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ABSTRACT

We present linear time algorithms for solving the following
problems involving a simple planar polygon P: (i) Computing
the collection of all shortest paths inside P from a given source
vertex s to all the other vertices of P; (ii) Computing the
subpolygon of P consisting of points that are visible from a
segment within P; (iii) Preprocessing P so that for any query ray
r emerging from some fixed edge e of P, we can find in
logarithmic time the first intersection of r with the boundary of
P; (iv) Preprocessing P so that for any query point x in P, we
can find in logarithmic time the portion of the edge e that is
visible from x; (v) Preprocessing P so that for any query point x
inside P and direction u, we can find in logarithmic time the
first point on the boundary of P hit by the ray at direction u
from x; (vi) Calculating a hierarchical decomposition of P into
smaller polygons by recursive polygon cutting, as in [Ch]. (vii)
Calculating the (clockwise and counterclockwise) "convex ropes”
(in the terminology of [PS]) from a fixed vertex s of P lying on
its convex hull, to all other vertices of P. All these algorithms
are based on a recent linear time algorithm of Tarjan and Van
Wyk for triangulating a simple polygon, but use additional
techniques to make all subsequent phases of these algorithms
also linear.

1. Introduction

Recently Tarjan and Van Wyk [TV] have developed a linear-time
algorithm for triangulating simple polygons, thereby improving the previous
O(n log n) algorithm of [GJPT], and solving a major open problem in

computational geometry. This result has extended in a significant way the
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list of problems already known to be solvable in linear time on simple
polygons, which has included e.g. calculation of the convex hull of such a
polygon [GY], [MA], calculation of the subpolygon of P visible from a given
point [Le], [EA], and more. In addition, there are many problems known to
be linear-time equivalent to the triangulation problem for simple polygons
(for a list of these see e.g. [FM]) that are now therefore also solvable in
linear time. Also, several other problems on simple polygons Weire given
linéar time solutions, provided that a triangulation of the given polygon is
already available, and are thus now also solvable in linear time. These
problems include calculation of the shortest path inside a simple polygon
between two specified points [LP], preprocessing a simple polygon to support
logarithmic-time point Jocation queries [Ki], [EGS], stationing guards in
simple art galleries [Fi], etc.

In this paper we continue the exploration for linear-time algorithms for
simple polygons. We present several new such algorithms, which are all
based on the availability of a triangulation of the given polygon, but exploit

additional new techniques to achieve the linear-time goal.

Our new linear time algorithms solve the following problems for a given

simple polygon P with n sides.

(1) Given a fixed source point X inside P, calculate the shortest paths inside
P from X to all vertices of P (in fact our algorithm even provides a
(linear time) preprocessing of P into a data-structure from which the
length of the shortest path inside P from X to any desired target point ¥

can be found in time O(log n); the path itself can be found in time
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O(log n + k), where k is the number of segments along this path).

(2) Given a fixed edge e of P, calculate the subpolygon Vis(P,e) consisting

of all points in P visible from (some point on) e.

(3) Given e as above, preprocess P so that, given any query ray r emanating
from e into P, the first point on the boundary of P hit by r can be found
in O(log n) time.

(4) Given e as above, preprocess P so that, given any point X inside P, the

subsegment of e visible from X can be computed in O(log n) time.

(5) Preprocess P so that, given any point X inside P and direction u, the first
point kit(X,u) on the boundary of P hit by the ray at direction u from X

can be computed in O(log n) time.

(6) Calculate a hierarchical balanced decomposition tree of P by recursively
cutting P along diagonals, as in [Ch].

(7) Given a vertex X of P lying on its convex hull, calculate for all other
vertices Y of P the clockwise.and counterclockwise convex ropes around
P from X to Y, when such paths exist (these are polygonal paths in the
exterior of P from X to Y that wrap around P, always turning in a
clockwise (resp. counterclockwise) direction; cf. Section 5 for more
detail).
Our results improve previous algorithms given for some of these

problems (cf. [Ch], [CG], [PS]). Most of our algorithms are based on the

solution to Problem (1), and exploit interesting relationships between

visibility and shortest-path problems for a simple polygon. Our technique for
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solving Problem (1) extends the technique of Lee and Preparata [LP] for
calculating the shortest path inside P between a single pair of points, and uses
finger trees, a data-structure for efficient access to an ordered list when there
is locality of reference (see Guibas, McCreight, Plass and Roberts [GMPR])
and Huddleston and Mehlhorn [HM]), to obtain an overall linear-time

performance.
!

The paper is organized as follows. In Section 2 we present the linear-
time solution to Problem (1). The visibility problems (2) - (4) are then
solved in Section 3. The polygon cutting procedure and the shooting problem
(Problems (5)-(6)) are solved in Section 4, and the convex rope algorithm for

Problem (7) is presented in Section 5.

2. Calculating the Shortest Path Tree of a Simple Polygon

Let P be a simple polygon having n vertices, and let s be a given source
vertex of P. (Actually, our algorithm will also apply, with some minor
modifications, in case s is an arbitrary point interior to, or on the boundary
of P. For the sake of exposition, the algorithm below is described for s a
vertex of P, and we later comment on the modifications required to handle
the case of an arbitrary source s.) Denote, for each vertex v of P, the
Euclidean shortest path from s to v inside P by w(s, v). It is well known (see
e.g. [LP]) that w(s, v) is a polygonal path whose corners are vertices of P,

and that Um(s, v), taken over all vertices v of P, is a planar tree Q,(P)

(rooted at 5), which we call the shortest path tree of P (with respect to s); this

tree has altogether n nodes, namely the vertices of P, and its edges are
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straight segments connecting these nodes. Our goal is to calculate this tree in

linear time.

Let G be a triangulation of the interior of P (which can be computed in
O(n) time, using Tarjan and Van Wyk’s algorithm [TV]). The planar dual T
of G (whose vertices are the triangles in G and whose edges join two such
triangles if they share an edge) is a tree, each of whose vertin:s has degree at
most 3. Thus, for each vertex ¢ of P, there is a unique minimal path 7 in T
from some triangle containing s to another triangle containing #, which
induces an ordered sequence of diagonals dq, d,, . . . ,d; of P (to be more
precise, d; should be chosen as the first diagonal between two adjacent
triangles in 7 that does not terminate at s, and 4, should be chosen as the last
such diagonal not not terminating at ¢; this takes care of situations in which s
or ¢t is a vertex of more than one triangle in G). Each diagonal 4; thus
divides P into two parts containing s and ¢ respectively and therefore w(s,?)

must intersect only diagonals d;, and each of them exactly once.

Let d = uw be a diagonal or an edge of P and let a be the least common
ancestor of # and w in the shortest path tree Q.(P). It is shown in [LP] that
w(a,u), w(a,w) are both outward-convex; i.e. the convex hull of each of these
subpaths lies outside the region bounded by w(a,u), w(a,w), and by the
segment uw. Following [LP], we call the union F = F,,, = w(a,u) U w(a,w)
the funnel associated with d=uw, and a the cusp of that funnel. Suppose next
that d is a diagonal of P used by G, and let Auwx be the unique triangle in G
having d as an edge that does not intersect the area bounded between F and

d. Then the shortest path from s to x must start with 7(s,a) and then either
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continue along the straight segment ax if this segment does not intersect F,
or else proceed along either w(a,u) or w(a,w) to a vertex v such that vx is a
tangent to F at v, and then continue along the straight segment vx (see Fig
2.1). These observations form the basis of the algorithm of Lee and

Preparata [LP], and of ours.

