Array Access Bounds For
Block Storage Memory Systems

Arvin Park
K. Balasubramanian
Richard J. Lipton

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

CS-TR-042-86
July 1, 1986

Abstract

This paper explores array storage and access strategies on block storage devices
(interleaved memories, RAM disks, and disk drives). A tradeoff is exhibited for row
access speed and column access speed, and an optimal upper bound for their product
is established. Practical array access strategies are discussed as well as extensions
and further research.

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and by the Office
of Naval Research under Contracts Nos. N00014-85-C-0446 and N00014-85-K-0465, and by the National Science Foundation
under Cooperative Agreement No. DCR-8420948. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

1. Introduction

Paging performance can be a dominating factor in an application’s running time
[1]. Many seemingly efficient data structures and algorithms lose orders of
magnitude in performance because they generate an excessive number of page
faults. Several papers have been written on array storage schemes in paged memory
systems [2][3][4]. McKellar and Coffman [2] noted the performance advantages of
storing submatricies on pages instead of the standard row or column major formats
(Figure 1). Fischer and Probert [3] have developed efficient methods of reorganizing

| |
MEENEEEY S Bloekt | 1 L1 J_ L1 1L
Blockl | Block2 | Block3 Block 2
T T Block 3
e — +-— +—--- S B B I I
5 5 4 1 " pcond O I AR SEW 207 L5 K U4
Block4 | Block5 | Block6 Block 5
— T T] B I B
Block 6
.__}_,,__‘_.,__.._ EARERLMEN
b, 4 o E b8 T S N e W O P
Block7 | Block8 | Block9 Block 8
< T T E S T OV (PR G RPSR LT N bl
fol sl 1 8- Block 9
Submatrix Format Row Major Format
Figure 1

a row or column oriented matrix into submatrix form. This paper extends these
results by showing that tradeoffs exist between average row access speed S, (which
is defined as number of row elements retrieved divided by the number of blocks
accessed) and average column access speed S. (defined similarly). We prove the S,.S.
product is optimally upper bounded by the block size N. Practical array access
strategies are developed and extensions to these results are discussed.

2. Model

Block storage devices span an entire range of block sizes and access times: Cache
lines and interleaved semiconductor stores support block sizes from one to several
dozens of words and have access times measured in hundreds of nanoseconds;
Rotating storage supports block sizes of hundreds to thousands of words and access

times in the tens of milliseconds; RAM disks, CCD, and magnetic bubble stores fit
between these two extremes in block sizes and access times.

To analyze array storage schemes for all of these different systems we have
developed a simple model. We assume a block memory system is a set of L storage
“blocks” of exactly N data elements (words). We will measure performance by the
number of “page pulls” required by an application to perform its task.

We define data set as the entire collection of data elements (words) which is
stored in the memory system. We define an allocation as an assignment of elements
of the data set onto blocks of the storage device. We define an access vector as a
subset of the data set which we desire to access. For example columns or rows of an
array would be common access vectors.

Arrays are assumed to be two dimensional although extensions to further
dimensions can be made. Performance on several types of access vectors will be
evaluated; Rows, Columns, Diagonals, Back-Diagonals, and Rectangular Blocks.
Although other many more access vectors are possible these are by far the most
prevalent [6][8][9].

Allocations

To achieve maximal performance it is necessary to allocate the array elements to
blocks of the storage device minimizing the total number of blocks referenced on a
set of access vectors. This is difficult even if the set of access vectors are known in
advance. For a fixed allocation, the number of vectors of a given size which fit
exactly onto the minimum number of blocks is a great deal smaller than the number
of possible vectors.

Assume an access vector is of size V, and that N (the number of elements in a
block) divides V. The entire data set consists of KN elements and fits neatly into K
blocks of the storage device. For a fixed allocation there exists

(VIfN)

possible access vectors of size V that fit exactly into K blocks. This is in contrast to

G)

possible vectors of size V. The ratio of these two quantities is:

K K

(VIN) _ (K-VINXVIN)! __ KIV1 (KN-W)!
KN \ KN! " KNU(VIN)(K - VIN)!

(v) (KN-WI'W

Using Stirling’s Approximation this becomes:
K v _yv \(EN-W)
(2;110”2(-e-) (mmm(Z) (m(KN—W)m(KNe A)
e
KN
) (2nVIN)

~

anc (2
€

VIN VIN K—VIN (K-VIN)
”2(i) (Zn(K—-VIN))m()
e

e

_ U2+ VIN = V) (=N + 1) [(V=VIN) (KN -V - K+ VIN) _ (L)V

K-VI
: " KN

SIZE OF VECTOR)(SIZE OFVECTOR)
= (SIZE OF DATA SET

This is a very small number if the data set is much larger than the desired vector.

