BUS PARTITIONABILITY AND PARALLEL PERMUTATIONS

Bruce W. Arden
College of Engineering and Applied Science
University of Rochester

Toshio Nakatani
Department of Computer Science
Princeton University
CS-TR-041-86

May, 1986



Bus Partitionability and Parallel Permutations

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627

Toshio Nakatant

Department of Computer Science
Princeton University

Princeton, N.J. 08544

ABSTRACT

This memo provides an answer to the question whether bus-
partitionability can improve the performance of parallel permuta-
tions. With permutations, no further reduction in time, due to
increased parallelism, is possible through the use of partitionable

buses.

May, 1986



Bus Partitionability and Parallel Permutations

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627

Toshio Nakatant

Department of Computer Science
Princeton University
Princeton, N.J. 08544

1. Introduction

We have shown that a square grid of superposed parallel buses (Arden and
Nakatani[1986a, 1986b]) has the best time performance for permutations among
the linear-area interconnection networks that have been reported so far.
Naturally, for the next step, the question arises whether the performance of per-
mutations can be improved by bus-partitionability. By partitionability, we
mean that the bus can be separated into arbitrary, contiguous segments. If the
system can be partitioned into many subsystems that can work independently
in parallel, then the time to perform an arbitrary permutation may be
improved. This is the case for the divide-and-conquer algorithms {Arden and

Ginosar [1982]).

In this memo, we prove that bus-partitionability cannot improve the per-
formance of permutations. That is, it is shown that some permutations, such as
a bit-reversal permutation, require the same number of steps whether the buses
involved are partitioned or non-partitioned. This is true for both linear and

superposed parallel buses.



¥

2. Permutations on a partitionable linear bus

An arbitrary permutation can be performed in N cycles by N processors
connected by a linear bus (Figure 2.1). A cycle is the time to make one packet
transfer on a bus. Here, we assume that only one processor can send a packet
on a linear bus, while all the other processors monitor the bus. If a bus can be
partitioned into arbitrary, contiguous segments, then the processors in each par-
tition can communicate with each other independently of the processors in other
partitions. That is, bus partitionability induces parallelism. Divide-and-conquer
algorithms nicely fit this structure. However, we prove by the following theorem

that this is not the case for permutations:

Theorem 2.1: There exist some permutations that take the same number of

cycles on a partitionable, linear bus as a non-partitionable one.

Proof: We assume direct transfers of packets, that is, no intermediate storage
of packets, but it is easily shown that no improvement can be made even with
intermediate storage. Consider a bit-reversal permutation (Figure 2.2). First,
we partition the bus into two halves of equal size. Since every packet must cross
the boundary, we cannot partition the bus until every processor finishes sending
and receiving a packet. When the bus is ready to be partitioned, no processor
has a packet to send and receive any more. Similarly, wherever a partition is
made, the bus cannot be partitioned until all the processors in one partition
finish sending and receiving a packet. When the bus is ready to be partitioned,
there is no packet left to send and receive in that partition. Therefore, bus-

partitionability does not decrease the total time.O



L8

3. Permutations on a Partitionable Superposed Parallel Buses

N=n> processors can be organized as a nXn square grid and the proces-
sors on the same row or the same column are connected by a linear bus, where
a set of n horizontal buses and a set of n vertical buses are superposed (Figure
3.1). An arbitrary permutation can be performed in n+1 cycles, if it is pre-
scheduled. An arbitrary permutation can be performed dynamically in 2n cycles
without pre-scheduling. Similar to the linear bus, we can assume partitionable
buses for the grid of superposed parallel buses so that a nXn square grid of
processors can be partitioned into arbitrary, rectangular or square segments.
However, as in the case of the linear bus, the performance of permutations can-

not be improved:

Theorem 3.2: There exist some permutations that take the same number of
cycles on a square grid of partitionable, superposed parallel buses as on a non-

partitionable one.

Proof: We again assume direct transfers of packets, that is, no intermediate
storage of packets, but it is easily shown that no improvement can be made
even with intermediate storage. Consider again a bit-reversal permutation (Fig-
ure 3.2). First, we partition a square grid into two halves; the upper half and
the lower half. Since every packet must cross the boundary, we cannot parti-
tion the buses until every processor finishes sending and receiving a packet.
When the buses are ready to be partitioned, no processor has a packet to send.
Second, we partition a square grid into four quarters; the upper left, the upper
right, the lower left, and the lower right. Every processor in the upper left
quarter must send and receive a packet to and from the lower right quarter.
Similarly, every processor in the upper right quarter must send and receive a
packet to and from the lower left quarter. Therefore, we cannot partition the

buses until all the processors finish sending and receiving a packet. In general,



- 4-

wherever partitions are made, we cannot partition the buses until all the pro-
cessors in one partition finish sending and receiving a packet. When the buses
are ready to be partitioned, there is no packet left to send and receive in that
partition. Therefore, bus-partitionability does not reduce the time required for

the permutation.O

4. Conclusions

In this memo, it is proved by example that bus-partitionabilty does not
improve the performance of permutations on a linear bus or a square grid of
superposed parallel buses. Intuitively, there are permutations, for example, a
bit-reversal permutation, in which all transmission path lengths are “long’.
Partitionability introduces parallelism when there are short paths that can be

used concurrently on the same bus.

References

Arden, B. and R. Ginosar [1982]. “MP/C: A multiprocessor/computer architec-

ture,” IEEE Trans. on Computer C-31:5, pp. 455-473.

Arden, B. W. and T. Nakatani [1986a]. ‘Permutations on superposed parallel
buses,” Technical Report CS-24, Department of Computer Science, Princeton

University.

Arden, B. W. and T. Nakatani [1986b]. ‘“The optimal uniform schedules of
arbitrary static permutations on superposed parallel buses,” Technical Report

CS-33, Department of Computer Science, Princeton University.



OOOOOOO O

O . a processor

Figure 2.1a: A linear bus

585553

Figure 2.1b: A partitionable linear bus




COOOOO OO

Figure 2.2a: Source addresses

Figure 2.2b: Destination addresses (a bit-reversal permutation)



Salealeaton
A olo]e

olelo] e
Aelole

Figure 3.1a: A square grid of superposed parallel buses

7

Figure 3.1b: A square grid of partitionable superposed parallel buses



&

-
&
o

CH O~

Figure 3.2a: Source addresses

Figure 3.2b: Destination addresses (a bit-reversal permutation)



