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ABSTRACT

Voting is used commonly to enforce mutual
exclusion in distributed systems. Each node is
assigned a number of votes and only the group
with a majority of votes is allowed to perform a
restricted operation. This paper describes
techniques for dynamically reassigning votes
upon node or link failure, in an attempt to make
the system more resilient. Protocols are given
which allow nodes to select new vote values
autonomously while still maintaining mutual
exclusion requirements. The lemmas and
theorems to validate the protocols are presented,
along with proof of correctness. A simple
example shows how to apply the method to a
database object-locking scheme; the protocols,
however, are versatile and can be used for any
application requiring mutual exclusion. Also
included is a brief discussion of simulation
results.

1. Introduction

In distributed systems, voting is used
commonly to provide a mutual exclusion
mechanism that works under catastrophie
failures like partitions. Each node is a priori
assigned a number of votes, and only the group
with a majority of votes is allowed to perform a
restricted operation [Davi82, Giff79, Thom79,
Garc82]. This restricted operation may be, for
instance, the update of a replicated database.

For example, consider the four node system
illustrated in Figure 1. Each node manages a
copy of a replicated database. Each node has
been assigned one vote, except for node d which
has received 2 votes. Now assume that the

system is partitioned into two groups, one with
nodes {a, b} and the second with nodes {c, d}. The
nodes in the second group have a majority of
votes (3 out of 5) and are allowed to update the
database, since they are assured that no other
group is concurrently in the same situation.
(The majority is actually checked within the
updating transaction’s commit protocol [Skee82].
If the reader is not familiar with such protocols,
one can simply think of the nodes within a group
as updating the database in unison.)

Notice that certain partitions can make it
impossible for any group to perform the
restricted operation. In our example, if three
groups are formed, {a, b}, {c}, and {d}, then no
group has a majority and hence no one can
update the database. This is an undesirable
situation since it makes the data unavailable for
updates everywhere in the system.

To minimize the likelihood of these
undesirable halted states, we can initially assign
the votes intelligently (e.g., give the nodes that
are more reliable or better interconnected more
votes), as suggested in [Barb84]. In addition, we
can attempt to dynamically reassign the votes in
the presence of failures, which is what we
advocate in this paper. As an example of this
technique, consider once again the system of
Figure 1, with its vote assignment: vy, = vy = v,
= 1and vg = 2, where v; represents the number
of votes of node i. Assume that a partition
separates node d from nodes a, b and ¢. Nodes a,
b and c can still collect 2 majority of votes while
d cannot. However, if a second partition occurs,
separating node ¢ from a and b, the system will
be halted; no transactions may be processed.
However, we can reduce the likelihood of halting
if we increase the votes of group {a, b, ¢} before
the second partition occurs. That is, after any



failure, the majority group (if any) dynamically
reassigns the votes in order to increase its voting
power and increase the system’s chances of
surviving subsequent failures.

Figure 1

In our example, nodes a, b and ¢ may opt for
reconfiguring the votes during the first
partition. For instance, a new vote assignment
could be v, = vp = v, = 5. Node d is unaware of
the change and remains with vy = 2 votes. (Asa
matter of fact, since d is not in a majority group,
it cannot change its votes.) In this way, the
second partition will find nodes a and b with 10
votes out of 17, forming a majority group and the
system will not be halted. After the second
partition, the new majority group of {a, b} could
reassign itself new votes of v, = 15and vy = 5in
order to tolerate even a third partition. When
the partitions are repaired, the nodes that have
proportionately less votes (e.g., d) can attempt to
increase their votes.

In our approach, we want vote change
decisions to be autonomous, without requiring
group consensus (such as electing a coordinator
or using a distributed algorithm). Group
consensus techniques can select very good
assignments but necessitate tight coordination
among the members of the group. Also, nodes
need good knowledge of the current system
topology and state. On the other hand,
autonomous vote changes are much simpler and
more flexible. Each node decides independently
if it should attempt to change its votes and
determines on its own what its new vote value
should be. In addition, the node does not require
complete or accurate information about the state
of the system. In a sense, the node makes an
educated guess about the best number of votes to

