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Abstract
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1. Introduction.

Correctness and availability appear to be conflicting goals of distributed database systems. In
particular, traditional concurrency control methods guarantee global serializability of transactions
but cannot offer high availability in the face oi: communication failures and network partitions (for an
excellent survey of distributed concurrency control mechanisms see [3]). To improve availability, a
number of techniques have been recently proposed. Their key is to replicate data at various sites and
then to allow transaction processing at any node (or group of nodes), regardless of whether it (they)

can communicate with the rest of the system.

We can intuitively view the trade-off between correctness and availability as a linear spectrum of

possible solutions (see Figure 1.1). At one end we have global serializability, which is normally
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Figure 1.1

considered the correctness criterion for distributed database systems. At the other end is the highest
possible availability. We call systems at this end “free-for-all” since they place no limitations on data
access during network partitions. From left to right, availability increases while the correctness

criteria become less strict.

Previously proposed solutions seem to cluster around either endpoint of the spectrum. (For a detailed
survey see [5].) At the left end of the spectrum, we find techniques that guarantee global
serializability while introducing some modest amounts of availability for partitioned operations.
Examples of such techniques are mutual exclusion ([8]) and class conflict analysis ([10]). At the right
end of the spectrum, there are methods that provide practically unlimited availability during
partitions at the expense of abandoning global serializability as a correctness criterion. These include

the log transformation technique ([2]), Data-patch ([6]), and the optimistic protocol ([4]).



To illustrate the principal differences between the methods from the two extremes we compare the
mutual exclusion approach with the log transformation technique as they would apply to a simple
hypothetical banking database. Suppose that the information on the balances of funds in different
accounts is represented by a table, as in Figure 1.2. The basic types of transactions can be described as

follows:
Deposit (Acct#,$) ; Withdraw (Acct#, $)

Each transaction specifies the account number and the amount of money to be deposited (withdrawn).
Suppose, further, that we have two geographically separated sites, A and B, which are connected by a

communication link, and the table is replicated at each of the two (Figure 1.2).

A B
ACCT BAL ACCT BAL
00001 $300 00001 $300
Figure 1.2

Let us examine the behavior of this system when the communication link between A and B has been
severed. We will consider two scenarios. In the first scenario,two customers -- one at node A and the
other at node B -- make identical requests: Withdraw (00001, $100) (we assume that both of the
customers have the right to withdraw money from account 00001; in fact, this can be even the same
customer, making two withdrawal at different locations). Normally, both of these requests should be
granted, for there is enough money in the account to insure a non-negative balance after the

withdrawals. But since A and B cannot talk to each other, things get more complicated. Under



mutual exclusion, only one of the nodes, say A, can access and modify the data. Therefore, the
customer at node A will be able to withdraw his $100; the customer at node B, however, will go home
empty-handed. Under log transformation, both nodes are allowed to process transactions, hence both
customers will be given the money. However, the correct balance will be established only after the
communication is restored. When the nodes are reconnected, they exchange logs for transactions
executed during the partition; it is established that the execution happened to be consistent (the

balance remained positive), and therefore no corrective action is necessary.

The second scenario is just like the first one, except the amount of money requested by each customer
is $200 each. As before, under mutual exclusion, the system will satisfy the request of one customer
but not the other. Under log transformation, both transactions will be processed, because neither of
them requires the withdrawal of an amount of money exceeding the balance. However, after
communications are restored, it will be discovered that the execution was inconsistent, and as a
result, the balance went negative. Let us assume the bank’s policy is to require that the customer
make a deposit to render the balance non-negative and also to charge a fine whenever the account is
overdrawn. Then a letter of notification can be sent to the customer and the amount of the fine can be

subtracted from the balance.

We have seen that, in the first scenario, the more conservative technique (mutual exclusion) resulted
in the loss of service availability, while the more optimistic one (log transformation) insured that both
nodes remained operational. In the second scenario, however, the former prevented inconsistent
transaction execution, but the latter allowed an account to be overdrawn. So here we have the trade-

off between availability and correctness in a very tangible form.

Conservative techniques are quite satisfactory for systems where high availability is not of primary
concern. If availability is critical, then “free-for-all” methods seem to make more sense. Each of the
variety of “free-for-all” methods has its advantages as well as its shortcomings, but it appears that
there are some problems common to all of them. One of these is the computation and communication
overhead, which is usually significant and bound to degrade the overall performance of the system. In
the above example, sites A and B had to exchange their transaction logs after the partition was
repaired. Each of them had to to determine which of the transactions from the received log had to be
executed locally and which of the transactions from the local log had to be backed out. More
disconcerting than the overhead is the absence of any meaningful, general correctness criteria (aside
from eventual convergence of replicated copies) to replace serializability. In other words, it is not
clear what properties of transaction execution “free-for-all” systems provide. This may not be a
serious drawback for relatively simple (from a semantic point of view) applications such as our

example. However, it is increasingly difficult to analyze the behavior of more complex systems



without having a formal correctness criterion. In particular, it may be rather difficult to generalize
the notion of corrective actions. Note that even in our simple example there are some unresolved
issues as far as corrective actions are concerned. Suppose, for instance, that the amount of the fine for
an overdrawn account depends on the time that the account in question remained overdrawn. The two
nodes can very well have different views of how long the balance stayed negative, and therefore, can
impose different fines. The situation can get even more unpleasant if the fine also depends on the
actual amount of the overdraft. Specifically, if the nodes charge fines of different amount because of
disagreements on the duration of non-negative balances, they can end up with different views of the

balance itself. This, in turn, can lead to another round of assessing different fines, and chaos ensues.

In this paper, we concern ourselves with applications requiring high data availability. The goal is to
propose an approach that (1) provides high availability in the face of communication delays and
network partitions; (2) does not depend on the ability of the system to promptly and correctly detect
partitions; and (3) guarantees some useful, formal properties. From the outset, we would like to point
out that our approach is not just a new method for dealing with network partitions or a new robust
concurrency control mechanism but also a design philosophy for distributed database systems which

makes a strong emphasis on high availability.
2. The basic idea and illustrations.