Fig. 2.1

We are now ready to describe our algorithm. We first triangulate P in

O(n) time (as in [TV]). As the algorithm comes to process a diagonal
d = uw of P, it maintains the current funnel F = F,, as a sorted list
[, uy—q, ..., @ Wi,...,w], where a = up = wq is the cusp of F,
mw(a,u) = [ug, . . .,ul, w(a,w) = [wo, .. .,w] (either of these sublists can
be empty), and u; = u , wy, = w. This list is stored in a finger tree (cf.
[GMPR], [HM]). This structure is essentially a search tree equipped with
fingers (which, in our application, are always placed at the first element and
at the last element of the tree). This structure supports searching for an

element x in time O(log 3), where & is the distance from x to the nearest
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finger, and also supports operations that split the tree into two subtrees at an

element x in amortized time O(log 8), with & as above. The algorithm also

maintains a pointer CUSP(F) to the cusp a of the present funnel.

The algorithm begins by placing s and an adjacent vertex v, in F, with

CUSP(F) = s. It then proceeds recursively as follows.
ALGORITHM PATH(F)

Let u and w be the first and the last elements of F, and let a = CUSP(F)
(thus F = m(a,u) U m(a,w)). Let Auwx be the unique triangle in the
triangulation G of P that has uw as an edge and that has not yet been

processed (cf. Fig. 2.1).

(a) Search F for an element v, for which vx is a tangent to F at v (if the
straight line segment ax does not intersect F then v = a). It is easy to
check that each (unsuccessful) "comparison” performed at some node v*
during this search determines a unique side of v* in which the desired v
lies, so that the binary search paradigm is applicable in this case. We
then split F U {x} into two new funnels F; =[u,...,v,x] and
Fy=[x,v,...,w]. I v belongs to mw(a,u) then we set
CUSP(F,) := v, CUSP(F,) := a. If, on the other hand, v belongs to
m(a,w) then CUSP(F,) := a, CUSP(F5) := v.

(b) Set m(s,x) := w(s,v) U vx (Actually we just store a back pointer from x
to v. The collection of all these pointers will constitute the required

shortest path tree Q. (P)).

(c) If the line segment ux is a diagonal of P then we call recursively
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PATH(F ).

(d) If the line segment wx is a diagonal of P then we call recursively

PATH(F,).

The main difference between our algorithm and the algorithm of Lee and
Preparata [LP] is in the techniques for representation, searching and splitting
of funnels. In [LP] the search for the vertex v is a linear search starting at
one designated endpoint of F. This is sufficient to guarantee the linearity of
thei.r procedure since in their case the vertices of D that are scanned during
the search for v are no longer required, as the algorithm always continues
with only one of the funnels F; or F, (depending on whether the next '
diagonal to be crossed is xw or xu). However in our case the algorithm may
have to continue recursively with both funnels and thus requires a funnel
searching and splitting strategy that uses finger trees (and is thus subtler than
the simple linear list representation used in [LP]), to obtain the desired linear
time complexity. |

The correctness of our algorithm is a direct consequence of the
correctness of the algorithm of Lee and Preparata. To bound the time
required by the algorithm we argue as follows. Let T be the dual tree of the
triangulation of P. Using Euler’s formula for planar maps it is easily checked
that T has n—2 nodes. Without loss of generality, suppose s lies in just one
triangle 7, of T, which we take to be the root of 7. (If s is a vertex of P
which lies in several triangles of G, then at least one of them will be bounded
by an edge of P incident to s, and we can start the algorithm from that

triangle. It is easily checked that the algorithm will then propagate correctly
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the funnel structure to all the other triangles containing s; note that the
funnels for (the edges of) these triangles are all trivial.) Thus cach node of T
(including the root) has 0, 1, or 2 children. Clearly, our algorithm is
essentially a depth-first traversal of T. With each node { of T we associate

two parameters:

m - the size (i.e. number of edges) of the funnel F at the time { is being

processed.

n; - the number of edges of P that bound triangles in the subtree of T rooted
at {.

When our algorithm processes the node { of T, it splits its funnel into two
parts and then appends a new edge to both parts to form the funnels of the
children ¢y, ¢, of { in T. If the split parts of the funnel of [ contain m; and
my = m; — my edges respectively, then my = mqy + 1, my, = my + 1, and
the (amortized) cost of processing { using finger trees is
K(¢) = O(min(log m ,Jog m;,)). Note also that if { has two children {4, {,
then n;y + np, = ng and ng, n;z' > 1. If { has just one child ' then
np = ng — 1, and if { is a leaf then ny = 2. The complexity of our algorithm
essentially depends only on the growth of the function m; over the nodes
{ € T. This function grows by at most 1 when decending from a node {,
having just one child {’, to {'; if { has two children {3, {, then m; is split into

two parts, and each child inherits one part plus 1.

We begin our analysis with the following observation: The "direct costs”

K(¢) at nodes -(, € T which have just one child or are leaves, sum up to at
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most O(n). Indeed, suppose { € T has just one child {’, and that the funnel at
{ had been split up to two parts having m’ and m; — m’ edges respectively.
Then the vertices of P lying in one of those parts will never be encountered
again by the algorithm (by the same reasoning used in [LP] to justify the
linearity of their procedure). The number of such vertices is at least
min(m’',m; — m') — 1= K({) — 2. Thus the sum of all these K({) is

proportional to at most n + 2|T| =< 3n, as claimed.

" Next consider the total direct costs at nodes having two children. We
claim that it is sufficient to consider only cases in which m; grows exactly by
1 at each node of T having a single child, because these cases provide
maximal growth of the function m down the tree 7. Under this additional
assumption, we have:

Lemma 2.1: Let { € T, and let the leaves of the subtree T; of T rooted at {

bemn, . . . ,Mg. We then have

k
i=1.
where [T is the number of edges in T.

Proof: An immediate consequence of the transitive closure of the relations

i my, = my ke b
j=1
where {{;}}-; are the children of { ( = 0, 1, or 2). O

Corollary: In the same notations we have
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k
Using these notations, we define My = 3, m, = m;. For each L €T
j=1

let C({) denote the total cost of processing nodes with two children in the
subtree of T rooted at {. Then plainly
0 if { is a leaf

C(0) = {C(L") if { has just one child {’
C(Ly) + C(L) + O(min(log my , log my,)) if L has two children {, {;

In solving these recurrence formulas, we can clearly assume without loss of
geﬁcrality that each node in T is either a leaf or has two children. Moreover,

replacing m; by M in these formulas, we obtain the recurrence formula

0 if { is a leaf
c) = {C(Cl) + C(L) + O(min(log My, log My,)) if { has two children &y, £,