have, based on what it assumes is the state of the
network. Its primary goal is to claim for itself all
or part of the voting power of a node (or nodes)
that have been separated from the majority
group. For instance, in our example, after the
first failure nodes a and b decide to increase their
votes by 4, i.e., twice the number of votes that
the disconnected node d had. When ¢ fails, node
a does the same thing and takes on 10 more
votes. Node b, on the other hand, does not
increase its votes after the c¢ failure because it
recognizes that there are only two nodes left in
the majority group. In that case, it is best to give
one of the nodes the majority of votes. However,
if node b does not recognize this fact, it may try
to increase its votes, too, and may succeed. This
does not lead to the best assignment, but it still
yields a valid one, i.e., one that guarantees
mutual exclusion among updaters. We refer to
this method as autonomous reconfiguration and
concentrate here on this strategy.

We use the term policy to refer to the
mechanism for autonomously selecting the new
assignment. Note that selecting a new vote
value is only half of the problem. After the
selection, the node must “install” the new value,
making sure that it is in a majority group that is
allowed to change its votes. In our example,
when node d is disconnected from the rest of the
system, its policy may dictate that it try to
increase its voting power to compensate for the
loss of nodes a, b, and ¢, but it should be unable to
install this or any change. We refer to the
algorithm for installing a change, i.e., for

. making a vote transition as the protocol. Within

the protocol, we must ensure that nodes with a
majority of the “old” votes are informed of each
change. When deciding if a majority exists, the
algorithm must not get confused between the
“o0ld” and the “new” votes.

In this paper we examine in detail the
technique of autonomous vote reassignment,
concentrating on the protocols and their proof of
correctness. We will also demonstrate the
applicability of autonomous vote reassignment
to a simple database object-locking scheme. Our
protocols, however, are versatile and can be used
for any application that requires mutual
exclusion (e.g. replicated data management,
coordinator election, majority transaction
commit protocols, etc.).

It will be clear that for any application, our
protocols provide increased protection against



partitions. Partitions may not be too common on
simple networks (e.g., an ethernet), but modern
networks are more and more often composed of
heterogeneous and evolving collections of
networks. In these networks, partitions are
more common, since a gateway failure or a
software bug can disconnect two networks. Also,
in many cases, a simple host failure cannot be
distinguished from a real partition (where that
host is disconnected from the network). Thus, it
is becoming more important to protect against
such disasters.

An important feature of our method is that it
makes no assumptions about how quickly or
accurately nodes must detect failures or
partitions. We assume each node has its own
view of the state of the network (this view
indicates which nodes are up and which are
down). Among the nodes, however, these views
may be inconsistent. In other words, we allow
the possibility that a node (or nodes) is incorrect
about the state of a link or other node. With our
protocols, such inconsistencies may lead to
suboptimal assignments, but at no point is
mutual exclusion compromised. We believe that
allowing for such errors reflects the reality of
distributed computing networks.

Two recent papers [Dave85, Abba86] also
address increasing availability under mutual
exclusion requirements. Their techniques
attempt to change the required majority needed
to perform restricted operations when the state
of the network changes, instead of changing the
actual votes assigned to the nodes. In [Dave85],
the authors rely on accurate views of the current
network state. This in essence means that when
a failure or recovery of a node or link occurs,
every node recognizes it instantaneously. In
[Abba86], the algorithm relies on coordinating a
consistent view among the nodes. Also, in
[Abba86] the algorithm is specific to the
application of improving replicated database
reliability. In contrast, our protocols provide a
flexible method for increasing system
availability in any application requiring mutual
exclusion, without requiring the system to have
special features that coordinate status
information continually.

In the next section we present protocols for
implementing autonomous vote reassignment,
along with a proof of correctness. In Section 3 we
demonstrate how dynamic vote changing can be
used for applications requiring mutual exclusion

via a simple example. We have also studied the
availability provided by autonomous vote
reassignment through detailed simulations. As
expected, it yields substantially higher
availability than static vote assignments.
Surprisingly, it also yields almost as much
availability as the group consensus approach,
but with less overhead. The simulation results,
as well as choices for policies, are briefly
discussed in Section 4. (A full discussion of the
policies and the simulation results appears in
[Barb86].)