In this section, we introduce the core idea of the proposed approach and give examples to illustrate it.

A more detailed and formal discussion is delayed until the next section.

Even though we aim at high availability, in our approach a departure is taken from the “free-for-all”
concept which allows any data item to be updated anywhere in the system at any time. The entire
body of data is divided into fragments, and to every fragment we assign an agent (a user or a node with
the exclusive privilege to update it). Thus, the decision to update data item x can be taken at node N
only if either N itself is the agent of the fragment to which x belongs or the agent is currently at node
N. Such a restriction is motivated by the observation that, in real distributed systems, democracy 1is
not a very popular concept, i.e., different users are endowed with different sets of privileges as far as
data access is concerned, and the ability of some users to modify data is often restricted. For example,
in an airline reservations system, it can hardly be considered a loss of availability if a customer is
unable to update the flight schedules in the database. By introducing the notion of fragments and
agents we hope to control the way data are updated without sacrificing availability for those who

need it.



In this new framework, the banking example from the previous section could be rendered as follows.
The table containing the balance information will be unchanged. It will constitute a separate

fragment, called BALANCES, with the central office of the bank as its agent (Figure 2.1). In addition,

Balance information

ACCOUNT BAL

0001 $300

fragment BALANCES
agent: central office

Figure 2.1

for each account i, the database will have a table representing the deposit or withdrawal records of
that account (Figure 2.2). The entries specifying the type of operation, the time it took place, and the
amount of money involved constitute the fragment controlled by the customer (customers) who owns
(own) account i. Let us call this fragment ACTIVITY(i). The entry specifying whether the given
operation has been reflected in the BALANCES fragment constitutes a separate fragment (call it
RECORDED(:)) for which the agent is the central office. Thus, there are two fragments for each
aceount in the bank plus one more fragment for all accounts. Note that the central office is an agent

for more than one fragment. For simplicity, we assume that all data are replicated at every node.

At a node other than that of the central office, the local view of the balance (the best guess as to what

the real balance is) is computed as:



Deposit / withdrawal record for account 0001

TYPE OF
OPERATION TIME AMMOUNT RECORDED
deposit Mon., 2PM $150 Y
withdrawal Tue., 10AM $200 N
fragment ACTIVITY(0001) fragment
agent: owner of account 0001 RECORDED(0001)
agent: central
office

Figure 2.2

local view of balance = balance + Z unrecorded deposits — Z unrecorded withdrawals

where balance is the value of the balance field of this account’s entry in the BALANCES fragment in
the local copy of the database, and unrecorded refers to the status of the operation as shown in the
local copy of RECORDED. Clearly, in the face of communication delays and partitions, the local view
of balance may not correspond exactly to the actual balance. The longer a partition lasts, the greater

this discrepancy can become.

The basic banking operations (withdrawals and deposits) can be processed by any operational node,
regardless of the status of the communication network. Each such transaction causes an appropriate
entry to be made in the ACTIVITY fragment of the account concerned, in the local copy of the
database. (The default value for the corresponding RECORDED field will be “N.”) Then, this update
to ACTIVITY (i) is propagated throughout the network by a broadcast mechanism (if the network is
currently partitioned, the propagation will be completed after the partition is fixed) and eventually
reaches the central office node. After the update is installed in the local copy of ACTIVITY(i) at this
node, a new transaction is triggered here that changes the balance value for the given account in the
BALANCES fragment, as appropriate. The same transaction changes fragment RECORDED(7) to
reflect the fact that the operation has been seen at the central office. The updates resulting from the
transaction are then broadeast to bring the copies of the database at other nodes up to date. Note that

updates to a fragment originate only from its agent, as we discussed.



To better understand this example, consider one of the scenarios discussed in Section 1, where two
withdrawals of $200 each are requested (one at every node) during a partitioned operation. They are
both granted since the balance is $300. Let node A be the node that services the central office of the
bank. Then the withdrawal that was processed at A will be immediately reflected in the BALANCES
fragment. The withdrawal request entered at node B, however, will not reach A until the partition is
repaired. When it does reach A, the BALANCES fragment will be updated again, and A will discover
that the balance was overdrawn. An appropriate penalty will be assessed (and the resulting update
will be communicated to B) through another update to BALANCES, and a letter will be sent to the
customer concerned. Note that these actions need be taken only at A, for that is where the agent for
the balance information fragment is, and only this agent is allowed to make changes to the fragment.
Thus, the decision process involving corrective actions is centralized, and no quagmire, of the sort

seen in the example of Section 1, results.

It is worth reemphasizing that the customers are the agents for their deposit / withdrawal records and
as such can freely enter requests for bank operations at any node and regardless of the

communication status of the network. This is how availability is achieved here.

Note also that a good database design is essential. The example works because the data has been
appropriately partitioned according to who should control it. Hence, as stated earlier, we are
proposing both a mechanism for accessing the database and a design methodology for achieving

controlled high availability.

3. The model.

In this section, a detailed description is presented of our model for distributed databases. The issues of
data organization, transaction management, and communications among different sites are

discussed, with special attention given to the notion of data control.
3.1. Fragments and agents.

The distributed system under consideration consists of n computer sites, or nodes, interconnected by a
point-to-point communication network of arbitrary topology. The database is a set of data objects each
of which is replicated at a number of sites. For simplicity, we shall assume from now on (unless

otherwise specified) that replication is complete, i.e., every object is replicated at exactly n sites.



External to the system are the users who manipulate the information in the database by issuing

transactions. We assume that a user can be connected to at most one node at a time.