Row-Column Bound

There is a tradeoff between facility in accessing rows and in accessing columns.
For example, if an array is stored in row major form (blocks contain adjacent row
elements) rows can be accessed very quickly. For each block accessed all the
elements can be used. At the same time column access becomes slow (For each block
accessed only one element can be used). This tradeoff can be bounded. We define
average row access speed as an average over all rows in the array, of the number
of elements in a row divided by the number of blocks which contain elements of the
row. If a row was of size N and was contained entirely on one block of size N, the
access speed for that row would be N. If the same row was contained on N separate

blocks the row access speed would be 1. Average column access speed is defined
analogously.

For any two dimensional array A that is partitioned into blocks of size N without
replication of elements, i.e., each element is stored in one and only one block (it
should be obvious that storing the same element twice in the same block cannot be of
any advantage), the average row access speed S, multiplied by the average column
access speed S, is less than or equal to N. S,S; = N. This not only applies to rows
and columns, but any two orthogonal partitions of the array: A partition K of a

data set D, is a set of disjoint subsets of D that spans D (an individual disjoint subset
is called a member of K). Two partitions A,B of a data set D are said to be
orthogonal iff Va;€ AAVbj€B,a;Nbj={d},d€Dor a;Nbj=D,and a;N b =
ap N b; © i=k and j = I. Two partitions, A and B, will be called completely
orthogonal iff they are orthogonal and Va; € A A Vb; € B,| a; N bj|= 1. We now
establish Theorem 1.

Theorem 1: Given any two orthogonal partitions A, B of a data set D and an
allocation of D onto blocks of size N without replication. The average partition
access speed on A ‘S,’ multiplied by the average partition access speed on B °S;’ is
bounded by N. S,S, = N.

We first establish two lemmas:

Lemma1:Vx,y€Z*, x/y + y/x = 2

Proof:

:c2+y2

v
]

=2 =

R 1%

G-9'20 = P-2y+3> 20 = F+y =2y =

e IR

xy

Lemma 2: For any set of p positive integers x, (i=1,2,3 ... p)
Proof:

By Lemma one:

122 1) \
25222=§(2)p = p

We can now proceed with the proof of the theorem. Let M be the number of blocks
in data set D, where each block is of size N. Let A and B (e.g., rows and columns) be
two orthogonal partitions of D. Each block i of data set D intersects r; different
members of A (rows) and c; different members of B (columns). An intersection
between a block i and a partition element of A is called an A-fragment of i. Let k; =
N/r;and j; = Nlc;.

o 05
T K% Block i B335

P

Figure 2

The orthogonality property of A and B, implies the following:

re = N
Suppose this were not true:

re, < N

The sum of all of the r; A-fragments of a block i equals N, this implies that the

average fragment is of size greater than ¢;. By orthogonality each A-fragment and
B-fragment can intersect in at most one element. So block i must intersect more
than ¢; members of B. Contradiction! We now establish two inequalities.

rc.Z2N=Nir.<c.=k.sc¢. (1)

i1 i i 1] i
rc.2N=Nlc.=r.=j =r, (2)
| 2 4 1 i 1

We now proceed with the main proof.

Data Set Size _ NM Data Set Size _ NMm

A~ Number of Fragments M B~ Number of Fragments M
r. i
El : Eﬁ
o N2 r Nm?
AB M M MM
D ;E i

Using inequality number 1:

4 Ne N NM?
M M

N MIM Mkj
2iteh MR, N2 2.5

i=1"ij=1 i=1%ij=1 i=1j=1%

I

Using Lemma 2:

W

2

=

N
NM
Done.

This bound is optimal since it can be attained for any pair of completely
orthogonal partitions of a data set. Produce an optimal allocation for partitions A
and B of data set D in the following manner. Find a number C < N that divides N.
Divide the members (rows) of A into disjoint groups of size N/C. Call the set of these
groups A*. Divide the members (columns) of B into disjoint groups of size C. Call the
set of these groups B*. For each pair (x,y), where x € A* and y € B¥, Produce a block
Gy,y which has the following N elements.

ViexAVjeEy
Gx.y = U inj
Now each member of A that we want to access is distributed in fragments of size
N/C across different blocks of the allocation. Members of B are similarly distributed
in fragments of size C. The A access speed “S,” is therefore S, = N/C, and the B
access speed, Sp = C. The product of these two, S,S; = N, which meets the upper
bound of Theorem 1. This upper bound is therefore optimal.