2. Protocols

In this section we present two protocols that
work together to provide for autonomous vote
reassignment in a distributed system. One is a
vote collecting protocol that is used whenever a
node is collecting votes to perform an action that
requires mutual exclusion. The second is a vote
changing protocol and is used when a node wants
to adjust its vote value. Vote changing is an
event requiring a majority, so vote collecting is
invoked whenever vote changing is performed.
In this paper the protocol for vote changing only
allows nodes to increase their votes. (A group
consensus technique ean be used to reset to the
original vote assignment. Alternatively, we can
allow nodes to decrease their votes
autonomously. This involves further protocols
that are not discussed in this paper.)

We start by establishing some notation and
terminology. We establish at each node i the
vector V; where V[j] indicates the number of
votes of node j according to node i. This vector
represents what node i believes the current
global vote assignment to be. We use v; to
indicate the votes of a node % as determined upon
vote collecting. We now present the protocols for
vote collecting and vote increasing.

Protocol P1. Vote Collecting.

Assume node i is collecting votes to decide
upon an event. Each node j that can
communicate with i will send its voting vector.
Let G be the set of nodes from which i has
received votes (including i itself). Node i decides
upon the votes of node & (v3) using the following
rules:

a) If i received the vector Vi from k&, then v, =
Vilk]l. Also, if Vi[k] > V;[k], then i should



modify its entry V;[k] to be equal to Vi[k]. (The
reason for this last step will be clear later.)

b) If i does not receive V within a certain time
period (perhaps k cannot communicate with i),
then vy = max(V[k]) for j € G. In this way, k is
considered to have the largest number of votes
recorded among the nodes that have voted. At
the same time, i modifies its entry V(%] to be
equal to vp. This way, the largest value of v, gets
propagated.

Using the vy values, node i can determine if it
has a majority of votes. That is, the total number
of votes will be computed by i as

TOT= D v,
allk

and the votes received will be

2

jeG
If this last sum represents a majority in TOT,
then node i has a majority. []

We now describe the protocol for vote
increasing. Essentially, it is nothing more than
a commit protocol to change the number of votes
that a node has. It must ensure that a group of
nodes with a majority of votes agree with this
change and record it. In fact, any commit
protocol that uses two or three phases will serve
this purpose. However, there are two facts that
allow us to simplify this protocol:
® No negative acknowledgments will be

produced. That is, no node is to vote against

the increase of votes of another node.

® Assume that a node increasing its votes
becomes separated from the participants on
the protocol, and these participants
registered the change before it committed.

This situation does not become dangerous,

since the worst that can happen is the

participants consider themselves to not have

a majority in a future event.

These two observations allow us to reduce the
protocol to a one phase protocol in which a node
indicates to the rest of the sites its intention of
increasing its votes and waits for the
acknowledgments. The initiator only makes the
change effective when it receives a majority of
acknowledgments, but the rest of the nodes
record the change immediately.

The protocol is as follows:

Protocol P2. Vote increasing.

The initiator (node i)

a) Send the change to the rest of the nodes with
which node i can communicate.

b) Wait for a majority of acknowledgments to
arrive (whether or not a majority of votes has
been received by node i is determined by
following protocol P1), and then make the
change permanent in the local voting vector,
that is update V;[i].

The participants

Upon receiving the change, register it in the
local voting vector (update Vilil) and send
acknowledgment to the initiator. []

The algorithm for the initiator can be
optimized for the case in which i is not connected
to a group of nodes with a majority of votes. By
timing out the responses, the node may cancel
the vote increase if it does not receive enough
votes after a certain time period. Note that this
is not essential, since the node will not make the
change permanent in its local vector until
enough votes are received and therefore it will
keep voting with its old votes.

Before presenting formal proofs, we point out
some key aspects of Protocols PI and P2. One
important observation is that we cannot apply a
total ordering to vote increments such that a
vote increase is aware of all those that occur
before it in the ordering. Several nodes may be
running the protocol concurrently. Running the
protocol is undoubtedly affected by such factors
as network transmission delays and load factors
at participating nodes. As a result, we cannot
guarantee that two vote increases, one at node a
initiated before one at node b, will finish in the
same order as they are started. We cannot even
pick the one that starts first (or the one that ends
first) and claim that all those that start (end)
later are aware of the first. A total ordering
could be guaranteed by protocols with higher
overhead (such as a group consensus technique)
but is unnecessary. In fact, Protocols PI and P2
allow for a vote increment to occur even though
the node’s view of the vote assignment may be
incorrect. We will show, however, that this is
not dangerous. We can prove that vote
increments occur with enough knowledge of each
other so that any increment that is approved is
safe, safe in terms of guaranteeing mutual
exclusion.