The entire database is logically divided into &£ non-overlapping subsets called fragments and denoted
Fq, Fo, ..., Fp. For future notational convenience, we shall view fragments as sets of data objects. Thus,
notation x € F; means that data object x is contained in fragment F;. To control access to fragments
tokens are used. These tokens, however, are different from the traditional tokens used in distributed
systems (see [9], for instance). For every fragment, there is exactly one token, and it can be owned by
a user as well as by a computer node. Thus our tokens have existence outside of the computer system
and can be passed by means other than electronic messages, a situation quite different from the
traditional use of tokens. An update to a fragment can be authorized only by the current owner of the
corresponding token, referred to as this fragment’s agent. That means a node can issue an update to a
fragment only if it is itself the agent of this fragment or it has received a request to do so from a user
who is the agent. It is not necessary, though, to hold the token in order to be able to read from a
fragment, i.e., read actions can be performed freely by all users and nodes on all fragments. This is

another difference with traditional token systems.

As an example of a token, consider the card that a bank customer uses to identify himself to an
automatic teller. Whoever owns the card is authorized to perform banking operations on the
corresponding account, i.e., to update the fragment containing deposit / withdrawal information for
that account. One should not infer, however, from this example that all tokens must have a concrete

physical embodiment.

Let A(F;) denote the agent of fragment F;. We say that N; is the home node of A(F)), if either A(F;) is a
user and has last issued an update transaction at N; or A(F;) is N;. This semantic twist is but a mere

convenience in a context where it is irrelevant whether a particular agent is a node or a user.
2.2. Transaction management and intersite communication.

We distinguish between two kinds of transactions: update and read-only transactions. It is important

to make this distinetion, as they are treated quite differently in our model.

Each transaction must be initiated by a unique agent. Let a transaction 7 be initiated by A(F;) at the
time when A(F;)’s home node is N;. Then N; is also said to be the home node of 7. We say that T' is
local to N;. To all other nodes, T is non-local. Read-only transactions can be initiated by any agent.

However, update transactions must satisfy the following requirement.



Initiation requirement: An update transaction T can be initiated by an agent A(F;) if and

only if all data objects modified by T are contained in the fragment F; *

When an update transaction is initiated no other node becemes aware of it until the execution
completes successfully at the transaction’s home node. The home node is then responsible for
propagating the updates throughout the system. This is accomplished in the following way. A
message is broadcast by the home node, of the form: (T, dj, vy; dg, vs; ...; ds, vg), where T is the
transaction’s identifier, d; is the name of a data object updated by T, and v; is the new value for that
object. Upon receiving such message, every node installs the updates listed in it in its own copy of the
database. Here, we wish to emphasize a rather important point: in order to ensure that all copies of
the database experience the effects of each transaction, the system does not zictually rerun a
transaction at other nodes, instead a series of unconditional updates are executed (as explained
above), reflecting the desired effects. It is convenient to view a series of such updates spun off from one
non-local transaction as a new "write-only"” transaction, local to the receiving node. From now on, we
shall call these groups of updates quasi-transactions. Read-only transactions, naturally, require no

propagation.

To implement the necessary message exchanges the system will require a reliable broadcast
mechanism which guarantees that (1) all messages are eventually delivered; (2) messages broadcast

by one of the nodes are processed at all other nodes in the same order as they were sent.

At every node in the system, a local concurrency control mechanism is implemented. As far as this
mechanism is concerned, local activities are comprised of update and read-only transactions initiated
locally as well as quasi-transactions received from remote nodes. There is a special requirement on
the resulting schedule that concerns quasi-transactions: the serial schedule equivalent to it must
contain quasi-transactions from a given node in the exact same order as they were generated. The

fulfillment of this requirement is important for mutual consistency of replicated copies.

*It may appear that the initiation requirement precludes altogether the use of transactions that
update more than one fragment. There are ways, however, to circumvent this restriction. One way
is to replace, whenever possible, a multi-fragment transaction by a group of transactions that
perform the same task and update only one fragment each. When this cannot be done, a semblance
of the two-phase commit protocol can be used, that involves the agents of all the fragments that are
being updated. For simplicity we only consider single-fragment transactions in this paper. The
multi-fragment case is discussed in [7].



4. Control Options.

The notion of fragments and agents we have outlined can lead not just to one but to several control
strategies. Each option is characterized by the degree of availability it offers and the type of
correctness properties it enforces. The differences among the strategies have to do with how reads are
performed and how the movement of agents is controlled. In this section we discuss some of these

strategies, and the availability they offer. (Other variations are possible but not discussed here.)
4.1. Fixed agents; read locks.

The most conservative option available fixes all agents at their corresponding home nodes (not
allowing them to move) and requires that remote locks be obtained on all data objects that a
transaction intends to read (outside the fragment that it updates, if any). For each data object, it is
clearly sufficient to acquire the lock on it from the home node of the agent in charge of the fragment
containing that object, for that is the only node at which the object can be updated. This option is
evidently very close to 2 number of traditional concurrency control mechanisms and, accordingly can

be placed at the global serializability end of our spectrum.
4.2. Fixed agents; acyclic read access pattern.

As before, movement of agents is disallowed, but read locks are no longer required. However, there
are certain restrictions on the read access patterns of transactions executing in the system. To

characterize these we need to define the following graph formalism.

Definition. The read-access graph is a directed graph G=(V, E), where V={F;, Fs, ..., Fy} and
E={F; F;) :i # j and there is a transaction T such that it is initiated by A(F;) and reads a data object

contained in F/.

Definition. A directed graph G is said to be elementarily acyclic if G, is acyclic, where G, is the

undirected graph that has the same sets of nodes and edges as G.

Theorem. The transaction execution schedule is globally serializable if the corresponding read-

access graph is elementarily acyclic.
Proof: See Appendix.

The above theorem suggests a possible strategy that constitutes a significant improvement in terms
of availability over the previous method (now no synchronization is required for reading a fragment)

and still insures an important correctness property -- global serializability. To preserve global

10



serializability, however, we had to impose restrictions on which data different transactions can read.
This of course poses the question: How reasonable is it, if at all, to demand that these restrictions be
incorporated in the database design? There is no unqualified answer. From a general point of view, it
is clearly undesirable to restrict the read capabilities of the database transactions. On the other hand,
there may be applications for which these demands will not be detrimental in the least. This, of
course, calls for an example. The reader should keep in mind that the example that follows is

necessarily oversimplified, but it does illustrate our point.