Rectangular blocks achieve this upper bound for the row-column tradeoff. Various
diamonds and parallelograms achieve the bound for combinations of rows, diagonals,
columns, and back-diagonals (Figure 3). Diagonals and back diagonals intersect
differently than the other combinations of rows, columns, diagonals, and back-

Row-Column Row-Diagonal Row-Back Diagonal

- N/C —»

A

Column-Diagonal Column-Back Diagonal Diagonal-Back Diagonal

N v

N/C

Q —»

Figure 3 /

diagonals. Thisis because a given diagonal does not intersect every back diagonal it
crosses. A matrix is divided into two disjoint sets of diagonals and back diagonals
that intersect like the red and black squares of a checker board.

Three Way Access Bounds

How does this bound extend to accesses along three different partitions of the array?
(for instance rows, columns, and diagonals) A bound can be arrived at by noting that
each pair of access vectors must be constrained by the pairwise bound S,S, = N.
This gives us Theorem 2,

Theorem 2: Given any any three orthogonal partitions A, B, and C, of a data set D,
and an allocation of D onto blocks of size N without replication. The product of the
average partition access speeds on A, B, and C in bounded by N*2.S,S,S, = N32,

Proof: Assume we have three orthogonal partitions A, B, and C of data set D. From
Theorem one we have S,S, = N,S,S, = N,and S;S, = N. Theseimply:

S, = NIS;, S; = NI/S; S, = NISz,and S, = NIS; »
S,SpS. = (NISNIS)S, = N2/S(, 8,858, = (N/S,)Sy(NISy) = N2/S, »
Multiplying we get:
(S,S58.)2 = (N2/S)(N2/Sp) = N4/SgS, = N3
S,8pS, = N3/2
This bound can be achieved for rows, columns and wrap-around diagonals. Wrap
around diagonals are diagonals that intersect every row and column of the array.
More precisely, given an array element (R,C), it belongs to a wrap-around diagonal

consisting of array elements ((R + I) mod row size, (C + I) mod column size) for all
integers I (Figure 4).

%.

%

%

%

%

%

A Wrap Around Diagonal

Figure 4

The bound can be achieved for an M X M array with block sizes N (assume N7
divides M). Divide the array into N submatricies of size (M/N'?2) X (M/N'?). Now
construct blocks of size N by taking one element from the same position in each of the
N submatricies of the array. This will yield M%N blocks of size N. Each row,

column, or back diagonal of size M is contained on M/N'? different blocks. Hence
each row, column, and back-diagonal has access speed N2, The product of the three
access speeds is then N®? which meets the upper bound of Theorem 2. Figure 5
illustrates the construction for the case where M = 9and N = 9.

A % 7//‘\
I |
| dar I i I 44 / /%
A | 7 % D%
T i}
& B o i 7 i % Block
I I
| T
Figure 5 Matrix

We have not been able to achieve the N*2 bound for conventional diagonals, rows
and columns. N2 X N2 Submatrix blocks achieve a N3%/2 product for diagonal,
row, and column access speeds which is within a factor of two of the upper bound in
Theorem 2. We conjecture that the N*2 product cannot be achieved for row, column,
and diagonal access speeds. This bound will be the focus of future research.

Array Access Strategies

The row-column speed bound suggests strategies for array storage if the relative
frequencies of row and column accesses are known beforehand. For example, if a
particular application accesses random rows and columns. The row accesses occur
with probability a and column accesses occur with probability 1- a. We can produce
an allocation that minimizes the total execution time.

Let the row size be R > > N and column size be C > > N. N is the block size. We
will allocate rectangular sections of the array onto different blocks. Assume these
blocks are of width w and length N/w (1 = w = N). Let A be the total number of
accesses. The total execution time is then given by the expression.

10

(el)+ a-ad 50))

We minimize this by taking the derivative with respect to w and setting the
resulting expression equal to zero.

& oen2) s a-o)=

From this we find that the total execution time is minimized when:
~((=)E W)
aiton 1—=a/\C

Let us take an example involving data motion between cache and main memory.
suppose the cache has a line size of sixteen words. Assume that data can be
referenced from the cache every 100 nanoseconds while a cache fault takes 1
microsecond to process. Also assume that instruction execution time is insignificant
(this is not a bad assumption if most of the code resides in a separate instruction
cache). Suppose rows and columns are of equal length, and that rows are referenced
half of the time and columns are referenced half of the time. Using the formula for w
above, we see that the blocks should be of width four and length four. Let’s compare
this storage scheme to the conventional row major scheme.