To proceed with the proofs, we will order the
vote increments according to the global time at
which they are initiated. The timing of the
increments is actually irrelevant and serves
solely as a notational convenience. For two
increments that are initiated at the same time,
one is chosen arbitrarily to precede the other.
We refer, then, to vote increment j as I;, where j
is a positive integer. Increment I; occurs at node
n(I;) and represents a change of votes to new vote
value v(Ij). The node initiating the successful
increase [j does so by collecting a majority of
votes from a group of nodes which we call
MAJGI The sum of the votes obtained from
MAJGI] is called MAJ VI In addition, we often
refer to the the nodes that were not in the voting
group and call them mingy with vote total minvy.
Note that for any such increment I;, MAJ G1 r’1
mingy. = @ and MAJVIJ > mva

In addition, for an increment I; we
distinguish between the previous vote
increments that I; uses as votes to collect a
majority and those [; is aware of but does not
necessarily use. Say [ changes the votes of node
n(Iy) = z to v(ly). When I collects votes using
Protocol P1, it determines v,, the number of votes
to use for node z:

if v, = v(ly) then Iy — I and we say [; sees

I,

if v, = v(lx) and z €] VIAJG[ then Iy = Ij

and we say [; uses I.
Note that Iy = 1mp11es I — ;. Also, notice
that for Iy = j it is not necessary thatk < j. If
I; was initiated before Iy but Iy finished first and
then voted on Ij, then Iy = Ij but k > j. By
Protocol P2, however, I must have finished
before it was used for [;. Also, since votes only
increase, the latest vote value at a node
implicitly represents all the previous increments
at that node. Consider two increments I; and Iy
such that n(l) = n(ly) and I; and Iy occur one
right after the other at that node. Then, [; = Iy
and Iy = Iy (I at any node) implies I; — Ip,.

We also establish a representation for the set
of vote increases that lead up to a later vote
increase. As an example, let I signify the
original assignment. If [; uses only the original
assignment, then Iy = I;. If [; is subsequently
used for Iy, along with some original votes, then
this is depicted as in Figure 2(a). Also, [j and Iy
may be used for I;, as in Figure 2(b). Converting
increments to vertices and = to directed edges,
we obtain a one-to-one correspondence with a

directed graph with source Ij. Any set of
increments can be so represented by a connected
directed graph. We say that a set of paths lead
up to a vote increment and define the length of
any such path to be the number of increments on
it. This is simply the path length from Ij in the
directed graph.

h=L=>I
\‘-——"7_—/\

(a)

===y

= A
(b)

Figure 2

With this machinery we can prove that
Protocols PI and P2 have a property that is
sufficient to guarantee mutual exclusion. We
have already stated that we cannot simply say
I} » Is =» I3 — --- where I; occurs before
Ia, Iz before I3, etc. We can prove, however, that
I = Igor Iz — I;for all pairs of vote increments
I; and Ix. Intuitively, we are stating that
between any pair of vote increases at least one
knows of the other. For an application requiring
mutual exclusion this property extends to any
vote collecting event. In this way, no node will
perform an action that conflicts with another
and for two conflicting actions at least one node
will know of the conflict.

We now present the lemmas and theorems
concerning vote increments and then apply them
to a simple scheme for managing replicated data
under mutual exclusion requirements.

First we prove an important property of the
directed graphs.

Lemma 2.1: The directed graph representing
the set of paths leading to an increment Ij is
acyclie.