Consider a hypothetical application which keeps track of sales and inventory stock for a wholesale
company. There are k warehouse locations at which the merchandise is sold to the customers (retail
shops, for example). For every location, there is a fragment in the database that contains a record of
every sale made, a record of every new merchandise shipment received at that location, and the
quantity on hand of each product. Let us call these fragments W;, W, ..., W,. Further, there is a
fragment C controlled by the company’s central office. In this fragment, information will be recorded
which represents decisions concerning future purchases (from the manufacturer). These decisions are
arrived at by periodic scanning of the contents of fragments W; and doing the necessary computations.

This database is characterized by the read-access graph in Figure 4.2.1. Note that a high degree of

Figure 4.2.1.

availability is maintained by the database. For instance, warehouses enter the sales and shipments
information even if there is a communication failure. On the other hand, global serializability is
never violated during partitioned operation. In this example, this means that the central site always

gets a consistent view of the database.
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In certain situations, read-only transactions that violate the restrictions of the read-access graph can
be allowed. This is motivated by the fact that potentially non-serializable execution that may result
will manifest itself only in the output of these transactions and will not leave any trace on the
database itself. If the application at hand is not particularly sensitive to this kind of phenomena, then
such transactions can be allowed. In the example above, for instance, one warehouse can be allowed to
read from the fragment controlled by another warehouse with no great harm (this can be useful when
the current inventory at this warehouse is not sufficient to satisfy a customer’s request, and it is
desirable to check whether there is more at some other location). In summary, with fixed agents and
an elementarily acyclic read-access graph, certain applications may achieve higher availability and
global serializability. If the read-access graph is elementarily cyclic, it may still be possible to find a
subset of transactions that have an elementarily acyclic graph. These transactions, hopefully the
most frequent ones, could be executed without read locks, while the rest would be executed with a

more restrictive fragment locking policy.
4.3. Fixed agents; no read access restrictions.

Removal of all read access restrictions obviously increases data availability still further. However,
the price for that is a possible loss of global serializability. When the read-access graph is not
elementarily acyelic, non-serializable schedules may result. Suppose the database consists of three
fragments: Fy, Fa, F3. Suppose further that transactions initiated by A(Fy) read from Fy, Fy, and F'y;
A(F3), from Fg and F3; and A(F3), from Fj only. The corresponding read-access graph is shown in
Figure 4.3.1. It is acyclic, but not elementarily acyclic. Let a, b, and ¢ be data objects, and let @ € F';, b
€ Fg,c€Fs.

Here is how a non-serializable schedule can arise. Suppose A(F;) initiates transaction T;: [(T, r, c),
(Ty,r, b), (T, w, a)]*; A(F3) initiates Ts: [(Ts, r, ¢), (T3, w, b)]; and A(F3) initiates Ts: [(T3, r, c), (T},
w, ¢)]. Suppose further that update (T's, w, b) reaches the home node of A(F;) and is installed in its
local copy before action (T, r, b) is executed (generating dependency Ty — T7y); action (Ty, r, c) is

executed before update (T3, w, ¢) is installed in the copy at the home node of A(F;) (generating T; —

*A parenthesized triplet denotes an atomic action, with the first element identifying the transaction
it is part of, the second element specifying the type of action (read or write), and the third element
identifying the data object on which the action is preformed. The entire expression in brackets
denotes the ordered sequence of actions comprising the transaction.

12



T3); and finally, (T3, w, ¢) is installed at the home node of A(Fy) before (T, r, ¢) is executed (T3 — T).
The above sequence of events yields a cyclic global serialization graph (see Appendix for the

definition) as shown in Figure 4.3.2 and, therefore, a non-serializable schedule.

Figure 4.3.1. Read-access graph.

Figure 4.3.2. Global serialization graph.

Short of global serializability, there are some nice properties that are guaranteed by the option being
discussed. Let us consider a fragment F; whose agent’s home node is N;. Since all updates to F;
originate at N; and are installed eventually in all remote copies of F; in the same order (see Section
2.2), if at time ¢ the processing of new transactions is halted, and it takes time A¢ for all updates to

propagate throughout the network, all copies of fragment F; will be identical at time ¢+ A¢. The same

13



is, of course, true for every fragment. Thus mutual consistency of all replicated copies of the entire

database is guaranteed.

Fortunately, there is more. Let us concentrate our attention on fragment F;. From the entire set of
transactions that execute in the system, let us extract only those that update the contents of fragment
F; and ignore the rest. We denote this subset of transactions U(F;). Thus, a transaction T € U(F,) if
and only if T updates F;. Then we have the following:

Property 1. The schedule consisting solely of transactions in U(F;), for any i, is (globally)

serializable.

The correctness of this property follows from the fact that all transactions in U(F;) are initiated by
agent A(F;) and, hence, executed originally at the same node. Therefore, they are subject to the same
local concurrency control mechanism, which insures the serializability of their schedule.
Transactions in U(F;) give birth to corresponding quasi-transactions which are dispatched to other
nodes in the network for update propagation purposes. Upon its arrival to a remote site, each quasi-
transaction is submitted to the concurrency control mechanism of that site, whereby the effectual

atomic execution of it is achieved. This yields

Property 2. No transaction that reads the contents of F;, for any i, ever sees a partial effect of a

transaction in U(F ).
Definition. A transaction schedule with properties 1 and 2 is said to be fragmentwise serializable.

To analyze the import of fragmentwise serializability, let us examine fragment F; and how it relates
to other fragments and the entire database. Fragment F; enjoys -- as do other fragments -- a certain
degree of autonomy within the database. This autonomy is manifested on two levels: structural and
procedural. On the structural level, fragment F; represents a semantic unit of information (such as an
airline company flight schedules or information on the inventory stock at a local warehouse of a
wholesale distributor). On the procedural level, modifications of its content are handled exclusively
by the designated agent. Consequently, fragment F; appears to be a more or less self-contained

collection of data.

