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ABSTRACT

The paper presents k-way bitonic sort, which is the generali-
zation of Batcher’s bitonic sort. K-way bitonic sort is based on
the k-way decomposition scheme instead of two-way decomposi-
tion. We prove that Batcher’s bitonic sequence decomposition
theorem still holds with multi-way decomposition. This leads to
the applications of the sorting network with bitonic sorters of arbi-

trary or mixed sizes.
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1. Introduction

Batcher’s bitonic sort (Batcher[1968] and Knuth[1973])) has been studied
extensively. Stone has described the bitonic sort on the single-stage shuffle-
exchange network (Stone[1971]). He has also implemented it on the STAR vee-
tor processor (Stone[1978]). Orcutt has implemented the bitonic sort on the
ILLIAC-IV (Orcutt[1976]). Thompson and Kung have shown improved time
complexity for the bité)nic sort on a mesh-connected processor by adopting the
shuffle-row-major ordering (Thompson and Kung [1977]). Nassimi and Sahni
have also made a different adaptation of the bitonic sort on a mesh-connected
processor achieving the same time complexity based on the row-major ordering
(Nassimi and Sahni[1979]). Meertens has studied the bitonic sort on the Ultra-
computer (Meertens[1979]). Jayanata and Hsiao have used the bitonic sort for
a data-base machine design (Jayanata and Hsiao[1979]). Chung, Luccio, and
Wong have studied the bitonic sort for magnetic bubble memory systems

(Chung, Luccio, and Wong[1980]).

For VLSI implementation, Preparata and Vuillemin have studied the adap-
tation of the bitonic sort on the cube-connected-cycles network (Preparata and

Vuillemin[1981]). Nath, Maheshwari, and Bhatt have adapted the bitonic sort
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to the orthogonal tree (or mesh-of-trees) (Nath, Maheshwari, and Bhatt[1983]).
Bonuccelli and Pagli[1984] have taken a similar approach on the mesh-of-trees
for external sorting (Bonueccelli and Pagli[1984]). Bilardi and Preparata have
designed an optimal VLSI architecture for the bitonic sort (Bilardi and
Preparata[1984]). Thompson has made an extensive survey for parallel sorting
including various bitonic sorting schemes in terms of VLSI complexity (Thomp-
son[1983]). Loui has studied the bitonic sort in the context of distributed com-
puting (Loui[1984]). More recently, several people have implemented the bitonic
sort using reduced hardware (Ja’ Ja’ and Owen[1984], Owen and Ja’ Ja’[1985],
Hsiao and Shen[1985], and Tseng, Hwang, and kumar[1985]).

All of these efforts are based on the two-way decomposition of the original
Batcher’s bitonic sort. In this paper, we present k-way bitonic sort, which is
the generalization of Batcher’s bitonic sort. K-way bitonic sort is based on a
k-way decomposition scheme instead of two-way decomposition. We prove that
Batcher’s bitonic sequence decomposition theorem still holds with multi-way
decomposition. This leads to the application of the sorting network with bitonic
sorters of arbitrary or mixed sizes. In section 2, we describe mathematical nota-
tion and definitions. In section 3, we prove the main theorem and several corol-

laries.

2. Mathematical Notation and Definitions
In this section, notation and definitions are described for later use.

Definition 1: A sequence of real numbers is denoted as a={a a,, ..., a,}.
The length of a sequence a is denoted as |a|=n. A subsequence of the
sequence is a subset of the sequence with preserved order. Especially, a part of
the sequence is denoted as aljb={a1,a2,...at} and a, =0ty x o 158, ) Tor

1<t<n. For the subsequence b of a sequence a, the complement of b in a is
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denoted as a—b. A concatenation of the two sequences a={a1, C an} and
b={b,,...,b,}is denoted as a.b={a, ..., a b, ..., b, }-

Definition 2: If a sequence is sorted in ascending order, then it is denoted as
aT={al,a2, au 5 gy ) Dl B <a,}. If it is sorted in descending order,

then it is denoted as al={a,,a,, . .., 0, | ¢,20,> - >a }. If it is sorted in

n

either ascending or descending order, then it is called monotonic and denoted as

Bty o o0l | 650K Kl OF 8202 C 5 2d )

Definition 3: If any element of the sequence a is no larger than any element of
the sequence b, then it is denoted as a<b. Similarly, if any element of the

sequence a is no smaller than the sequence b, then it is denoted as a>b.
Definition 4: A sequence of real numbers a is bitonsc if

1) it is a concatination of a monotonically increasing sequence b{ and a
monotonically decreasing sequence ¢ |, that is a=b f.c ], where either b1

or ¢} can be empty: or if
2) the sequence a can be shifted cyclically so that condition 1 is satisfied.
A bitonic sequence is denoted a.
Fact 1: A subsequence of a bitonic sequence is bitonic.
Fact 2: a ].b 1 is bitonic.
Fact 3: a].b ] and af.b{ are not necessarily bitonic.

Fact 4: If a>b, then al.b] is bitonic. Similarly, if a<b, then at.b{ is

bitonic.