Proof: The proof is by contradiction. First note
that Iy = I; implies that Iy finished collecting
votes using Protocol P2 before [; collected a
majority using Protocol P2. Hence, I} finished



executing P2 before [; finished executing P2.
Now, suppose there exists a cycle in the graph,
Iy =>1; = =1, = I This implies that Ij
finished before Iy,..., before I, before Iy, an
impossibility. [

Next we prove three properties of the vote
increments.
Lemma 2.2: If Iy —» Land]; = ~ = ~ = [
thenI; — I.
Proof: The proof is obvious by the properties of
Protocol P1. IfIy — Ij, then further uses of I; are
given the Iy information, in particular, Iy
receives information about Iy. In effect, Iy — Ij.
O
Lemma 2.3: If two increments I; and Iy occur
such that [; has seen the vote increments Iy uses
to collect a majority and Iy has seen the vote
increments Ij uses to collect a majority, then
MAJG[ N MAJGI = O
Proof:’ Say MAJG[ n MAJG[ = . Then,
MAJG; C mmgIk and MAJGy, C mingy. For a
node x € mlngI and x € MAJ GIk, the voie value
for node x that’ I; sees is greater than or equal to
the value that Iy uses, since I; has seen what Iy
uses. This implies minvIJ 2 MAJVy,. Certainly
MAJVI > mvaJ for I to have occurred, so
MAJVI > minvy, MAJVIk We can argue
S1m11ariy fora noée ¥ € mingy, and y € MAJ GI 5
yielding MAJVy, > minvy 2 MAJVI But now
we have reached a contradlctmn so MAJ GI
MAJGy, = ©. 0
Lemma 2.4: If two vote increments I; and Iy
occur such that \'IAJGI N MAJGy, # O, then
either [j - Ixor Iy - Ij.
Proof: The lemma is obvious by the properties
of Protocol P1. Say x is the node MAJGIj and
MAJGy, have in common. If x votes on I first
thenl; - Iy via node x. Similarly, if x votes on Iy
first then Iy — I; via node x. Node x must do one
or the other first, so the lemma is true. []

Next is our main theorem.
Theorem 2.1: For all pairs of vote increments,
I;, I, either [; - I or Iy — I (or both).
Proof: The proof uses a double induection.
Induction One is on the number of vote
inerements, i

Basis: 1 vote increment.

Obviously, I; sees its own increment, so I; —

I;.

Inductive Hypothesis One.

Assume the theorem is true for a set of i

increments.

Show true for a set of i+1 vote increments.
There are three steps.
1). If we consider the directed graph formed
by the i+1 increments, it is acyclic by
Lemma 2.1. Therefore, it has one vertex
with no outgoing edges (by the properties of
directed acyclic graphs), corresponding to
one increment that has not been used by any
of the other i increments. Call one such
unused increment Iy, We first prove the
following fact.
Fact: If a vote increase, Iy, of A votes
occurs at node n(lg), but no other node
uses Ir to increase its own votes, then we
can remove I¢ from the set of increments
without preventing any of the remaining
vote increases.
Proof: Consider another vote increase
Ik that doesn’t use Iy. If Iy doesn’t see If
either, then Iy has no knowledge of If and
acts as though If never occurred, so the
lemma is true immediately. If Iy — Iy,
then there are two cases. Case 1:
n(ly) € mingy. Certainly MAJVy >
minvy, for I to increase its votes. If we
remove increment If then minvy, is
decreased by A , minvy ' = mmvl -A but
still MAJV], > rnmvlk' S0 Stl“ Ik
occurs. Case 2 2 n(lg) € MAJGy,. Then, If
had not been installed at n(Ip when n(Iy)
voted on I.. n(Iy) voted with an older vote
value; vp, at n(ly) is computed to be the
older value. If I is removed, U1, does
not change, so neither does the vote total
at n(Iy). [
With this fact, we can remove Iy from the set
of i + I increments without preventing any of
the other vote increases. By Inductive
Hypothesis 1, for all the remaining i
increments the theorem is true. It remains
then to show that either I, = Ifor Iy — I,
where I, is any one of the remaining i
increments.
2). Order the remaining i inerements by the
length of the longest path from the original
vote assignment to the increment.
3). Show that for I,, with a longest path of
length p, either I, = If or If — I, by
Induction Two on the path length, p.
Basis maximum path length = 1.
Let I, be an increment with maximum
path length 1. Then, I, uses only the
original assignment (I = I,). By



Inductive Hypothesis One, for any vote
increase I+ on a path to Iy, either
Ipe = Iy or Iy — I, If I, — Ipe for
some Ip«, then I;; = Ifby Lemma 2.2 and
we are done. Else, I — I, for all such
I«. Certainly If has seen the original
assignment. Thus, both I, and I have
seen the increments that the other is
using, so the basis is true by Lemmas 2.3
and 2.4,

Inductive Hypothesis Two.