The above notion of autonomy serves as justification for the following conceptual view. Instead of one
“large” database divided into several fragments, we have a somewhat different arrangement, namely
a group of separate, “small” databases with ongoing communications among them. Update
transactions operate on a single small database (a transaction updating fragment F; is said to be a

transaction on database ;). A read-only transaction that accesses multiple fragments is conceptually
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replaced by several transactions each of which accesses a corresponding “small” database. As far as a
particular database (fragment) F; is concerned, all other databases (fragments) constitute the
“outside world.” Thus, when a transaction updating F; reads from another fragment, the value
(values) read can be interpreted as input to this transaction from the outside world. Fragmentwise
serializability for the “large” database thus translates into serializability for each constituent

database.

To understand the precise nature of inconsistencies that may arise as a result of replacing global
serializability with fragmentwise serializability, we turn to the notion of consistency predicates. A
predicate P(u(xg), ..., u(x,)), where x;, 1 =i=<r, is a data object and v(x;) is the value of x;, is said to be a
single-fragment predicate if x; € F;, for some j and all i=1, r ; it is a multi-fragment predicate
otherwise, i.e., a single-fragment predicate spans just one fragment, so to speak, whereas a multi-
fragment predicate spans more than one. When global serializability is enforced, consistency
predicates are never violated. Fragmentwise serializability does not guarantee, in general, that all
consistency predicates hold. However, it is an immediate consequence of this correctness criterion
that single-fragment predicates are never violated. Thus the only kind of data inconsistency one can

encounter is that characterized by violation of multi-fragment predicates.

To illustrate the difference between global serializability and fragmentwise serializability we give a
simple example of a schedule that is fragmentwise serializable but not globally serializable. Consider
an airline reservations database and suppose that there are only two flights offered by the airline
company and just two customers to service. There is one fragment for each customer and one
fragment for each flight. Let us call the fragments controlled by customers C; and Cg; the flight
fragments will be called F; and Fy. Further, suppose that the agents for all four fragments are at
different nodes. C; and C» contain two data objects each: C;={cj 1, ¢1 2}, Co={ca 1. co0}. All ¢;; are
initially zero; later on they can be set by the customers to a positive integer value reflecting the
number of seats that the i-th customer would like to reserve on flight j. For simplicity, suppose that
once set they cannot be reset to a different value, i.e., a customer cannot change his mind. Similarly,
F; and Fy also contain two data items each: Fr={f1 1, f2,1}, Fo={f12. fe2}. Every f;; denotes the
number of seats actually reserved for the i-th customer on flight j. A(F;) and A(F3) periodically run
transactions that scan C; and Cz. Whenever a new nonzero c;; is discovered, f;; is set to its value
(unless a potential overbooking is detected). The motivation for having c;; in this database, in
addition to f;j, is to allow the customers to enter their requests for reservations any time they want to,
regardless of the current status of the communication network, and, at the same time, to ensure that
overbooking does not occur. If data items c;; did not exist, the system would have to either curtail

availability during partitions (suspend accepting reservations at least at some nodes) or allow
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overbooking to occur. But since the process of making reservation requests is decoupled from the
process of deciding which requests are granted, and the latter is centralized (in the sense of being

done by just one agent), we get the best of both worlds: availability and correctness.

Figure 4.3.3 shows the read-access graph for this database. Let us consider a schedule in which every

Figure 4.3.3

agent runs a transaction. These transactions are:
On fragment C;:  [(T¢c,, w, c1,1)] (this customer wants to reserve a seat on flight 1)
On fragment Co:  [(Tc,, w, c22)] (this customer wants to reserve a seat on flight 2)
OnfragmentF;:  [(Tp, 1, c11), (Tr, w,f1,0),(TF,, 1,¢21),(TF, w, f21)]
OnfragmentFo:  [(Tr, 7. ¢12), (TF, W, f12),(TF, 1,c2.2),(Try, w,f22)]
Here is the schedule:  (TF,, r,c12)
(T, w, f12)
(Tc,, w, c1,1)
(T, te,5)

(Tp, w, f1,1)
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(TF, 1, c2,1)
(Tr,, w, f2,1)
(Te,, w, c2,2)
(TF,, 1,022
(Tr, w,f2.2)

The precedence order between actions originating at different nodes is determined by the time when
updates are installed at remote copies.* For instance, the fact that action (T¢c,, w, ¢1,1) precedes action
(Tp, 1, 1,1 ) in the schedule means that the update to ¢z ; by transaction T'¢, was installed in the copy

at the home node of A(F;) before transaction Tr, read this data object.

It is not difficult to see that the above schedule is not serializable in the usual sense, but it is
fragmentwise serializable. In a conventional system this schedule would be prevented. For instance,
(Tc,, w, c2 2) might be delayed till Tr, was completed, reducing availability. In that case, the net
difference between two executions would be that the serializable one would result in not reserving
seats for the second customer on flight 2 (this would be corrected eventually since agents A(F;) and
A(F5) run their transactions periodically). Thus, in this example replacing global serializability by
fragmentwise serializability did not result in any serious anomalies while allowing for more

flexibility in scheduling.

In summary, fragmentwise serializability is very simple but, we believe, powerful concept. Each
fragment is treated as an independent database. Data read from other fragments may reflect non-
serializable anomalies. However, the transactions operating on this fragment can cope with these
anomalies and guarantee fragment consistency. The situation is analogous to dealing with user
inputs in conventional databases. (For instance, banks never assume that users and data outside the
system are handled in a serializable fashion.) Fragmentwise serializability lies somewhere in the

center of our intuitive correctness - availability spectrum.

*See [11] for an in-depth discussion of the notion of transaction schedules in distributed systems.
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4.4. Moving agents.

Allowing agents to move from node to node can be desirable for a number of reasons. For example, a
bank customer would certainly like to be able to use the automatic teller machines at more than just
one location. As another example, consider an airline database where there is a special fragment for
seat assignments on a flight. Suppose there is a computer node at every airport and consider a flight
which has stop-overs. (Passengers can be discharged and taken at each stop.) It would be desirable, for
maximum availability, to make the computer at the airport where the flight is making a stop the
current agent for the seat assignment fragment (initially the agent is the airport where the flight
originates). Note that in this example the plane can be viewed as a token for the seat assignment
fragment. Another reason for moving agents is node failure. When an agent’s home node goes down,
the agent may wish to re-attach to some other node in the network rather than wait until its home

node comes back up.