But My = M, + My, if { has children {4, {3 and M; =1 for all nodes .
Hence if C*(k) is the maximal cost C({) for any node { with M; = &, then

we obtain the formula

C*(m) = : Singxm-l{c*(k) + C*(m — k) + O(min(log k,log (m—k)))}

whose solution is C*(m) = O(m) (cf. [Me, p. 185]). Finally, by Lemma 2.1

we have for the root 19 of T

M, =m, +|T|=n-1

7o

Thus the total complexity of the algorithm is
o(n) + O(M,) = O(n).
Summing up our analysis, we obtain
Theorem 2.1: The shortest paths inside a simple polygon P from a fixed

source vertex to all the other vertices of P can all be calculated in linear time.
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Remark: Although finger trees are not too complicated to implement, we
could have obtained a simpler, and only slightly less efficient version of the
above procedure by maintaining funnels simply as doubly-linked linear lists
(the same data structure as that used in [LP]), and by performing each search
through a funnel in a linear manner, starting simultaneously from both
endpoints of the funnel. The complexity analysis of this modified procedure
is almost identical to that given above, except that the direct costs at clach
tridngle processed are now linear, rather than logarithmic, in the subfunnel

sizes. This leads to a recurrence formula for C* of the form

C*(m)= _max _{C*(k) + C*(m — k) + O(min(k,m—K))}

m

whose solution is (cf. [GK, pp. 25 - 27]) C*(r) = O(n log n).

Remark: If the source s is not a vertex of P, we can modify the algorithm as
follows. Suppose s is internal to a single triangle A = Auvw of G. Then we
can split A into three subtriangles Asuv, Asvw, Aswu, all having s as a vertex,
and repeat the algorithm three times, each time starting at one of these
triangles, and propagating the funnel structure only through the edge of that
triangle which is also an edge of A. Similar problem splitting can be
employed when s lies on an edge of some of the triangles in G. It is easily
checked that the modified algorithm also produces the desired shortest path

tree in overall linear time.

An extended algorithm

The algorithm described above can be extended to produce additional

information regarding shortest paths from the source point s to arbitrary
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points inside P. We describe such an extension that produces in linear time a
partitioning of P into O(n) disjoint triangular regions, such that each region
consists of all points X, the shortest paths to which all pass through the same

sequence of vertices of P. To do this, we first need the following lemma.

Lemma 2.2: For each edge e of P, let ®(e) denote the region bounded by e

~and by the funnel F,. Then

(a) Let x be a point inside such a region ®(e). Let v be a vertex in the
corresponding funnel such that vx is tangent to the funnel (in the terminology
of the algorithm described above). Then the shortest path from s to x is the

concatenation of the shortest path from s to v with the segment vx.

(b) The interiors of the regions ®(e) are all disjoint, and the total number of

edges along their boundaries is O(n).

Proof: The first part of the lemma follows by the same argument (taken from
[LP]) used to justify the correctness of our algorithm. As to the second claim,
note first that if ®(e;) and ®(e,) had a point x in common, then x would
-necessarily have two distinct shortest paths reaching it from s (one for each
region ® containing x), which is impossible for a simple polygon. |
Furthermore, since the funnels constituting the boundaries of the regions
®(e) are outward convex, it follows that each pair of such regions can have
at most one edge in common. Since the number of these regions is n, it
follows by Euler’s formula that the total number of their edges is also O(n).

O

Let e be an edge of P, and let ®(e) be the corresponding region of P.
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Assume that the funnel F, has the form [u;,u;_q, . . . ,uy,a,wy, . . . ,w;] with
a as its cusp (thus e = u;w;). Denote a also as ug and as wy. Then, for each
i=0, ...,I—1 (resp. for each i=0, ... ,k—1) the ray emanating from
(resp. from w;) and passing through u;,; (resp. through w;,4) hits e, and its
portion between e and u; (resp. w;) is fully contained in ®(e). These rays
partition ®(e) into k+/—1 disjoint triangles, such that each triangle has two
vertices lying on e and its third vertex (called its apex) belongs to the f;mnel
F,. Moreover, it follows immediately from Lemma 2.2(a) that if x € ®(e)
belongs to the triangle with apex g then gx is tangent to the funnél at g, and

thus the shortest path from s to x is the concatenation of the shortest path

from s to ¢ and the segment gx.

Hence the collection of all triangles obtained this way for all regions
®(e) yields a partitioning of P into disjoint triangles, whose total number, by
Lemma 2.2(b), is O(n). We can then use any one of the linear-time
algorithms of [Ki] or of [EGS] to preprocess this partitioning into a data
structure that supports O(log n)-time point location queries. The preceding
argument implies that for each target point x in P we can find in O(log n)
time the last vertex g of P on the shortest path from s to x. Thus, if we
store at each such vertex g the length of the shortest path from s to g, we can
then calculate the length of the shortest path from s to x in additional O(1)
time; the path itself can be calculated in additional O(k) time, by simply

traversing the path in the shortest-path tree from g to s. To sum up, we have

Theorem 2.2: Given a simple polygon P with n sides, and some source point

s within P, one can preprocess P in linear time, such that, for each query
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target point x in P, the length of the shortest path from s to x can be
calculated in O(log n) time, and the path itself can be calculated in time
O(log n + k), where k is the number of segments from which this path is

composed.

Remark: An alternative technique for calculating the shortest path tree of a
simple polygon from a given source point in linear time has been

independently obtained by El Gindy [EG2].

3. Visibility Within a Simple Polygon

In this section we study a collection of problems involving visibility
within a simple polygon. These problems have been studied in various recent
papers [EA], [Le], [AT], [CG], [EG], [LL], [As], and a variety of algorithms
have been developed to solve them. Some of the simpler problems already
have linear time solutions, whereas others have been given O(n log n)
solutions. Here we present linear-time solutions for all these problems, again
using the linear-time triangulation algorithm of [TV], and an interesting

relationship between visibility and shortest path problems.

Let P be a simple polygon with n sides. The problems studied in this
section, and solved in linear time, are
I. Given a point x inside P, calculate the visibility polygon Vis(P x)
consisting of all points y € P that are visible from x (i.e. such that the
segment xy is fully contained within P). (This problem is simpler than
the subsequent ones, and in fact there exist known linear-time algorithms

for it [EA], [Le].)
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II. Given a segment e inside P, calculate the (weak) visibility polygon
Vis(P,e) consisting of all y € P that are visible from some point on e.
(An O(n log n) solution is given in [CG]J; Avis and Toussaint [AT]
present a linear time algorithm for determining whether Vis(P,e) = P.)

III. Given such a segment e, preprocess P so that for each query ray r
;emanating from some point on e into P, the first intersection of r with
the boundary of P can be calculated in O(log n) time. (Again, an

" O(n log n) solution is given in [CG].)

IV. As in III, preprocess P so that for each query point x € P, the
subsegment of e visible from x can be calculated in O(log n) time. (An
O(n log n) solution is given in [CG].)

Consider first Problem I; although this problem already has linear time
solutions, it is still worthwhile to sketch our own linear time algorithm for
this problem as a preparatory step toward the solution of the more
complicated problems II-IV. It is well known that Vis(P,x) is a simple
polygon; its vertices are either vertices of P that are visible from x or are
"shadows" cast on the boundary of P by such visible vertices (these are points
y visible from x sﬁch that the segment xy passes through a vertex of P; cf.
Fig. 3.1).

