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Abstract

While most of the computing world has been exploring the uses of parallelism to
increase computational speed, we at Princeton have been examining methods of
using large amounts of semiconductor memory to achieve the same end. We have
demonstrated that time-space tradeoffs can be exploited across a wide range of
applications to speed up computational tasks (On some tasks, our 128 megabyte
VAX will outperform even the fastest supercomputers). These time-space tradeoffs
coupled with rapidly falling semiconductor memory prices make Massive Memory
systems economically inevitable. This paper documents performance results from
our 128 megabyte testbed machine, and goes on to investigate promising application
domains for Massive Memory computing systems.
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1. Introduction

This paper presents the case for Massive Memory computing systems which we
believe will become economically inevitable as the cost of semiconductor memories
continue to decrease. We loosely define Massive Memory systems as; "Computing
systems that possess greater than ten megabytes of semiconductor memory for each
MIPS (million instructions per second) of CPU speed”. Such systems, with large
amounts of semiconductor memory, will fundamentally alter the way computations
are performed. Our performance results show that not only I/O bound tasks benefit
from Massive Memory. Time-space trade-offs can be utilized to extract
computational speed on seemingly "CPU bound” problems. This paper demonstrates
how and explains where Massive Memory can be used to improve computational
performance.

Section two presents the case for Massive Memory, including performance results
from our 128 megabyte VAX-11/785. Section three explains our benchmarking
procedures and results. We develop a new set of metrics to gauge the impact of
massive memory on computational tasks. Section four describes continuing research
into Massive Memory computation.

2. A Case for Massive Memory

The Massive Memory project was initiated as a continuing trend in computer
hardware costs was recognized; Memory is getting cheaper. And thisis occurring at
an exponential rate[1]. The amount of memory that one dollar will buy doubles
about every 2 years [10]. At present one gigabyte of semiconductor memory costs
about $250,000 (at the board level) which is not significantly more than the cost of a
large minicomputer system[11]. If this trend continues, the same gigabyte will cost
less than nine thousand dollars by 1996.

How can we use this memory? There are two ways. Some I/O bound applications
will immediately benefit from large amounts of semiconductor memory. Database
applications, Artificial intelligence applications, and VLSI layout problems all fit
into this category[2]. For these problems the performance limiting overhead of
swapping disk pages into and out of main memory can essentially be eliminated.



Every experienced programmer has encountered programs that ”"thrash” main
memory. And often these programs require painstaking programming and
algorithmic development to run in small amounts of main memory. External
sorting, and the old "line at a time” editors are examples of such applications.
Massive memory will improve all of that. Not only will I/O bound applications run
faster, but programming tasks will be greatly simplified.

But massive memory has applications that extend beyond simply improving I/O
performance. Memory space can be traded for computational time to drastically
increase computational speeds.

Most of the computational world has been exploring ways of using parallelism to
increase computational speed, and these efforts have met with some success, but only
on very specific applications, or very limited degrees of parallelism. In the Massive
Memory Project we are taking a different approach, instead of using parallelism to
increase computational speeds, we are exploiting time space tradeoffs to achieve the
same end. We expect that Massive Memory systems will improve performance on
many tasks that parallel processors do poorly on and vice versa. We contend that
both lines of research are important, but Massive Memory has not been studied
closely.

Figure one shows a plot of different types of computer systems with processor speeds
scaled on the horizontal axis and memory size plotted on the vertical axis. Many
highly parallel processors use relatively small amounts of memory compared with a
great deal of computational hardware[7] so they fit into the lower right corner of this
graph, while most conventional processors fit into a diagonal band in the middle.
These conventional systems seem to validate Amdahl’s Law which states a processor
will have about one megabyte of memory for every MIPS of computational speed.
Massive Memory systems fit into the relatively unexplored region of the upper left
corner of the graph. Ideally one would want a processor with both large amounts of
memory and fast computational speeds (upper right corner), but economic
considerations and technological limitations make such a system hard to realize.
Trade-offs must be made, and in light of current economic trends these trade-offs
will begin to favor Massive Memory.
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But how can time space tradeoffs be used to improve computational speed? A lot of

techniques have been developed. And a great body of literature on the subject

exists[3][4][5]. But until systems are built with massive amounts of memory many

of these techniques will remain infeasible. We have identified several techniques

that can be used to trade memory space for time.