Allowing agents to move, however, may endanger not only fragmentwise serializability but also, in
some cases, mutual consistency of replicas. Let A be an agent that decides to move from node X to

node Y (Figure 4.4.1). Let Ty be the last update transaction initiated by A at X, Ty the first update

Figure 4.4.1.

transaction initiated by A at Y after the move has completed. In the absence of any special provisions,
it is possible for T to be initiated before T'; has a chance to reach Y (if, for example there was a break
in communications between X and Y). It is also possible for T's to be received at some other node, say
Z, before T; is received there. It should be clear that such events may lead to vielations of

fragmentwise serializability and even mutual consistency. In both cases, transaction T; was
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delivered late (out of order). Therefore we refer to this as the problem of missing transactions. 1t is

impossible, generally speaking, to circumvent this problem without paying a price in availability.

There are a number of ways to cope with missed transactions. They seem to fall into three categories.
In the first, certain actions are undertaken by the system on a permanent basis, allowing agents to
complete their moves “smoothly.” The second category provides for some special actions by the system
only at the time of a move. Finally, in the third category, agents are allowed to move without any
preparatory actions; however, some actions might be taken after the move to rectify possible
inconsistencies. There is a very large number of actual protocols for moving agents. We do not
attempt here to be complete, nor do we strive for presenting the most efficient protocols. What follows

is just a sample of possibilities, which hopefully gives a flavor of the issues involved.
4.4.1. Permanent preparatory actions.

The following method is suitable for those cases when an agent has to leave its home node, for
whatever reason, and it is not particularly important exactly which node it is going to move to. This
method uses a majority commit protocol. Before a transaction can commit at the agent’s home node,
the corresponding quasi-transaction is sent out to the rest of the nodes, and acknowledgments are
requested. The transaction commits only after acknowledgments have been received from a majority
of the nodes. Then a command is broadeast to commit the quasi-transaction at remote nodes. When
the agent needs to move, a new home node is selected. (The selected node is the one with the token.
Note that if the token was lost because of a failure, it can be reconstituted through an election.) The
agent must then contact a majority of nodes and request an identifier for all previously executed
quasi-transactions on the fragment. If the new home node had missed any of these, it requests them
from the nodes that have them and runs them. This procedure ensures that the home node has seen
all transactions previously executed on the fragment. (Each old transaction was seen by a majority of
nodes. This guarantees that at least one node in the current majority has seen it and gives it to the
new home node.) Now the agent is ready to execute new update transactions. The first of these
receives the sequence number that follows the last transaction, and so on, so that there is a single,
uninterrupted sequence of transactions. (As usual, other nodes execute the corresponding quasi-

transactions in this same order.)

It is not difficult to see that fragmentwise serializability (or global serializability if there are
additional restrictions on read accesses) is preserved with this method. However, the communication
overhead can be significant, and of course, availability is reduced. Specifically, update transactions

can only be processed with the cooperation of a majority group of nodes.
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4.4.2. Actions at the time of the move.
A. Moving with data.

Let A be the agent that moves from node X to node Y. Let T'; be the last update transaction initiated
by A at X, Ty the first update transaction at Y. We require that A transport (by any means available)
a copy of the fragment stored at X to store it in place of the copy of the fragment at site ¥ before
resuming processing. In addition, all other sites are requested not to install updates from transaction
T until those from T'; have been installed. This method guarantees that not only mutual consistency

but also fragmentwise serializability are preserved.

The requirement concerning transportation of data by the agent is not as difficult as it may sound at
first. Consider the following example. A military command post is to be evacuated to avoid the threat
of an enemy attack. The data from the fragment controlled by it can be dumped on tape and
transported to a new location. This guaranteés that the copy of the fragment at the new command
post is now up-to-date. As another example, identification cards with magnetic strips are now
becoming common. The strips in many cases can carry, not just an identifying code, but also real data
(readable and writable). For instance, subway cards record the amount of money a user has available;
copier cards store the number of copies a person is authorized to make. These cards fit our model

exactly. As the agent moves, it carries with it a copy of the fragment it controls.

If the transactions that update a fragment must also read it, it is important that the agent has access
to the most up-to-date version of the fragment. However, in those cases when all transactions are
write-only, there is no need to transport data. Moreover, when these transactions are commutative
(such as incrementing or decrementing some values, or creating new data items), copies of the
fragment at different nodes will be mutually consistent regardless of the order in which they receive
these updates. Hence, fragmentwise serializability is preserved. This was the situation in the
banking example of Section 2. There, deposits and withdrawals simply entered records into the
ACTIVITY fragment. Hence, customers (ACTIVITY agents) could move around without
compromising correctness. (This assumes that withdrawals read the BALAN CE fragment to make a

decision, and not the ACTIVITY fragment itself.)

B. Moving with the sequence number.

With this approach, only the sequence number of the last transaction to run at the old home node is
given to the new home. Let A, X, Y, T, and T’ be as above. Before A can execute Ty at Y, it must

receive the sequence number of T'; from X. This number can either be explicitly requested after the
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move or can be carried by the agent (e.g., in the magnetic strip of a card). Before A executes T, it
must wait until all previous quasi-transactions are received and run at Y. New transactions are given

sequence numbers that follow that of T'.

This method, just as moving with data, preserves fragmentwise serializability. It may result,
however, in decreased availability due to the waiting for old transactions. However, it may be easier

to implement.
4.4.3. Omitting preparatory actions.

In those cases where the previous approaches are infeasible, the only option left is to do the best we
can after the move in order to minimize the effects of missed transactions. As before agent A moves
from node X to node Y. Let Ty, ..., T, be the transactions initiated by A at X, and Ty, ..., Ty, the
transactions initiated by A at Y, after the move. We assume that it is imperative that A start
processing new transactions as soon as it arrives at Y. In such a situation, fragmentwise
serializability can be compromised. However, at least we can guarantee that mutual data consistency

is preserved, by enacting the following protocol.