Suppose without loss of generality that x is a vertex of P (if not, it is
easy to construct in linear time a triangulation of the interior of P in which x
is also a vertex of some triangles). Calculate the shortest path tree T from x

using the (extended) algorithm given in Section 2. Then clearly the vertices of
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Fig. 3.1. Visibility of a polygon from a point.
P visible from x are the direct children of x in T. Moreover, the extended

shortest-path algorithm partitions the boundary of P into O(n) disjoint
segments, and the shadows cast on the boundary of P by the visible vertices
are simply the endpoints of those segments that are visible from x (i.e.
segments e for which the shortest paths from x to points on e are straight
segments). These observations enable us to calculate Vis(P,x) by simply
traversing the boundary of P in, say clockwise order, collecting all visible
subsegments along this boundary, and replacing contiguous non-visible
portions of the boundary by straight segments connecting visible vertices with

their shadows. Thus we have

Theorem 3.1: The visibility polygon Vis(P,x) can be calculated in linear time.
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Next consider Problem II. Let A, B be the endpoints of e. It is easily
checked that in this case Vis(P,e) is a simple polygon whose vertices are
either
(i) vertices of P visible from e; or
(ii) shadows cast on the boundary of P by rays that emanate from A or from

B and pass through a vertex of P visible from that endpoint; or

(iii) shadows cast by rays r that emanate from some interior point on e and
pas; through two vertices x, y of P, such that the complement of P lies on
one side of r in the vicinity of x, and on the other side of r in the vicinity of
y.

See Fig. 3.2 for an illustration of Vis(P,e).

Fig. 3.2. Visibility of a polygon from an edge.
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Let ¢’ = CD be another edge of P. Let w(X,Y) denote the shortest path
inside P between the two points X and Y. We say that w(A,C) is outward
convex if the convex angles formed by successive segments of this path with
the directed line AB keep increasing. A symmetric definition of outward

convexity applies to shortest paths from B.

Lemma 3.2: If ¢’ contains a point in its relative interior that is visible from e
then (up to exchanging C and D) the two paths 7(A,C) and w(B,D) are both

outward convex.

Proof: Let x € ¢’ be visible from some point z on e. Suppose without loss of
generality that C is that endpoint of e’ for which A and C lie on the same
side of the line xz. Then the shortest path w(A,C) must lie entirely on one
side of xz, and as a matter of fact it does not cross the polygonal path AzxC'.
Since the area R between AzxC and mw(A,C) is fully contained in P, it follows
that 7(A,C) must be outward convex, or else we could shortcut it by a
segment contained in R, thus in P too. The claim concerning w(B,D) now

follows by a completely symmetric argument. O

In the case described by the preceding lemma, we call the union of
m(A,C) and w(B,D) the hourglass for the pair (e,e’).

Apply the shortest-path algorithm of Section 2 to the two source vertices
A and B, and also compute on the fly, for each vertex C of P, whether the
paths w(A,C), w(B,C) are outward convex, where these calculations take
O(1) time per vertex. Let ¢’ = CD be another edge of P. If the two paths

w(A,C) and w(B,D) are not both outward convex, and also the two paths
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m(A,D) and w(B,C) are not both outward convex, then by Lemma 3.2 ¢’ is
not visible from e. Thus suppose without loss of generality that the two paths
m(A,C) and w(B,D) are outward convex. It is easy to see that the shortest
path m(A,D) must then be the concatenation of three subpaths: a subpath
m(A,X) of m(A,C) (where X is some point lying on w(A,C)); a straight
segment XY, where Y lies on w(B,D); and the subpath w(Y¥,D) of w(B,D).
|
Moreover XY must be a common tangent to both paths w(A,C) and w(B,D)
(se¢ Fig. 3.3). The path w(B,C) has a symmetric structure of the form
w(B,W) Il WZ Il w(Z,C), for appropriate points W € w(B,D), Z 3 w(A,C). It
now follows that the subsegment of e’ visible from e is that which is
delimited by the intersections of ¢’ with the two lines XY and WZ. Note also
that, in the terminology of Section 2, when the shortest-path algorithm is run
with A as the source, the funnel F,. associated with the segment e’ has X as
jts cusp, and Y as an adjacent vertex. Similarly, when the algorithm runs with
B as the source, W is the cusp of the funnel F,. and Z is an adjacent vertex in

that funnel.

These observations suggest a straightforward method for calculating the
points X, ¥, W and Z. That is, as we execute the shortest-paths algorithm
with A as a source, and reach an edge ¢’ = CD of P for which the path
m(A,C) is outward convex, we simply take X to be the cusp of the current
funnel, and Y to be the next vertex on that funnel on its portion between X
and D. The points W and Z are then found in a completely symmetric manner
when running the shortest path algorithm with B as a source. Hence, to

calculate Vis(P,e) we simply have to traverse the boundary of P in, say,
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Fig. 3.3. Visibility of one edge of a polygon from another
and the corresponding hourglass.

clockwise order, collecting all visible subsegments along this boundary in the
manner explained above, and replacing contiguous non-visible portions of the
boundary by straight segments connecting visible vertices with their

appropriate shadows. Thus we have

Theorem 3.3: The visibility polygon Vis(P,e) of P with respect to an edge e

can be calculated in linear time.

Remark: A similar connection between shortest paths and visibility inside a
simple polygon, and also some of the technical tools developed above, have

also been obtained independently by Toussaint [To].

Next Consider Problem IV. Let X € P be an arbitrary point that is



i
visible from some point z € e. An immediate generalization of Lemma 3.1
implies that both paths w(A,X), w(B,X) must be outward convex. The
converse statement is also true, as is easily checked; that is, if both w(A,X)
and m(B,X) are outward convex, then X is visible from e. Moreover, let the
last straight segment in w(A,X) (resp. in w(B,X)) be CX (resp. DX) for some
vertex C (resp. D) of P. Then the portion of e visible from X is delimited by
i

the intersections of the lines CX, DX with e.

" Thus to preprocess P as required in Problem IV, we simply execute the
(extended) shortest-path algorithm of Section 2 twice, once with A as a
source, and once with B as a source. This yields two partitionings II,, I, of P
into zones of influence by the vertices of P, which we then further preprocess
into two corresponding data structures that support O(log n) point location
queries. This can be done in linear time, using the techniques in [Ki] or
[EGS]. In addition, we store at each vertex C of P indications whether the
paths w(A,C), w(B,C) are outward convex, and (as usual) also pointers to the
two fathers of C in the two shortest-path trees produced by the two runs of

the algorithm.

Now let X € P be a given query point. First locate X in the two
partitions II; and II,, and obtain the two corresponding influencing vertices
C, D of P. Then, in constant time, we can test whether the paths
w(A,X) = mw(A,C) | CX, w(B,X) = w(B,D) || DX are both outward convex,
and if so, find the intersections of the lines CX, DX with e, to obtain the

desired subsegment of e that is visible from X.
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Remark: Problem IV is stronger than the corresponding problem P3 studied
in [CG], in that here the query point X can be any point inside P, whereas in

[CG] it is required to lie on the boundary of P.