1. Precomputation and Table Lookups
2. Subgoal Storage
2. Multiple Access Structures



4. Redundant Code

Precomputation involves precomputation of results for commonly referenced
functions. We have constructed a program to evaluate transcendental functions
(Sines, Cosines, Tangents, Etc.) on our test bed machines. Instead of performing the
standard multi-term Taylor Series expansion along with it’s associated multiplies
and adds. Our system simply performs a lookup into a table of precomputed values.
This performance is contrasted with the standard UNIX system routine in the table
one. Note that we gain almost two orders of magnitude in speed by precomputing.
Also note that there is an accuracy limitation imposed by our table size. We have to
produce a larger table to get more accuracy while a Taylor Series approximation has
to compute more terms. We can reduce memory usage by interpolation on a smaller
table, at the cost of computational time. Fast transcendental functions have obvious
applications to real-time motion control systems. Note that this technique can be
used to evaluate an entire family of functions (trig. functions, exp, etc.)

Sine Cosine Tangent Square Root
T fbeary 312 308 385 624
Table Lookup 9.15 9.15 9.15 9.15
Table 1 Common Function Evaluation Timings (microseconds)

We have found another application for precomputation. Several researchers at
Princeton (Lipton, Sandberg North) have developed Strip Sort, which is an external
sorting algorithm that uses massive amounts of memory (say 500 megabytes) to sort
even larger databases (say 10million 1000 byte records = 10 gigabytes). This
algorithm sorts these large records with only order N disk accesses, and it has proven
to improve performance on real problems by as much as 10 times [6]. The algorithm



proceeds by first sorting the keys of the records (which are assumed to be much
smaller than the record size) in core, and in doing so produces a permutation array
which can be used to permute the rest of the database one ’strip’ at a time (see figure
2). The permutation array is precomputed from the small keys and then this is
used to sort the larger records very quickly.

Record 0
-------------- Record 1
Strip 1 | Strip 2 | Strip 3 | Strip 4 sl Strip M | Record?
............... o
— oo 5 1
: ' ' e : i e

Algorithm: assumes all keys or one strip can fit into main memory
First sort the keys in core generating a permutation array
For all strips:

Read one strip in from disk

Use the permutation arrray to sort the strip in core (linear time)

Output sorted strip to disk

Figure 2 Strip Sort

Subgoal storage is another powerful technique to trade space for time. The idea is to
compute and store intermediate results which can then be used to attain a final goal.
Dynamic programming fits into this category. Many dynamic programming
algorithms use O(N*%2) or O(N**3) and more space. Storing this amount of data
becomes impractical on a conventional computing system if N becomes greater than
about two thousand. We have coded the Floyd-Warshall [4] all pairs shortest path
algorithm. On our 128 megabyte VAX-11/785 we can find the all pairs shortest
paths on an 8000 node graph in 60 hours. Doing the equivalent computation on the
same machine with a standard 8 megabyte memory configuration takes 50 days!



This is not surprising because we can keep all of our data structures core resident,
thereby eliminating all paging overhead.

Another dynamic programming algorithm to find RNA secondary structure takes
O(N**3) time O(N**2) space[5]. Finding the optimal folding for a 2000 base strand
of RNA can take months on a VAX with standard memory configuration[6]. We are
presently programming this run on testbed machine, it should be able to sequence
the same 2000 strand base in 20 hours.

Internal sorting fits into the classification of subgoal storage. The data starts out in
its initial unsorted order and works its way through intermediate stages until it is
finally completely sorted. We have coded and internal quicksort program that can
sort 30 million four byte integers in 47 minutes twenty one seconds. The same
program run on a standard 8 megabyte VAX will take 3 days to run. Internal
sorting is the fastest way to sort[12], and a massive memory machine therefore
provides the fastest method of sorting large data sets.

Storing several access structures to a data set can also improve performance.
Several sets of indices to a data base can be stored, each sorted on a different key.
This facilitates multi-dimensional retrieval. In directed graph problems, storing
adjacency lists, reverse adjacency lists, and adjacency matrixes often speeds up
computations. Massive Memory will allow further extensions of multiple access
structures to extract further performance from important applications.

Space can be traded for time in program code by unrolling loops, and inserting
macros in place of subroutine calls. These methods of redundantly storing code avoid
the overhead of loop incrementing and subroutine calls.

3. Benchmarking Procedures and Results.

We presently have a VAX-11/785 testbed machine configured with 128 megabytes of
main memory interleaved between two controllers. This will soon be expanded to
256 megabytes. We have modified a version of ULTIRX 1.1 so that it can be
reconfigured to simulate a machine with any number of megabytes between one and
128. All system buffers and paging thresholds are scaled appropriately.



We first performed tests to verify that the operating system and machine was
performing up to published statistics for the VAX 11/785. To do this we ran the
Dhrystone benchmark set[9]. which mainly measures performance on a variety of
operating system tasks. Our machine benchmarks at 1968 dhrystones, and this
concurs with published figures for the 785 (see table 2).