Let T; (i < r) be the last transaction from X installed at Y before A initiates Ty. Let Z denote any node
in the system different from X and Y. Further, let us assume, that transactions and data items are

timestamped.
A AtnodeY:

(1) Before broadcasting Ty: Broadcast a special message Mo=(Ty, ..., Ty (containing all

transactions from X installed at Y thus far).

(2) Upon receipt of quasi-transaction T; (i < 1 = r) after Mg was broadcast (T; is a missing
transaction that has just been found): Remove from T those updates to items that have
already been overwritten by more recent transactions. Package the remaining updates into a
new transaction T}, where Kk is the next sequence number. Install the updates of Ty locally
and send Ty out as a regular quasi-transaction. If this missing transaction causes an anomaly
that can be detected, then issue the necessary corrective actions. (For example, if after Ty

runs, a flight is overbooked, then cancel one or more reservations.)
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B. At node Z:

(1) Upon receipt of Mq: (Let Tj (j =< r) be the last transaction from X installed at Z.) If j < i,

install transactions Tj+1, ..., T'.

(2) Upon receipt of quasi-transaction Ty (max(i, j) < q < r) after Mg was received (Ty is a
missing transaction): Do not process T,. Instead, forward it to Y, so it can take corrective

actions.
(3) Upon receipt of quasi-transaction Tq (g = 1): Process it as usual, after installing Tq.3.

It is not hard to verify that all copies of data will eventually converge. This method for moving agents
is somewhat similar to the “free-for-all” systems, in that it gives high availability (the agent can start
processing transactions as soon as it arrives at the new home node), and the correctness criterion is
weak. The advantage of this method over “free-for-all” systems is that all decisions concerning

corrective actions for a fragment are centralized.

6. Conclusions.

We have presented a family of strategies for obtaining high data availability in a distributed system.
Within the same framework of fragments and agents we can obtain, as discussed, global

serializability, fragmentwise serializability, or simple mutual consistency.

The basic idea of our approach is quite simple: give control of the data to the users or nodes who
actually need it. This avoids many synchronization conflicts, while at the same time making data

available to those who need it.

Due to space limitations, there are a number of interesting issues that are not covered here. As we
have stated, it is essential to design the database correctly, if one is to fully take advantage of our
approach. In [7], we have outlined some guidelines for good design. These include ways for properly
partitioning the database into fragments, strategies for avoiding multi-fragment transactions, and

techniques for minimizing the number inter-fragment consistency constraints.

Our approach can be generalized for dealing with transactions that update multiple fragments and
with databases that are not fully replicated. Finally, it is also possible to combine several of our
strategies in a single system. Since all of our strategies are based on the same framework, this

combination is not difficult. Hence it is possible to guarantee mutual consistency for some fragments
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(with the mechanism of Section 4.4.3, say), fragmentwise serializability for a set of other fragments
(with any of several techniques), and conventional serializability within another group (by having
read-access restrictions, say). This gives us even greater flexibility in tailoring a system to the

correctness and-availability requirements of the users.
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8. Appendix.

(This appendix contains a proof of the theorem of Section 4.2. If this paper is accepted for publication,
we plan to delete this appendix and refer the reader to our extended report [7]. In other words, we
include this proof here just in case the referees wish to see it. However, if the referees want it in the

final version and there is space for it, we will be glad to leave in.)
Definition 8.1. A transaction T}is of type F; (tp(T}) =F;) if T; is initiated by A(F}).

Definition 8.2. The global serialization graph (g.s.g.) is a directed graph whose vertex set is the entire
set of transactions executed by the system and whose set of edges is computed according to the

following rules:

(i) For two transactions T; and T; such that ¢p(Ty) =tp(T}), it is determined whether there is a

directed edge between them according to the standard dependency rules for centralized databases.

(ii) Let tp(Ty) =Fq, tp(T;) =F (q*r), and let (Fg, ) be an edge in the read-access graph. Then if .
there is a data item d € F, that is read by T; and updated by T'j, and the update to d produced by T}
is installed in the copy of the database at the home node of A(F,) before T'; reads d, put in edge (T},
T,); if the update is installed after T; reads d, put in edge (77, T).

Definition 8.3. The local serialization graph (1.s.g.) for fragment F| is a directed graph whose vertex
set contains all transactions T such that ¢p(T;) =F;or tp(T;) =F and (F;, Fg) is an edge in the read-

access graph. Its edges are computed according to the following rules:

(i) For two transactions T and T}, such that ¢p( Ty =tp(T;) =F; itis determined whether there isa

directed edge between them aceording to the standard dependency rules for centralized databases.

(ii) Edges between a local transaction (of type F;) and a non-local one are computed as in (ii) of
Definition 8.2.

(iii) For a pair of non-local transactions of the same type, T; and T}, put in edge (T}, T;) if Ty 1s
installed at the home node of A(F;) before T, edge (T}, T) otherwise.

(iv) If T;and T are non-local transactions of different types, then there is no edge between them.
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Theorem. The global serialization graph is acyclic if all the local serialization graphs are acyclic and

the read-access graph is elementarily acyclic.*
Proof.

We assume that local transactions executed at the same node are broadcast in the order imposed by
the relevant 1.s.g. The broadcast mechanism, then, ensures that they are received at remote sites in

the same order.

To simplify the proof we assume that the number of fragments equals the number of nodes in the
system (n), every agent controls exactly one fragment, and, finally, there is exactly one agent at every

node. Later on we shall show how to lift these restriction preserving the result of the theorem.

The proof uses induction on n. For n=1 there is only one l.s.g. and it is equivalent to the g.s.g., thus
the theorem trivially holds. Suppose it also holds for some n-I and consider a database consisting of n
fragments, with the read-access graph (call it R7) satisfying the condition of the theorem. Since Rn is
elementarily acyclic, there must be a vertex in it, say Fg, which is a head or a tail of only one edge.

Consider the following two cases.