Next consider Problem III. Here we make use of the duality between
rays emanating from e and points in the two-sided plane (2SP for short), as
described in [GRS],i[CG]. Following [CG], we will produce a partitioning II
of the 2SP into oonlvcx regions, each region containing the duals of all rays
cm;mating from e and hitting the same edge of P; this same partitioning is

obtained in [CG] in O(n log n) time, and we show here how to obtain it in

linear time.

To this end we make use of the analysis of Problem II given above. Let
e’ = CD be another edge of P that contains points visible from e. As above,
we can then assume that the two paths w(4,C), w(B,D) are both outward
convex. Let XY, WZ be the two common tangents to these paths, where
X,Z€nw(A,C) and W)Y € w(B,D). Let R(e’) be the region in II
corresponding to e’. Then clearly the boundary of R(e’) consists of points
that are duals of rays r emanating from e and hitting points on e’, such that r
passes through a vertex of P (which can be either one of the endpoints
A.B,C,D, or another vertex of P that r "grazes" on its way from e to e’. It is
clear from the preceding analysis that such a vertex must lic on one of the
paths w(4,C), w(B,D), or, more precisely, on one of their subpaths 7 (X,Z),
w(W,Y).

Moreover, it is also easily checked that the vertices of R(e’) correspond

either to rays that pass through two vertices of P that are adjacent in one of
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the subpaths w(X,Z), w(W,Y), or to the two extreme rays XY, WZ. It is also
easy to establish adjacency of the vertices of R(e’) along its boundary.
Specifically, two such vertices must correspond to two rays passing
respectively through FG and GH, where F, G, H are three vertices of P that
are either adjacent along one of the paths w(X,2), w(W,Y), or are such that G
is one of W,X,Y, or Z, F is adjacent to G along XY or WZ, and H is adjacent
to G along w(X,Z) or w(W,Y).

" The preceding arguments also imply that the total number of vertices in
I1 is at most proportional to the sum of the sizes of the funnels for the edges
of P, which are obtained during execution of the shortest path algorithm of
Section 2. It is easy to check that this sum is linear in n, so that II has only
O(n) vertices (cf. also [CG]).

It is also easy to calculate adjacency of regions in II. Specifically, it
suffices to consider adjacency of regidns near a vertex T of II. By the
preceding analysis, T is the dual of a ray r emanating from e and passing
through two vertices G, H of P. Then we can apply a simple local, though
somewhat lengthy, case analysis (which requires only O(1) time), to
enumerate all possible pairs of edges e’, e’’ whose regions R(e’), R(e'’) in Il
are adjacent near 7; generally, each of these edges will either lie adjacent to G
or H, or contain one of the endpoints of r, if this endpoint is different from

G and H. We leave details of this case analysis to the reader.
All these observations imply that II can be calculated in linear time from
the output of the executions of the shortest path algorithm of Section 2 with

A and B as sources, which themselves take only linear time. Having
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calculated II, we next apply to it one of the linear time preprocessing
algorithms of [Ki] or of [EGS] for point location, thus obtaining a data
structure from which the region of I containing (the dual of) any query ray

r, and thus also the edge of P first hit by r, can be found in O(log n) time.

4. Linear preprocessing for the shooting problem in a simple polygon

In this section we show how, given a simple polygon P, we can build in
linear time and space a data structure that solves the shooting problem for P,
as defined by Chazelle and Guibas [CG, Section 3]. This problem asks for
preprocessing P so that, given any point X inside P and any direction u, we
can quickly compute the point hif(X,u) where the ray emanating from X in
direction u hits the boundary of P for the first time. If the polygon P has n
sides, the method presented in [CG] solves the shooting problem in O(log n)
time per query, after builing a structure in O(n log n) time that requires O(n)
space. The contribution of this section is to show how to build exactly the

same shooting structure used by [CG] in linear time.

We start with a balanced decomposition S of our simple polygon P,
obtained by recursively subdividing the polygon according to Chazelle’s [Ch]
polygon cutting theorem. The method presented in [Ch] runs in O(n log n)
time, but we are able to compute the same decomposition tree in linear time.
To do this, we note that Chazelle’s algorithm actually calculates a balanced
decomposition of the dual tree T of a triangulation of P (see the following
subsection for a precise definition of this notion). Since Tarjan and Van

Wyk’s algorithm produces such a triangulation in linear time, it remains to
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show that the following tree decomposition step can also be done in linear

time.

4.1. Balanced decomposition of a binary tree in linear time

Let T be a given binary tree with n nodes. If an edge e of T is removed,
then T is partitioned into two subtrees. If we now similarly partition each of
these subtrees and Fcontirlue doing this recursively, until the fragments left are
single nodes, we obtain another tree structure, which is known as a
decomposition of T. Such a decomposition is called balanced if there is a
positive constant o such that each time a subtree T’ is partitioned by the
removal of an edge, each of the two fragments obtained has size at least
a|T’|, where |T”| denotes the size of T'. We now make two remarks on such
decompositions. First of all, it is clear that in a balanced decomposition the
fragment containing a particular node v can be split only O(log n) times.
Secondly, it is known that in any binary tree there is an edge whose removal
leaves two components, each with at least |(n+1)/3] nodes. Such an edge is
always adjacent to the centroid of the tree and can be found in linear time
[Ch]. As a result, a balanced hierarchical decomposition of T with a = 1/3
can be found in O(n log n) time total, by applying the centroid partition to
each fragment recursively.

In this subsection we will show how the centroid edge for partitioning
each fragment can be co.mputed at a cost of only O(log n) operations, after
some approprjate data structures have been set up. The overall cost for

obtaining the balanced hierarchical decomposition will then be reduced to
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O(n). Our method makes use of an auxiliary ternary tree A to facilitate the
splitting. The tree A has the same nodes as T, but while T can be arbitrary, A
is balanced in a strong sense: it has at most n/2* nodes of height k. In fact A
itself represents a decomposition of 7. If all ancestors in A of a node v (but
not v itself) are deleted from T together with their incident edges, one of the
resulting fragments of T will contain exactly the same nodes as the subtree of

A rooted at v.

" Once we have the auxiliary tree A, we can find the desired centroid edge
splitting T in logarithmic time. Moreover, in the same time bound, we can
break A into two auxiliary trees, one for each of the two resulting fragments
of T. By continuing this process all the way down to the leaves we obtain the

desired balanced hierarckical decomposition of 7.

We define the auxiliary tree A by first labelling the nodes of T by certain
integer labels. We associate with each node v of T (and hence of A) an index
i, and a label b,. The index i, is both the height of v in A and the number of
trailing zeroes in b, when written in binary. Intuitively, these quantities can
be defined as follows. If v is a leaf of T, then b, = 1. Otherwise, if w and z
denote the children of v in T, the label b, is defined as follows: Let i be the
position of the leftmost carry in the computation of b,, + b, + 1. The bits of
b, are equal to those of b, + b, + 1 at and to the left of position i. To the
right of position i all bits of b, are 0. (Note that since no carry arises in the
bits of b, to the left of position i, these bits can be obtained by adding the

corresponding bits of b,, and b,; note also that the i-th bit of 5, must be 1.)
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We now present the formal definitions of i, and b,. We adopt the
following conventions: The notation T, refers to the subtree of T whose root
is the node v. The descendants of v include v itself. Also, as in the

remainder of this paper, all logarithms are to the base 2.