Assume true for maximum path length
D.

Show true for maximum path length
p+1.

Let I, be an increment with a maximum
path length p+1. Once again we know
by Inductive Hypothesis One that for
any vote increase Ip on a path to I,
either I — I, or I, = Ipv.. We know by
Inductive Hypothesis Two that for all I«
on this path to I, either I« — If or
If — Iy*. Once again, if for any Ip+ on the
paths to If, I, = Ip then [, — If by
Lemma 2.1 and we are done. Similarly,
if for one of Iy, I — I+ then If — I,
by Lemma 2.1 and we are done.
Otherwise, I+ — If for each such I«
and Ipe — I, for each such Ip«. But here
again, both If and I, have seen the
increments that the other is using. So,
the proposition of step 3 is true by
Lemmas 2.3 and 2.4.

Since the proposition is true for I, of any

path length, the theorem is true. []

Finally, there is one more issue we need to
address. Some dynamic vote reassignment
protocols can run into a type of deadlock
anomaly. It occurs when two nodes in the
majority group concurrently attempt to increase
their votes, but are unable to get a majority of
confirming votes. As an example, we return to
Figure 1 and the original vote assignment

Volal=1,Vy[b]=1, V [c]=1, Vy[d]=2.

Assume that nodes @ and b are trying to increase
their votes from 1 to 5. Both nodes may have
communicated their intentions to the rest of the
nodes, but they may be waiting for
acknowledgments from nodes with a majority of
votes to make the change permanent. At this

point, each node has a view of the votes in the
system that looks like this:
For node a,

Volal=1, V [b]=5, V lc]=1,V, [d]=2.
For node b,
Viulal=5, Vp[b] =1, Vi[c] =1, Vp[d]=2.

In this situation, both nodes determine that
there are a total of 9 votes throughout the
system. Both will proceed to acknowledge the
vote increment of the other, sending with its
acknowledgment its current number of votes.
For instance, ¢ may send an acknowledgment to
b with 1 vote. When b counts the number of
votes received in the acknowledgments, it will
have received 3 votes (one from a, b and ¢) out of
a total of 9 and not be able to proceed. The same
situation may occur meanwhile at a. If the
counting of votes is not done carefully, both
nodes will be precluded from changing votes
even though they have the potential to do so.

The algorithms we have developed handle
the counting of votes received in order to avoid
this “deadlock” anomaly. By rule (b) of Protocol
P2 a node does not make a vote change
permanent until it has been acknowledged by a
majority of votes. In our example, both ¢ and b
will send their vote values under the current
(pre-change) vote assignment. Furthermore, by
rule (a) of Protocol PI, node a will use vy, = Vil(b]
and node b will use v, = V, [a] as the vote values
for b and a, respectively. The majority will be
calculated using the old assignment and both
nodes will determine that they have a majority
and can increase their votes.

It is not hard to see that the deadlock
anomaly can be avoided for any number of
concurrently executing vote increases. More
importantly, this feature of the vote collecting
protocol benefits the application which uses
autonomous vote reassignment. When a node is
collecting votes to approve any action that
requires mutual exclusion, concurrently
executing vote increases will not prevent it from
collecting a majority of votes. We look at the
interaction of autonomous vote reassignment
with an application in more detail in the next
section.



3. A Simple Application

In Theorem 2.1 we proved a “weak” property
for dynamic vote reassignment using Protocols
P1 and P2. We claim that this is enough to
provide mutual exclusion in a distributed
system; that is, any application (e.g.,
transaction commit) that worked with static
votes will work with dynamic votes. We will not
prove this general claim; however, we will show
that mutual exclusion is preserved in a simple
example. It is easy to use the same ideas for
other applications.

The application we consider is locking
objects in a database system for mutually
exclusive access. The goal of locking is as
follows. Say an object x exists in the system.
Transaction T performs lock(x). When lock(x) is
complete, T has exclusive access to x. T performs
unlock(x) to release the lock.