Case 1. F is the tail of a single edge (and there are no edges incident upon F,). Let F- be the head of
this edge (see Figure 8.1). Let Rn-! denote the graph that results from R» after deleting F; and the
edge that emanates from it. Rn-! is the read-access graph for a database consisting of n-I fragments.
Let Gn denote the g.s.g. of the original database. Similarly, let G-I denote the g.s.g. of the database
with fragment F, removed, that is, with all transactions of type F deleted. Finally, let Ln(F;) be the
Ls.g. for fragment F;, i=1, ...,n, in the original database, and Lrn-1(F;) , the l.s.g. for fragment F,
i=1,..,g-1,q+1, ..., n,in the reduced database. Notice that Ln(F)=Ln-1(F;),fori=1,...,q-1,q+1, ...,
n. This is true because there are no read-access edges incident upon the removed fragment ;. Hence,
L~F;) (i = q) cannot have any vertices representing transactions originating from A(F,) (see
Definition 8.3).

*Note that this theorem was formulated in slightly different terms in Section 4.2.

It is intuitively clear, and can be proven rigorously, that acyelicity of the g.s.g. is equivalent to
serializability of the global transaction schedule in a distributed database system. Also,local
concurrency control mechanisms will guarantee that all the 1.s.g.’s are acyclic.
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If G had a cycle containing no transactions of type Fy, Gn would also have a cycle. However, our
induction hypothesis tells us that if R»-1 is elementarily acyclic and all L»-1(F;) (i = q) are acyclic,
then Gn-1 is acyclic. Since both conditions are true (LY(Fy =Ln-1(F;) (i = q), which is acyclic), then we

have a contradiction.

So we can assume that any cycle in Gn contains at least one transaction of type F. Let C=(Ty, ..., Tk,
T;) be one such cycle (see Figure 8.2). Let u be the number of paths on this cycle consisting
exclusively of transactions of type Fy (in Figure 8.2, u=3). For j=1, ..., u; let le be the vertex on C
that immediately precedes the j-th path, and ij, the vertex that immediately follows it. Since F' is
the only vertex in Rr that shares an edge with Fg, we can conclude that ¢p( T,_rj) =tp( ij)‘—-F », for all
j=1, ..., u. Finally, let P denote the collection of (disjoint) paths on C consisting of transactions that

are not of type F,.

We will prove, by induction on u, that P cannot be totally contained in Ln(F,). First, let u=1. Then G»
contains a path from a path X=(Ty, Ts,, -, Thg, Tp,), where p(Th)= .- :tp(Thg) =F4 and
tp(Ty) =tp(T,) =F. In this case, P consists of just one path, a path from Tp,, to T;,. Now, let us look
at Ln(F,) and assume that P is contained in it. Recall that L»(F,) represents the dependencies at the
home node of A(F,). Thus, the existence of P in L(F,) implies that T, must have been executed by
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Figure 8.2.

A(F,) before Ty,. This, in turn, implies that their updates at the home node of A(F,) were installed in
this same order. Therefore, there is an edge (T, T1,) in LM(Fg). Furthermore, X is totally contained

in Ln(F,), so L(Fy) has a cycle, a contradiction. Thus, for u=1, P cannot be totally contained in
Ln(F,).

Proceeding by induction, suppose that for some u-1, P cannot be totally contained in L(F ). Assume C
has u paths on it consisting exclusively of transactions of type Fy. As before, let X be one of these

paths. We will use cycle C to construct a shorter cycle that cannot exist. This will prove that C itself
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does not exist. Let us introduce a new data item into fragment F,, i.e., let us replace F,. by F.*=F, U
{a}, where a€F,. Also, let us introduce in the transaction schedule at the home node of A(F,) two new

actions, one belonging to T; and the other, to T, , in the order given below:
(Tyr 0
(T, w,a)

This will create an edge (T, Try,) in G". The same edge will also appear in Ln(F,) (if it was not there
before) but it will not create a cycle in it. (If it did, then there would be a cycle in Gr containing only
one path consisting exclusively of transactions of type F; (u=1), which was shown not to be possible.)
Let us call the trick of creating a new edge between two transactions by means of adding a new data
item shortcutting. In this case, when we shorteut from Ty, to Tp,,, we end up with a eyele in G that
contains u-I paths of the above mentioned kind, which contradiets the induction hypothesis. Thus, we

conclude that C cannot exist.

So we are forced to assume that, if a cycle C exists in Gn, P is not totally contained in L»(F,). Let us
consider, once again, the reduced database, without fragment F,. C loses all transactions of type F,
and each gap in C is bounded by nodes of type F,. Therefore, we can shorteut all such gaps, which
produces a cycle in Gn-1. At the same time, we know that Lr-1(F;), i # q, r, are still acyclic.
Furthermore, Ln-1(F,) is also acyclic, in spite of the shortcuts we have introduced. (In particular, since
P is not contained in Lrn-I(F,), the new cycle will not be in Ln-I(F,) either.) In addition, Rn-1 is
elementarily acyclic. Thus, our inductive hypothesis implies that G-I is acyclic. This contradiction

means that Gn is acyclic. This completes the inductive proof.

Case 2. Assume that Fj; is the head of the only edge that touches it (Gn looks just like in Figure 8.1,
except edge (F, F;) is replaced by edge (F, Fg)). Let Cbe a cycle in G#, and let P be as before. Since in
this case L(F,) contains all transactions of type F, P cannot be totally contained in L*(F) (otherwise
P plus transactions of type F; would complete cycle C within L7(F})). Thus, if we leave out fragment
F4 and shortcut the gaps in C, we will have an acyclic Ln-1(F,), whereas Gn-1 will have a cycle, which

contradicts the induction hypothesis.

In the beginning of the proof, we made an assumption that there is one fragment per agent per node.
If an agent controls more than one fragment, in reality, the agent can be split conceptually into
several agents controlling just one fragment each. Similarly, when more than one agent share the
same home node, this node can be viewed, for the purposes of the proof, as several nodes housing just

one agent each. This completes the proof of the theorem.
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