To help us construct A, we want the indices i, to represent a
decomposition of T in the following sense: If all nodes v with indices i,
greater than k are deleted from T (together with their incident edges), each
relﬁajning subtree includes at most one node with index k. We express this
requirement as a static property using path indices. The index of a path in T
is the maximum index of all interior nodes on the path (i.e. excluding the two
end nodes of the path), or —1 if the path contains no interior nodes (i.e.
consists of a single edge). The index i, of node v is defined in terms of the
indices of v’s descendants (including v): it is the smallest non-negative integer
j such that for each k = j, at most one descendant of v with index k is
reachable from v by a path of index less than k (in particular, no proper
descendant of v is reachable from v along a path of index less than j). The

index of a leaf is taken to be 0. For an example of indices and labels, see Fig.

4.1.

We now give a formal interpretation of the labels b, to complement the

intuitive definition above. We treat b, as a bit vector: b, = 3 2/b,[j]. The
j=0

entry b,[j] is 1 if and only if some (exactly one) descendant of v with index

j =i, is reachable from v by a path of index less than j. This means that

b,[i,] is always 1 (take v itself as the corresponding descendant) and b,[j] is
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0 (1001)

3 (1000)

0@111)

1 (0010) 2 (0100)

0 (0011) |
0(0001) 0(0001) 0 (0001) 0 (0011)

L (0010) 1 (0010)
0(0001) 0 (0001) 0 (0001)

Fig. 4.1. Indices and labels of nodes of T'.
Each node is labelled with i, (b,).

always O for j < i,. If v is aleaf, then i, = 0 and b, = 1. If v has children
w and z, then b, and b, determine i, as follows:
i, = min {j=0 | b,[j] = b,[j] = 0 and b,,[k]-b,[k] = O for all k > j}.

(If v has only one child w, then b,[j] = b,[k] = 0 in this expression.) Indeed,
let j be the index given by the above formula. Note first that for each £ > j

at most one of b,[k], b,[k] is 1. Suppose b, [k] = 1. Then i, =< k, and there
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exists a unique u in T, of index k reachable from w (and thus also from v)
along a path of index less than k. On the other hand, b,[k] = 0, s0o no node
with analogous properties exists in 7,. Hence for each k > j there exists at
most one node in T, of index k& which is reachable from v along a path of
index less than k. Similarly no node in T, other than v has index j and is
reachable from v along a path of index less than j. This shows j = i,. But the
arguments just used and the definition of i, imply that i, itself is one of the

indices satisfying the condition in the above formula. Hence j = i,.

Once i, is known, b, has a simple definition:

b,li] + b.lj] ifj > i

blil=11 ikj= i

0 if j < i,
Note that these definitions accord with the intuitive ones given above. Given
b, and b,, bitwise logical operations and table lookup can determine i, and b,

in constant time (even without these bitwise operations, the algorithm will

still run in linear time; see below).

The node indices guide the cénstruction of A. The node a with highest
index is the root of A. Removal of this node and its incident edges from T
generates at most three subtrees in T, which recursively define the (at most)
three subtrees in A of the root node. The lemma that follows shows that the
construction is well-defined, in the sense that the indices do represent a

decomposition of T.

Lemma 4.1: If all nodes with indices greater than some positive j are

removed from T, along with their incident edges, each remaining subtree of T
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has exactly one node with maximal index.

* Proof: By the definition of the index function, no two nodes with index j,
one a descendant of the other in T, are joined by a path of index less than ;.
Similarly, no node with index k < j is joined to two descendant nodes with
index j by paths of index less than j. Hence, after nodes with index greater
than j are deleted, eziich node with index j is alone in its subtree.
Furthermore, if node deletion leaves a subtree with & < j as its maximum
node index, the subtree remains unchanged if all nodes with index greater
than k are deleted. It follows that there is only one node with maximum

index in each subtree. O
Lemma 4.2: (a) For each node v, [T,| = b,.
(b) for each index j, there are at most l]Tl/Zf J nodes with that index in T

Proof: The proofs of both statements are inductive. The first follows easily
from the intuitive definition of b,. For a leaf v, |T,|= b, = 1. Since
b, < b, + b, + 1, induction implies that [T, | = |T,,| + |T,| + 1= b,.

As to the proof of (b), let us define D(v) to be the set of v’s descendants
whose indices are at most i, and which are joined to v by paths of index less
than i,. Plainly, no node other than v with index i, can be an ancestor of one

of these nodes and reach it by a path of index less than i,.

We next show by an inductive argument that |D(v)| = 2". Indeed, this is
clearly true for v a leaf. If v has children w and z, then a node ¢ is in D(v) if
either ¢ = v or g is a descendant of w or of z, say for definiteness a

descendant of w, such that i, < i,, i, < i,, and the index of the path from w
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to ¢ is also less than i,. In this latter case, let j < i, be the maximum node
index along the path from w to ¢ (including these two nodes), and let u be
the unique node along this path with index j. Then clearly g € D(u) and
b,[j] = 1. It is also easy to check the converse statement, namely that D(v)
contains each set D(u) for a descendant u of w or of z that causes b, [j] or
b,[j] to be 1 for any j < i,. But the sets D(x) are all disjoint. Indeed, if
g € D(u)ND(u'), then without loss of generality we can a;sume that u is a
destendant of u’ which is a descendant of w. But if i, = i, then u cannot
have caused b,[i,] to be 1, and if i, > i, then ¢ cannot belong to D(u’).

Thus, by induction hypothesis,

P =1+ T 20,l1+8.00) = 2"
j<iy
(because 1+ b, +b, has a carry at the i,-th bit), and, since all the sets D(v)

for nodes with the same index i, are disjoint, (b) follows. O

Since i, is the height of A, part (b) of the preceding lemma shows that A

has height at most |log n].

Constructing A:

It is possible to determine the indices of the nodes and build A during a
single postorder (depth-first) traversal of T. The two trees T and A have the
same node set. To distinguish the edge sets, we will speak of the edges of T
and of the links of A. For each label b,, the construction requires a vector p,
of pointers to nodes. If b,[j] is 1, then p,[j] points to the (unique)
descendant of v in T that has index j and is reachable by a path of index less

than j. The depth-first search defines a path « from the root of T to the
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current node. The construction maintains b, and p, for each node v that is a
child of a node on m but is not on = itself. Each such v is the root of a
subtree T,;, and these subtrees are all disjoint. The vectors b, and p, take

O(log |T,|) space, which is linear when summed over all such nodes v.

When the postorder traversal visits a node v, the algorithm constructs b,
and p, from the vectors stored at the cbildren w and z of v. At the same
time it builds auxiliary tree links for nodes that appear in p,, and p, but not
in }7,,. Such a node (suppose it is u € T,,) has an index less than i,, so its
parent in A is either v or a node of T,,. In fact, its parent in A is the node
with minimal index j > i, reachable from u by a path in T of index less than
i,. These observations imply that if j is the largest integer less than i, such
that b,[j] = 1, then v is the parent of p,[j] in A. Similarly, if j > k are
integers less than i, such that b,[j] = b,[k] = 1 and b,[/] = O for j > [ >k,

then p,,[j] is the parent of p,[k] in A. Linking these nodes to their parents in

A takes time proportional to i,.