We next measured I/O performance to our RA-81 disk drives (see table two). These
include the overhead of moving data through the buffer cache, these results agree
with established system performance numbers.

Dhrystone: 1968 Dhrystones per second

Disk Accesses: 50 M bytes in 4K pages (2.5 megabyte buffer cache)

Sequential Reads 323.4 seconds (158.3 K bytes/second)
Sequential Writes 321.5 seconds (159.3 K bytes/second)
Random Reads 622.3 seconds (82.3 K bytes/second)

Table 2 Standard System Performance Benchmarks

We wanted to gauge how performance degrades as main memory size is reduced, and
a program begins to "thrash”. To do this we isolated two types of data access
patterns. A simple sequential scan of memory, and random probes of memory.
Programs that manipulate arrays access memory in a sequential manner. While
hashing, binary searching, and pointer manipulation programs access data in a
relatively random fashion.

Two programs where produced, one that simply scans memory sequentially, and one
that makes random probes. The main memory size was then varied to produce the
two graphs in figures three and four. Time factor (on the vertical axis) is a measure
of the increase in a program’s running time. A program’s running time with all data
in core is 1. As one would expect, the sequential scan of memory was relatively less
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affected by reductions in main memory size. This is because for each expensive disk
seek, the program reads all four thousand bytes on the disk page, while for the
random probe, the program just reads four bytes from the four thousand byte page
that was swapped into memory . Figure five shows how quicksort behaves as
memory size is decreased. Quicksort marches linearly down an array with pointers
so this program behaves much like the linear scan. Our VLSI layout tool, which is
fairly CPU intensive, also pays a big penalty as main memory size is reduced. Thisis
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because the memory few accesses it performs are relatively random(figure 7). Floyd
Warshall references both rows and diagonal of a two dimensional array. As main
memory size is decreased, each diagonal access begins to cause a page fault. This
leads to two orders of magnitude increase in running times (figure 8).

We have developed a rough metric to measure the memory improvability of a task.
We first run a program and provide only enough main memory for half of its data set.
We then run the same code and provide enough memory for the entire data set to fit
in core. The ratio of these two numbers (running time with half data in core/
running time with all data in core) is a quantity that we call "memory
improvability”. Table 3 shows memory improvability for a number of tasks.
Inherently CPU bound jobs are at the far left end, and they don’t benefit from

10
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Figure 6 Quicksort

massive memory. At the far right end is the completely I/O bound random probe
program that benefits an incredibly from massive memory. In between these two
extremes many different types of applications fit. There is several orders of
magnitude variance in memory improvability between different applications. Note
that this classification is algorithm specific. New memory intensive algorithms can
be found which will change the location of an application in this hierarchy.
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Figure 7 VLSI Layout Tool

Random probe and the sequential scan behave much differently as main memory
size is decreased. The scan takes fifty times longer to complete when ninety percent
of its data set is swapped out while the random probe takes many thousands of time
longer. It is more practical to run a program whose data does not fit entirely in core
if the data is accessed sequentially. A ten minute job will take as long as tens of
hours if its data set does not fit entirely in core, this is a significant degradation in
performance, but the job will complete. A program that performs random probes will
take weeks and months to complete if its data set is not entirely core resident.

12
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4. Future Research Directions

Many applications will benefit directly from large amounts of memory. But more
interesting research lies in exploiting time space tradeoffs to greatly speed up
existing applications. We are investigating several application domains. Data bases
are an obvious area where massive memory can be used. When data bases are moved

13
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from rotating storage to semiconductor memory, many of the issues change.

Transactions can now be processed serially, and efficiently.

To get an estimate of these gains we have compared the UNIX system utility
program ”dbm” to a core resident perfect hashing program[13]. The results of this
test (table 4) show two orders of magnitude performance difference on inserts and

retrievals into a 1,000,000 record database.

1,000,000 1,000,000

insertions retrievals
UNIX version 5 dom 4025.3 seconds 3803.9 seconds
Perfect Hashing Code 14.283 seconds 13.913 seconds
Table 4 Database Package Timings (4 Byte Records)

14



Many artificial intelligence applications manipulate huge dictionaries which are
referenced in a random manner. Massive memory systems will allow these to
operate efficiently.

5. Conclusion

We have demonstrated how massive memory improves computational performance
by orders of magnitude on many applications. Some benefit immediately. Our VLSI
Layout program, Data base retrieval system, and Quicksort codes have for example.
There also exist many memory intensive algorithms that trade space for time (our
table lookup functions, and Strip Sort). Little research in computer science has been
devoted to studying massive memory computations. This will change. It is
economically unavoidable.
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