Fact 5: If a>c, then at.bl.ct is bitonic. Similarly, if a<c, then a}.bt.c]

is bitonic.

Fact 6: If a>c, then a'€" is bitonic. Similarly, if a <c, then a'€" is bitonic.
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Fact 7: If A=d f.e | and ¢=f |.g1 and 4 >¢, then 4.¢ is bitonic. Similarly, if
a=dl.ef and é=f t.g] and 4 <&, then 4.¢ is bitonic.

Definition 5: Let a={aj | 1<j<N} be a sequence of length N=kn. A set of
modulo n subsequences of a is a set of n subsequences a" ={a.;',a;', § ,al;'},
where a;'={a; | j=i (modulo n) for 1<j<N} is a subsequence of length k for
1<i:<n. Let b; ; be the smallest element of ai", b; o be the second smallest ele-
ment of a,",..., and b; ; be the largest element of a," for 1<i<n. Let b, ={bi,j }
1<i<n} be a sequence of length n for 1<j<k. The k-way decomposition of a
sequence a is to decompose a sequence a into a set of sequences {b.i 1 1<57<k}.
As we prove later, if a is bitonic, then k-way decomposition of a bitonic
sequence a, {bj | 1<j<k}, are bitonic sequences and b <b, < - - <b, .
Definition 6: A n-sorter can sort an arbitrary sequence of length n to a mono-

tonic sequence of length n. A n-bitonic sorter can sort any bitonic sequence of

length n to a monotonic sequence of length n.

3. Fundamental Theorems for k-Way Bitonic Sort

In this section, we prove the main theorem for k-way bitonic sort which is
more general than the one outlined by H. Stone (Stone[1971]) and Batcher
(Batcher[1968]) for Batcher’s bitonic sort (Batcher[1968]). We start from restat-

ing Batcher’s bitonic sequence decomposition theorem.

Theorem: (Batcher[1968]) Let a be a bitonic sequence of length 2n. Let
{a;',ag, P ,a;'} be a set of modulo n subsequences of a, where ai“ (1<i<n)
is a subsequence of length 2. Let b, be the smallest element of ain and c; be the
largest element of a;". Let b={b, | 1<i<n} and e={c; | 1<i<n}. That is,
{b,c} is the 2-way decomposition of a. Then, both b and ¢ are bitonic, and

b<c.
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Proof: This is a special case of k-way bitonic sort. In other words, Batcher’s
bitonic sort is 2-way bitonic sort. The proof is immediate from the next main

theorem.O

We generalize this theorem to the main theorem for k-way bitonic sort as fol-

lows:

Theorem: (k-way bitonic sort) Let a be a bitonic sequence of length kn. Let
{a?,a;, ¥ 5 ,a.l:l} be a set of modulo n subsequences of a, where a.l“ (1<ign)
is a subsequence of length k. Let b’.‘k be the smallest element of ai", b:.,Q be the
second smallest element of ai",..., and bi,t be the largest element of ai“. Let
b, 2{():.’]. | 1<i<n} be a sequence of length n for 1<<j<k. That is, for b, ={b‘.J.
1 1<i<n}, {bj | 1<j<k} is the k-way decomposition of a. Then, b, for
1<j<k is bitonic, and b <b,< -+ <b, .

Proof: There are four cases for a bitonic sequence a: 1) a=cf.d}, 2)
a=cl.dt, 3) a=ct.d].ef and c>e, or 4) a=c |.dt.e] and c<e. We use
the following notation: lej=p, |dl=g, le|=r, and 1<t,s,u<k,p,q,r. We now look

at b, more closely:

]_) If a=c¢ T.d l, then b1=c 1k’ dl,k’ or cl,t 'dq

_.t,q'
2) If a=cl.df, then b1=cp—k,p’ dl,k, dl)s.ct,p, d, ¢ di 1
i p d 15°Cu g1 OF € d 1s
3) If a=cf.dl.et and c>e, then b1=dq_k}q, €1 elis.dt,q,
i 'dt,q°d1,s—1’ dt,q.e 15 Cu t—17 dt,q.e 157 O €y .dslq.e.
4) If a=c|.df.e] and c<e, then b1=cp_k,p, dl,k’ dl,s.ct,p,
ds,u .ctjp.dl’s_l, Cp ‘dl,s €y s—1 S p d 1g7OT c.dl;s.et)r.

In either case, b, is bitonic and b,<a—b,. That is, blgb_i for 2<5<k.

Since a—b, is also bitonic in either case, using the same argument as

above repeatedly for b, (2<s<k) and a—b,, we can prove that b.i for 1<5<k



is bitonic, and b, <b,< -+ - <b, .0

By the following corollary, a bitonic sequence of length N=kn can be

sorted using k-bitonic sorters and n-bitonic sorters:

Corollary 1: A bitonic sequence of length N=kn can be sorted by one stage of
n k-bitonic sorters followed by one stage of k& n-bitonic sorters (see Figure 3.1

for example).