Average access time per word (row major)
= 1/2(avg. word access time for row) + 1/2(avg. word access time for column)
= 1/2((1/16)1000ns +(15/16)100ns) + 1/2(1000ns) = 578.125ns

Average access time per word (4X4 blocks)
= 1/2(avg. word access time for row) + 1/2(avg. word access time for column)
= 1/2((1/4)1000ns + (3/4)100ns) + 1/2((1/4)1000ns +(3/4)100ns) = 325ns

The new storage scheme gained a factor of two in performance! Of course the row
column access patterns become more complicated, and this leads to more complicated
coding or compilation, but in some applications this is the only way to achieve
optimal performance.

11

The benefits of this type of storage become even more pronounced as the block
sizes increase. In computations that require numerous accesses to RAM disk, CCD
memory, or rotating storage devices even larger gains can be realized.

A note on diagonals

It should be noted that diagonals/back-diagonals are not completely orthogonal
to rows/columns even though (see figure 3) it seems that we have a parallelogram
shape that seems to tile the plane and achieve the bound of N for the product of row-
diagonal speedups. This is because the arrays we are dealing with are rectangular so
diagonals and back-diagonals do not fit "neatly” along the boundaries of the array.
These ‘edge effects’ lead to a speedup somewhat smaller than that which can be
achieved for rows and columns. These edge effects diminish in importance as the
arrays get larger , and in fact for arrays that extend to infinity on all four sides, rows
and diagonals are completely orthogonal! However even with rows (& columns)
being completely orthogonal to diagonals (back-diagonals) for ‘infinite’ arrays, it
still does not seem possible to achieve more than N*%2 for the product of row-
column-diagonal speedup. It is also noteworthy that diagonals and back-diagonals do
not form a pair of completely orthogonal partitions of the array elements but rather
two pairs of orthogonal partitions of two disjoint subsets of the array elements! This
seems to indicate some basic structural differences between rows/columns and
diagonals/back-diagonals which needs to be investigated further.

Conclusions and Future Research

We have shown that the product of access speeds for any two of (row, column,
diagonal, back-diagonal) is optimally upper bounded by the block size N. This was
extended to show that the product any three access speeds (row, column, diagonal,
back-diagonal) is upper bounded by N32, This three way bound can be met for rows,
columns, and wrap around diagonals, but it remains and open question if this bound
can be met for rows columns and regular diagonals.

Future research will involve extending these bounds to multidimensional arrays

and examining the advantages of redundant storage (storing a single array element
on more than one block).

12

References

[1] A. Park. H. Garcia-Molina, "Performance Through Massive Memory”, Internal
Report, Department of Computer Science, Princeton University, June 1986.

[2] A. C. McKellar, E. G. Coffman, Jr., "Organizing Matricies and Matrix Operations
for Paged Memory Systems”, Communications of the ACM, Volume 12, Number 3,
March 1969.

[8] P. C. Fischer, R. L. Probert, "Storage Reorganization Techniques for Matrix
Computation in a Paging Environment”, Communications of the ACM, Volume 22,
Number 7, July 1979.

[4] C. B. Moler, "Matrix Computations with Fortran and Paging”, Communications
of the ACM, Volume 15, Number 4, April 1972.

[5] K. E. Batcher, "The Multidimensional Access Memory in STARAN,” IEEE
Transactions on Computers, Volume C-26, Number 2, pp. 174-177, February 1977.

[6] P. Budnick, D. J. Kuck, "The Organization and Use of Parallel Memories”, IEEE
Transactions on Computers, Volume C-20, Number 12, pp. 1566-1569, December
1971.

[7] T. Feng, "Data Manipulating Functions in Parallel Processors and Their
Implementations”, IEEE Transactions on Computers, Volume C-23, Number 3, pp.
309-318, March 1974.

[8] D. H. Lawrie, "Access and Alignment of Data in an Array Processor,” IEEE
Transactions on Computers, Volume C-24, Number 12, pp. 1145-1155, December
1975.

[9] D. H. Lawrie, "The Prime Memory System for Array Access,” IEEE Transactions
on Computers, Volume C-31, Number 5, pp. 134-141, May 1982.

13

[10] C. V. Ravi, “On the Bandwidth and Interference in Interleaved Memory
Systems,” IEEE Transactions on Computers, Volume C-21, Number 8, August 1972.

14