First, we consider how lock and unlock can be
implemented in the case of a static vote
assignment. Please keep in mind that this is just
a simple deseription that adheres well to our
model. Much more efficient implementations
exist but are not discussed here. For each object
x in the system, each node has a local “lock”
implemented as a log. A granted(T) entry in the
log records the fact that the local lock was
granted to transaction T. (Transactions are
identified by a timestamp and the id of the node
where the lock(x) action initiated.) Similarly, a
released(T) entry indicates that the lock has
been released. If every granted entry has a
matching released entry, then the local lock for x
is available. Otherwise, the lock is held by the
transaction with the unmatched granted. For
simplicity, let us assume that logs are stored on
stable storage.

When a transaction T at node a wants to
perform a lock(x), it sends lock-request(x)
messages to all nodes. Each receiving node b
checks the request against its lock log. (Node a
also acts as a receiving node.) If the lock can be
granted at b, b enters granted(T) in its log and
replies yes with its assigned number of votes. If
the initiator @ receives a majority of votes, the
lock(x) is successful and transaction T has a
system wide lock on object x.

If the log for x at node b indicates that the -

local lock is not available, then the node b replies
no. Node b also forwards the log for x to node a,
to insure that node a is informed of the pending

lock. When node a fails to receive a majority of
votes, or when it receives a no message, it aborts
the request. In this case a performs unlock(x) by
sending unlock-request(x) messages to all nodes.
It is not necessary to collect votes for unlock(x).
(As the nodes receive these messages, they add
released(T) entries to their logs.) If node a
received logs from other nodes, it merges them
with its own, to have an up to date view of what
is locked.

If T accomplished lock(x), when T no longer
needs object x, T proceeds as in the abort case.
To ensure that all nodes eventually unlock, we
can assume that a node periodically checks if a
lock has been granted for a “long” period of time.
If so, it can ask the initiator if it missed an
unlock-request(x).

We refer to the above method as the one-
phase locking protocol. In the case of static votes
it is easy to see that the protocol ensures mutual
exclusion. Suppose both T'; and T)j have initiated
lock(x) requests and neither has initiated a
release(x) operation. If both transactions get a
majority of votes, then there must be one node
that replied yes to both requests. (All majority
groups intersect in a static vote assignment.)
Since this is not possible, then at most one of the
requests could have been successful. Note that if
we represent the lock operations by L; and L,
then we can say that either L; sees L; (in which
case T is aborted), L; sees L; (T} is aborted), or
both see each other (both transactions are
aborted). Using our earlier notation, we have
that either L — Ljor Lj — L; (or both)..

Although the mechanism we have described
guarantees mutual exclusion, it of course has
drawbacks. It may lead to starvation and
blocking. Local locks are implemented in an
inefficient way. However, we have chosen it to
illustrate simply how a protocol can be extended
to operate with dynamic vote reassignment.
(The technique for making the transition to
dynamic voting which we are about to present
would also work for a more efficient locking
protocol, except that the proofs would not be as
obvious.)

As one might expect, we have to do some
extra work to enjoy the benefits of dynamic
voting. Lock information must be propagated as
the voting power shifts. Consider the following
simple scenario, using again Figure 1 and initial
vote assignment Vy/a] = Vu[l] = V [c] = 1 and
Vald] = 2. Say that node ¢ initiates transaction



T, that requires a lock on object x. Node ¢ sends
lock-request(x) messages to all other nodes.
Assume that nodes ¢ and d approve the request
immediately, so ¢ gets 3 votes out of 5, and the
lock(x) is suecessful. Let us also assume that
node a never receives the lock request message
from c¢. Now say that node a, for some reason,
successfully increases its votes to Vy/a] = 100
and no other nodes increase their votes. Now, of
course, a in effect has all the voting power in the
system. Next a partition occurs, and a becomes
isolated. Node a now can act independently,
granting itself any locks available at a since it
has 100 votes out of 104. Nodes 4, ¢ and d cannot
collect a majority and are left to work only with
locks they have already obtained. T, then can
continue to use object x. (T, has not performed
unlock(x) yet.) Node a, however, has no
knowledge of the lock(x) at ¢ (remember - the
lock-request(x) message send to ¢ was lost) and
can now lock(x) independently. Say a
transaction T, does just that. Now there are two
locks concurrently held on the same object,
certainly an undesirable situation. To avoid
this, when node o increased its votes, it should
have received the lock logs of the voting nodes,
thus propagating the lock information.

