication is constrained to be unidirectional (unidirectional
ring). This restriction on the algorithm simplify architectural design. A number of these
unidirectional distributed multiprocessor [Wilk79] and systolic multiprocessor systems have been
built [Fish83].

The data motion is easy to visualize. Simply modify Step 4 of our algorithm. Instead of
transmitting the lower sequence back to the processor Pji, the same effect can be achieved by
transmitting the upper sequence to processor P(;j+1) mod & In both cases the lower sequence from
processor P; is united with the upper sequence from P;.; for the next merge-splitting operation. The
beginning of the sorted sequence will be cyclically shifted during the computation. A marker must be
kept at the beginning of the sequence to insure that it is not merged with the end of the sequence.

Figure 3 illustrates the unidirectional algorithm for the same initial unsorted sequence of Figure 2.
4. Analysis

For the purpose of analysis the algorithm can be divided into the initial sort, and the merge
splitting operations. The initial sort can be performed using Merge Sort which has a running time of

(n/k)log(n/k) - (n/k) + 1 comparisons for a sort of n/k elements [Knut73]. So the execution time for the

initial sort is:
((n/k)log(n/k) - ik + Dt, = ((nlogn)/k - (nlogk)/k - nik + 1) tp
The merge splitting operation involves steps 2 through 5. Steps 2 and 4 involve transfering lists of
size n/2k. so each of these steps takes time (n/2k)¢,. Steps 3 and 5 involve merging two lists of size
n/2k. Each of these takes time (n/2k + n/2k -1)t, = (n/k-1)t,. Steps 2 through 5 are iterated k times
so the total merge-splitting time is:
(2n-2R)t,+ ni,

The total execution time is then given by the expression:

((nlogn)/k - (nlogk)/k - nlk + 2n - 2k+ 1)tp + ni.



Sequence Processor 1 Processor 2 Processor 3
Beginning Marker\

Start: Unsorted [:12: 3 8 10 4 7 2 11 9 6 1 5

Step 1: Initial Sort | 3: 8 10 12 2 4 7 11 1 5 6 9

Step 2: Transfer 6 9:3: 8 |10 12 2 4 7 11. 1 &

Step 3: Merge-Split| 6 9 : 3: 8 9 4 10 12 1 5 7 11

Step 4: Transfer 7 11 6 9 [i3i 8 2 4 |10 12 1 5
Step5: Merge-Split| 6 7 9 11 |i 21 3 4 8 1 5 10 12
Step 2: Transfer | 10 12 6 7T 9 11 : 2} 3 4 8 1 5

Step 3: Merge-Split| 7 6 10 12 9 11 : 2 3 1 4 5 8

Step 4: Transfer 5 8 7 6 |10 12 9 11 |i2i 3 1 4

Step5: MergeSplit| 5 6 7 8 | 9 10 11 12 L 1i 2 3 4

Step 2: Transfer 3 4 5 6 7 8 9 10 11 12§ 1: 2

Step3: Merge-Split| 3 4 5 6 | 7 8 9 10 |11 12 )

Step4: Transfer | 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3 Unidirectional Parallel Sorting Algorithm

This differs from Neighborhood Sort which has the same (asymptotically optimal) comparison

complexity, but a communication complexity of 2nt..

In the case where £ = logn, our algorithm takes time 3ni, + nf,. while Neighborhood Sort takes
time 3nt, + 2ni.. Note that in general communication time ¢, can be orders of magnitude longer than

processing time ¢,. So our algorithm is in most cases twice as fast.

In the case where & = n/2. Our algorithm takes time nt, + né, while Neighborhood Sort takes time
nt, + 2nt. This outperforms Odd-Even Transposition Sort which was the best known parallel
algorithm for sorting n elements on a linear array of n processors and has a running time of nt, +
2nt, Our algorithm requires the same computation time and half the communication time as Odd-

Even Transposition Sort. And it does this using half as many processors! Note that storing two



elements at each node does not change the computing model, since each processor must have two

registers to perform comparison operations anyway.

Using more than n/2 processor to sort n elements merely introduces communication delays without
improving computational performance. At most n/2 processors can concurrently perform comparison
operations on n data items. This is because a processor requires at least two elements to perform a

comparison.

Our algorithm can be adjusted to outperform Odd-Even Transposition Sort even if it is required
that n processors be used. This means the n unsorted data items must start out uniformly distributed
among the n processors, and the final sorted list must be uniformly distributed between n processors.
First compress the data elements so that they fit onto n/2 processor each with two elements (Figure 4).

Perform the sort operation. Then distribute the sorted elements back out to the n processors. The

Start
3 8 5 7 2 1 4 6
Compress: time = (n/4)t, ~~~~~77777~ » e s S S T S R S
38 517 21 46
Sort: time = ntp + ni;
12 34 56 78
Distribute: time = (n/4){, <~~~"""""""7° mmmssssmsssoososommssmmmmmooo >
1 2 3 4 5 6 7 8
Figure 4 Parallel Sorting whenk = n

compression and distribution steps each take time (n/4)¢. so the total execution time is nt, + (3/2)n,.



5. Communication Dominance

We have noted that communication time can be the dominant factor in parallel sorting time. When

is this the case? Communication time will dominate when nt, > (nlogn/k)¢,. Solving for k we get:

k > logn(ty/t,)

This is a very small number. Suppose that one communication step takes ten times as long as one
comparison step (e.g. one microsecond versus 100 nanoseconds). In some computing systems,
communication time can take several orders of magnitude more time than computational steps
[Wilk79]. Also suppose n = 109, If £ > 3, communication time will dominate. If & is three or less,
very little parallelism is being employed to solve the problem anyway. This example illustrates why
communication complexity, which is often less emphasized than computational complexity, should be
weighed with equal if not greater importance than computational complexity in parallel algorithm

analysis.

Conclusions and Future Research

In this paper we have described a parallel sorting algorithm for a linear processor array which
reduces the communication complexity of the best known algorithm by a factor of two while
maintaining the same asymptotically optimal number of computational steps. This result is
important because communication time dominates computation time in realistic sorting problems on
this common parallel architecture. The algorithm works even if only unidirectional communication

between processors is allowed (unidirectional ring).

In future research we will extend these results to two, three, and higher dimensional processor

arrays and other regular interconnection schemes [Thom78] [Nass79].
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