Proof: Let {a],ay,...,a } be a set of modulo n subsequences of a, where
ai" (1<i<n) is a subsequence of length k. Since each subsequence ai" is also
bitonic, it can be sorted by a k-bitonic sorter at the first stage. For bj ={bz.}j I
1<i<n}, n k-bitonic sorters produce the k-decomposition, {b.i | 1<5<k}, of a.
Furthermore, b, for 1<j<k is bitonic, and b ;<b,< -+ <b, . Each b; can
be sorted by a n-bitonic sorter at the second stage. That is, the concatenation

of all the output subsequences is monotonic.0

Corollary 2: An arbitrary sequence of length N=kn can be sorted by logk
stages of smaller bitonic sorters following one stage of k n-sorters: (Stage 0) k
n-sorters, (Stage 1) k/2 2n-bitonic sorters, (Stage 2) k/4 4n-bitonic sorters,...,
(Stage logk) a kn-bitonic sorter, where we assume k is an integral power of two

(see Figure 3.2 for example).

Proof: The first stage of k¥ n-sorters produces k /2 bitonic sequences of length
2n, each of which can be sorted to a monotonic sequence of length 2n by a 2n-
bitonic sorter (that is, one stage of n 2-bitonic sorters followed by one stage of 2
n bitonic sorters). Two monotonic sequences of length 2n are equivalent to a
bitonic sequence of length 4n, which can be sorted to a monotonic sequence of
length 4n by a 4n-bitonic sorter (that is, one stage of n 4-bitonic sorters fol-
lowed by one stage of 4 n-bitonic sorters). Repeat this process for a total of

logk times until we reach a monotonic sequence of length N.O
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Corollary 3: An arbitrary sequence of length N=n? can be sorted by 2logn+1

stages of n n-sorters (see Figure 3.3 for example).

Proof: For any integer m (n=Im), | m-bitonic sorters can be replaced by an
n-sorter. Therefore, for any k¥ (k<n and k is an integral power of two), a kn-
bitonic sorter can be replaced by two stages of k¥ n-sorters. Thus, the N=n*

sorter in Corollary 2 can be constructed by 2logn+1 stages of n n-sorters.0

4. Conclusions

In this paper, we proved that Batcher’s bitonic sequence decomposition
theorem still holds with multi-way decompositions. This leads to the applica-

tions of the sorting network with bitonic sorters of arbitrary or mixed sizes.
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a bitonic a monotonic

sequence of sequence of
length 16 length 16
d, — a,
a, — a,
4, — a,
a; — a3
a, — 9,
as — as
dg — dg
a, — a;
dg — Qg
dg — Qg
ayg — ayg
a, — ay,
a;; — di,
ai; — Qi3
a14 — Ay,
a;s — a5
2-bitonic 8-bitonic
sorters sorters

Figure 3.1a: A 16-bitonic sorter by 2-way decomposition (Batcher’s construction)
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sequence of sequence of
length 16 length 16
a, — 3
a, — a,
a, - a,
a; — a3
a, — 4,
as — as
a; — de
a; - 3
=] — Qg
dg — a,
gy — ay
a; — d,
ap [~ &
a3 — Qi3
a,, — Ay,
A — Qs
8-bitonic 2-bitonic
sorters sorters

Figure 3.1b: A 16-bitonic sorter by 8-way decomposition
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sequence of sequence of
length 16 length 16
d, — 4,
a, — a,
a, — 4a,
as — a3
a, — a,
as — ds
dg — ds
a, — 4,
dg - Qdg
dg — dg
dy — Ay
ay — ay
ai; — A
ap; — Qi3
Ay — Qus
ais — Qs
4-bitonic 4-bitonic
sorters sorters

Figure 3.1c: A 16-bitonic sorter by 4-way decomposition
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sequence of sequence of
length 16 length 16
d;, — - | — dg
ad; — — — — a,
a, — — - — a;
a; — - = — aj
a, — — — — a,
ds — — — — a;
d; — — — — dg
d; — — — — a;
dg — H — dg
dg — L — — dg
dy — B = — Qi
a;; — = — — ag,
dy; B u — A
i3 — = ™ — Qi3
Ay — u T — Qi
s — - - — Qs
4-sorters 8-bitonic a 16-bitonic
sorters sorter

Figure 3.2: A 16-sorter constructed from 4-sorter, 8-bitonic and 16-bitonic sorters
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an arbitrary a monotonic
sequence of sequence of
length 16 length 16

<4— 4-sorters —p4——  B8-bitonicsorters ——p 4——— a2 16-bitonicsorter ——

a; — — Qo
a; — — 4,
a, — — a;
d; — ! — dj
a, — f '\ /‘ a,
ds — — ds
dg — — dg
a; — — dy
dg — A - Qg
dy — — dg
dyp — — dyp
d;; — j j \/ — ay,
a;,; - [ — Qi
Q13 — i3
3y — — dig
A5 — — dis
4-sorters 4-sorters 4-sorters 4-sorters 4-sorters

Figure 3.3: A16-sorter constructed from 4-sorters