The procedure for dynamic voting, then, is as
follows. When a node a initiates Protocol P2 to
increase its votes, an acknowledging node, 5,
must send its lock log along with its votes. Node
a, then, must integrate the lock information with
its own, adding any locks or unlocks it has
missed. The one-phase commit protocol for the
static case can be used to obtain locks, except
that votes are counted using Protocol PI. Note
that the integration step may make it appear to
a node that two (or more) locks are held on the
same object by transactions at different nodes.
This is due to the nature of the one-phase locking
protocol. This doesn’t mean that two different
transactions have performed a successful lock()
on the same object concurrently. At most one
such lock() is approved, at least one will be
backed out.

We can now prove the following corollary.
Corollary 2.1:  Mutual exclusion under the
lock scenario is preserved using Protocols P1 and
P2: no two nodes can concurrently hold a lock on
the same object.

Proof: Note that a successful lock(x) event, L;,
and a successful vote incrementing event, I;, are
very similar. Both use the same vote collecting

protocol and propagate vote and lock
information. Thus, we can now speak of a
general event E, where E is a lock or a vote
increment action. Using our earlier notation we
can define the “has used” and “has seen”
relationships:

if ;; = Eg, then E; has used vote

increment I

if E; — Eg, then Ey has seen event E;,
Using basically the proof of Theorem 2.1 we can
show that either E; — Ey or Ex — E; for all
pairs of events E;j, Ex. The rest of the proof
proceeds by simple contradiction. Say two nodes
hold locks on the same object concurrently,
corresponding to events E, and Ej and say
E; — Ep (Ey, = E, works analogously). Then,
the node initiating event Ep knew of the
conflicting lock granted for event E,. E,, then,
could not have been approved under the one-
phase commit protocol described above.[]

In summary, when using dynamic voting for
a particular application, information that must
endure partitions (e.g., the fact that an object is
locked or the values that a committed
transaction has installed in the database) must
be given to a node that is increasing its votes.
This ensures that anyone collecting a majority in
the future will obtain the same information from
the node with more votes than it would have
obtained directly from the nodes that
participated in the vote increase.

4. Policies

In the interest of completeness we provide a
short discussion on policies, the choice a node has
for picking a new vote value, and briefly mention
simulation results. Again, see [Barb88] for a
complete description.

There are many policies that can be
implemented for autonomous reassignment. In
general, we divide them into two categories:
alliance techniques and overthrow techniques.
Consider a node x with v, votes that becomes
disconnected from the network and for purposes
of the example assume all nodes detect this.
Under alliance techniques all remaining nodes,
say there are N of them, will take on more votes.
For example, each node could increase its votes
by 2u; or by 2u,/N. An overthrow technique
might use a priority scheme where the highest
priority node increases its votes, perhaps by 2v,.



Our simulation compared various techniques
with a static assignment of votes and with a
group consensus technique. We based our
comparison on the percentage of time the system
was up, in other words, some connected group
could collect a majority of votes and therefore
perform restricted operations. The simulation
provided a very dynamic system; in other words,
failures and repairs of nodes and links occurred
very frequently. This achieved a very low
system uptime overall, but allowed us to zero in
on just the situation where reassigning votes
will help: when the network is especially
volatile. We considered 5-node networks of
varying connectivity. As one might expect,
dynamic reassignment provided much higher
availability than the static assignment did. In
fact, system uptime increased by a factor of 2 or 3
under the unstable conditions. Surprisingly,
autonomous techniques did not perform much
worse than group consensus did. This is
particularly encouraging since we think
autonomous techniques are faster and easier to
implement. Of the autonomous techniques, in
general, alliance worked better on high
connectivity networks while overthrow achieved
better results in low connectivity cases.

5. Conclusions

We have presented a set of protocols that
provide higher availability in a distributed
system operating under mutual exclusion
constraints. Using voting as the basic mutual
exclusion mechanism, upon failure of a node or
partitioning of the network, nodes can reassign
themselves new votes dynamically, in order to
survive future failures. Furthermore, the
protocols allow each node to initiate this vote
change autonomously. The method is simple and
fast and does not require accurate detection of
failures and partitions at the sites. In addition,
our method is flexible, it can be used for any
application that requires mutual exclusion.
Simulation results have shown that autonomous
reassignment shows much improvement over a
static assignment of votes and is a viable
alternative to dynamically reassigning votes
using a group consensus technique.
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