When the algorithm reaches the root ¢ of T, it links the nodes pointed to
by p, as if t were the child of a node with index [log n] + 1. The root a of

A is the highest-indexed node appearing in p,.

Even without logical operations on the b, vectors, the construction of A
requires only linear time. When the traversal visits v (with children w and
z), the algorithm takes time proportional to the number of links made plus
the logarithm of the smaller of [T, | and |T,|, which gives a linear overall
bound. In the same time bound a traversal of A can be used to compute |4, |

for each node v; this information is needed in order to split the auxiliary tree.
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Remark: A two-pass construction algorithm may be simpler than the one
given, especially if bitwise operations are available. The first pass computes
node indices in one traversal of T. The second pass builds A from the bottom
up, using an auxiliary graph 7' which is maintained dynamically during the
construction, and which is initialized to 7. As long as 7" is not a single node,
the algorithm picks a node v in 7" with minimum index, selects v’s lowest-
indexed neighbor in 7’ to be its parent in A, creates pairwise edges between
all of v’s neighbors in 7', and then deletes v. Including the created edges, a
node v can have at most 3i, + 3 incident edges in 7', which gives a
logarithmic bound on the degree of any node and a linear overall bound on
the number of edges. Each edge is examined once, so the algorithm
constructs A in linear time. We leave it to the reader to check the correctness

of this alternative procedure.

Decomposing T

Given A, only a linear amount of additional work is needed to find a
balanced decomposition of T. 'I;llc algorithm first uses A to split T into
balanced subtrees, then builds an auxiliary tree for each fragment, and finally
decomposes each fragment recursively. Using the subtree sizes |4, |, a simple
top-down search of A finds a centroid edge e, in time proportional to the
height of A. Removing e, from T results in two subtrees R and B. For ease
of exposition, let us assume that the nodes of these two subtrees are painted

red and black, respectively, and that R contains a, the root of A.

To allow recursive splitting, R and B must have auxiliary trees A® and A®
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built on top of them. Each of R and B has a unique node with maximum
index. These nodes, one of which is a, are the roots of A® and A®. Splitting
A to form the two new auxiliary trees is relatively straightforward. Let v be
the endpoint of e, with smaller index. The path P in A from a to v includes
the other endpoint of e.. If the nodes are augmented with their preorder
and postorder numbers in T, then a constant-time test can determine the color
|
of a node. The first black node on P is the root of A?. The new auxiliary
trees are constructed by dividing P into two monochromatic paths. In A%
and A®, every node w on P has as its successor the next node on P with the
same color as w. The counts |A,,| are still valid in AR and A? except at nodes
w on P, where they must be recomputed. These changes take time
proportional to the length of P. To see that the modifications of A are
correct, note that at most one tree A, is dichromatic for nodes v of a given

index, and that after P is modified, each node has auxiliary tree links only to

nodes of its own color.

The fragments R and B can be recursively decomposed with the aid of A%
and AB. To analyze the cost of this construction, we note that auxiliary tree
nodes cannot increase in height as the decomposition proceeds, and that the
total number of nodes in A of height k is at most n/2*. The cost of splitting
an auxiliary tree whose root has height k is O(k), and furthermore no node
can appear as the root of such an auxiliary tree more than O(k) times total.

Therefore the whole decomposition takes time

llog n]
oS klz"—k) = O(n).
k=0
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The preceding discussion constitutes a proof of the following theorem:

Theorem 4.1: It is possible to find a balanced hierarchical decomposition of

an arbitrary binary tree in linear time.

Remark: An alternative technique for obtaining such a balanced tree
decomposition is obtained by using a simplified version of the dynamic tree
data structure (as described in [Ta, Ch. 5]), which ican also support
logarithmic-cost tree-splitting operations. However the method sketched

above is somewhat simpler and more direct.

4.2. The shooting problem

The balanced decomposition S of T as obtained above is most usefully
thought of as a balanced tree. The leaves of that tree correspond to the
triangles of an underlying triangulation T of P, while the internal nodes
correspond to the diagonals in 7. The root of S represents a diagonal d that
partitions P into two subpolygons P, and P,. Each of these subpolygons is in
turn partitioned by a diagonal, and so on till we just have the triangles in T.
Because S is a balanced decomposition, the maximum depth of any leaf is
O(log n). We give each diagonal d of the triangulation an integer label \(d),
which represents its level or depth in the tree structure. By convention the
diagonal corresponding to the root s of the tree § has label 1; the children of

the root have label 2, and so on.
The key idea for solving the shooting problem is to store, for certain
pairs of diagonals (d,,d,), a representation of all lines that cut d; and d, but

do not intersect the portion of P between d; and d,. This set of lines is
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compactly represented by the hourglass for the pair (d;,d;), as discussed in

Section 3. We will denote by A the list of all such pairs. It is easiest to

construct these auxiliary structures from the bottom up.

Consider the following process, which we term the merging process:
Start with the underlying triangulation T'; its triangles can be considered as
the leaves of the balanced tree S referred to above. For each triangle, at least
two of whose sides are diagonals, add all pairs of bounding diagonals to the
list A of pairs to be considered. Now remove all diagonals of the highest
label. This creates new regions by merging pairs of old regions (triangles). It
cannot happen that three or more regions get merged into one, since
diagonals with the same label are never adjacent in T. If R,, R, are two
regions being merged, then add to the list A all pairs (d;,d,), where d, (resp.
d,) is a diagonal bounding R, (resp. R,) and remaining after the merge. We
continue this process, at each stage removing all diagonals of the next label
and adding to the list A all new pairs of diagonals bounding one of the newly
formed regions. Because of the structure of the balanced decomposition of P,
it will never be the case that two diagonals with the same label become
adjacent. Thus at each stage only pairs of regions get merged. Furthermore,
any region that ever arises in this process will have at most a logarithmic
number of diagonals on its boundary, as no two of them can have the same

label.

In S, the balanced decomposition tree of P, each pair of diagonals (d1,d;)
produced by the above process corresponds to an (ancestor, descendant) pair

of nodes. This can be most easily seen by imagining the time-reversal of the
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merging process. A leaf of the current decomposition is _cxpandcd by
introducing a new highest numbered diagonal g. Inductively we assume that
the region corresponding to this leaf is a descendant of all diagonals bounding
it. The introduction of the new diagonal obviously preserves this invariant.
Furthermore, the new pairs of the form (e,g) that must now be added to A
are clearly (ancestor, descendant) pairs. This proves our claim. From now
on, whenever we write a pair (d,d,) of diagonals in A, we will follow the
convention that the first element is the ancestor and the second the

descendant.

Let S* denote the decomposition tree after the addition of all edges
corresponding to the diagonal pairs in A (all edges of S naturally are
represented in A). Let e be a particular diagonal of the decomposition that
occurs with label A (¢) = depth(e). How many pairs of the form (e,g) can be
in A (recall that g must be a descendant of e¢)? Note that g is uniquely
determined by its level and the side of e it lies on - it is the "nearest” diagonal
to e of the right level and on the appropriate side. Thus no more than
2(7(e) — \(e)) such pairs can exist in A, where 7(e) is the maximum depth in
S of any node in the subtree rooted at e. Let p(e) denote the total number of
pairs in A that arise out of the subtree of § rooted at e. Then the above
remarks prove that p(e) =2 Y (v(g) — A(g)), where the sum is taken over
all descendants g of e, including e itself. If s, / and r denote respectively the
root of S and the root’s left and right children, then we can write

p(s) = p() + pu(r) + OQlogn) ,
where the last term is the contribution of s to A. Since S is balanced, there is
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some constant a, 0<a<1/2, such that the subtrees of each node x of § are in
size at least the fraction a of the whole tree rooted at x. By standard
techniques it then follows that the above recurrence has a solution of the
form p(s) = O(|S]) = O(n). This proves that A, and therefore $*, has linear

size.

As we remarked at the beginning, our aim is to associate with each pair
(e,g) in A a visibility structure reprcseﬁting all lines cutting diagonals e and
g, but not the portion of the polygon P between these diagonals. Such lines
are constrained to avoid the two inwards concave chains defined by the
hourglass illustrated in Fig. 4.2. These chains are the convex hulls of the two

polygonal paths joining e and g along P.

Fig. 4.2.
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Suppose that we are in the midst of the diagonal-removing process and
are currently working on diagonal f, whose removal merges two regions, one
containing the diagonal e and the other the diagonal g. Suppose also that we
have already computed the hourglasses for the pairs (e,f) and (f,g). Then in
order to compute the hourglass for (e,g) it suffices to compute the outer
common tangents of the corresponding pairs of concave chains in the
hourglasses for (e,f) and (f,g). This is illustrated in Fig. 4.2. Note that since
only two new edges are needed to form the new hourglass from the old ones,
the total number of edges in all the hourglasses will be proportional to the

number of diagonal pairs in A, i.e. it will be O(n).

Recall our convention to write each diagonal pair (e,g) in A so that e is
the ancestor and g the descendant. The size of the hourglass of (e,g) is
bounded by the size w(e,g) of the portion of P between e and g. Now we
claim that log w(e,g) = O(7(e) — A(e)), for in a balanced decomposition the
height of each subtree is logarithmic in its size. So the cost of computing the
common tangents needed in the construction of the hourglass of e and g is
O(7(e) — \(e)). Therefore, if k(e) denotes the total cost of these common
tangent computations for all pairs of diagonals in the subtree rooted at e, we
have k(e) = O(T (v(g) — M(g))?), where the sum ranges over all
descendants g of e (including e¢). By arguments entirely analogous to those
used above we can write a recurrence of the form

| k(s) = x(l) + x(r) + O(log?n)
for the total cost of computing the common tangents and conclude that it too

is O(n).
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We will be traversing the search structure $* from the top down in order
to solve the shooting problem. The details are exactly as in [CG]. Because of
this, we allocate each hourglass edge to the highest hourglass in $* that has it
as an edge - in other words to the last one formed in the above merging
process. This means that at each stage, as we compute the hourglass of (e,g)
from the hourglasses of (e.) and (f,g), we need first to find the common
tangents discussed above, and then split the old hourglasses where the
common tangents touch them. The extremal pieces get joined by the tangent
to form the new hourglass, while the inner pieces are left with the old
hourglasses. See Fig. 4.2 for an illustration. This splitting and joining can be
implemented in the same order of magnitude time as the common tangent
computation, if a balanced tree structure is used to represent the hourglasses.
The details are straighforward and therefore omitted. This implies that the
entire search structure S* can be computed in linear time and that it occupies

linear space. We have therefore shown that:

Theorem 4.2: Given a simple polygon P of n sides, it is possible in linear
time and space to construct an auxiliary structure that allows us to solve the
shooting problem for P in time O(logn) per query. These bounds are

optimal.

Note: We have been able to avoid the use of finger trees in the above
construction because we started out with a balanced decomposition. We could
in fact have obtained a linear shooting structure in linear time from any

decomposition 'S of P, whether balanced or not. This requires the use of
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finger trees in a manner analogous to that of Section 2. However the
resulting shooting structure S* can no longer guarantee logarithmic search

time, as there is no logarithmic bound on its depth.

5. The Convex Rope Algorithm

As an additional application of the shortest path algorithm of Section 2,
we consider the following Convex Rope problem, a's posed by Peshkin and
Sanderson [PS]: Let P be a simple polygon, and let s be a vertex of P lying
on its convex hull. Let v be another vertex of P. The clockwise convex rope
from s to v is the shortest polygonal path (s = py, . . . ,p,, = V) starting at s
and ending at v that does not enter the interior of P and that is clockwise
convex, in the sense that the directed segment p iPi1+1 lies to the right of the
directed segment p;_qp;, for i = 1, . . . ,m—1. The counterclockwise convex
rope from s to v is defined in a symmetric manner (see Fig. 5.1). Not all the
vertices of P necessarily admit convex ropes from s. Those vertices v that do
admit both clockwise and counterclockwise ropes from any such s are
precisely those that are "visible from infinity" (cf. [PS]); calculation of these
convex ropes is required in [PS] to plan reachable grasps of P by a simple
robot arm. In [PS], an O(n?) algorithm is presented. Using the shortest path
algorithm of Section 2, we obtain an improved algorithm running in linear

time.

The convex rope problem can be solved as follows. Compute first the
convex hull of P in linear time (cf. [PS], [GY]). The clockwise (resp.

counterclockwise) convex rope from s to any vertex v on the convex hull can
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simply be calculated by moving along the convex hull in a clockwise (resp.
counterclockwise) direction from s to v. For each vertex v not on the convex
hull, v lies inside a simple polygon Q (a "bay" of P) bounded by some
subsequence of the sides of P and by an edge of the convex hull that is not a
side of P (see Fig 5.1; note also that the collection of all these bays can be

found in linear time).

Co un‘h.»— (_/rokw"dl

J7"

Fig. 5.1. The convex rope problem.

Let v,, v, be the endpoints of this edge such that v, is reached first from
s when moving along the convex hull in a clockwise direction. The clockwise
(resp. counterclockwise) convex rope from s to v is then the clockwise
convex rope from s to v; (resp. the counterclockwise convex rope from s to

v,) followed by the shortest path from v, to v (resp. from v, to v) within Q,
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provided that this shortest path is clockwise (resp. counterclockwise) convex
(otherwise the required convex rope does not exist). Hence we can use the
shortest path tree algorithm of Section 2 to calculate the shortest paths from
vy and from v, to all the vertices of Q (and also to check whether these paths
are convex in the required directions) in time O(|Q]). Since the sum of the
sizes of all the "bays" Q of P is O(n), it follows that we can solve the convex

rope problem in O(n) time.

6. Conclusion

We have presented a collection of linear time algorithms for solving a
variety of shortest paths and visibility problems inside a simple polygon,
exploiting interesting relationships between these two types of problems. Our
work has enriched the collection of problems solvable in linear time for
simple polygons, but there are quite likely many additional problems for
which linear time solutions can be developed. For example, Suri [Su] has
recently extended our technique to solve in linear time the k-visibility
problem, in which, given a simplé polygon P and an edge e of P, we wish to
partition P into disjoint subparts Py,P,, - - - such that P, contains all points
in P directly visible from some point on e, P, contains all points in P visible

from some point in P, but not from e, and so on.
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