THE DESIGN OF LOAD BALANCING STRATEGIES
FOR DISTRIBUTED SYSTEMS

Rafael Alonso

CS-TR-035-86

May, 1986




FUTURE DIRECTIONS IN COMPUTER ARCHITECTURE AND SOFTWARE WORKSHOP
May 5-7, 1986. Seabrook Island, S.C.

THE DESIGN OF LOAD BALANCING STRATEGIES
FOR DISTRIBUTED SYSTEMS

Rafael Alonso

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

In this paper we consider the problem of designing and select-
ing load balancing mechanisms for distributed systems based on
local area networks. In particular, we will focus on the type of
information needed to make balancing decisions and on the desir-
able properties of the decision algorithms. We also describe our
current approach to this problem, which essentially consists of car-
rying out a series of experiments on a prototype load balancing
implementation. Finally, we present the insights we have derived
from our experimental results.

May 8, 1986



THE DESIGN OF LOAD BALANCING STRATEGIES
FOR DISTRIBUTED SYSTEMS

Rafael Alonso

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

1. Introduction

Many of the currently existing computing environments consist of a hetero-
geneous collection of of workstations and mainframes connected by a high
bandwidth local area network (LAN). One of the main benefits of working in a
distributed system created for such an environment is being able to share scarce
resources with other users of the network; but one resource that is often not
shared is the processing capacity of the network nodes. In many systems, the
scheduling of user jobs is individually carried out by each processor, and the
computations of the users logged on at any one machine are performed locally.
The decentralization of CPU management, coupled with large differences in the
numbers (and types) of users connected to each of the nodes in the network,
often can lead to situations where there are great disparities in load among the
machines on the network. For example, at our local computer center, as the
due date for a class assignment approaches, the processor assigned to the stu-
dents in that class becomes heavily loaded, while other machines are underutil-
ized. Although users can determine by themselves that an imbalance exists,
and remotely log onto another computer, we feel that, in order to prevent a
chaotic situation and to aid naive users, it is best to develop strategies that can
solve the load balancing problem in an automatic way, much in the way that
users now depend on virtual memory techniques to manage their memory space.

We are currently exploring the design of load balancing strategies for
LAN-based distributed systems. In this paper, we describe some of the stra-
tegies that we are considering for implementation, as well as the criteria we are
using to determine which schemes are appropriate for a given environment.

In the next section we provide some details concerning our approach to the
problem. Sections 3 and 4 deal with load metrics and decision policies respec-
tively (these terms are defined in Section 2). The last section of the paper
discusses the current state of our work and presents some preliminary conclu-
sions.

This research partially supported by New Jersey Governor’s Commission Award No. 85-990660-6



2. Our Approach

Although load strategies have been studied in the past, most of this work
has been carried out within a theoretical framework (see [Chul980] for a survey
of some of these approaches); moreover, some of the researchers carrying out
those studies have made simplifying assumptions that may not hold in practice.
Also, there have been a small number of load balancing implementations (for
example, see[Hwang1982]), but, as far as we know, the strategies employed were

‘chosen without extensive study. Our work differs from most of the previous
research in that, while we are interested in actually implementing a load
balancing mechanism, we will not chose a strategy in an ad hoc fashion, but
rather, we plan to devote extensive study to the choice of strategy to be pro-
grammed.

Before we describe our approach further, a few remarks are needed. A
load balancing strategy is composed of two parts, a load information aspect
(i.e., what information will be used to determine the load in the machines of the
network), and a decision policy (i.e., given the load information, how will it be
used to decide where to run a job). In order to speak meaningfully of a
machine being ‘‘more loaded” than another, we define a load metric as a real-
valued function of the load information. For example, the load information
could be composed of the number of processes in the CPU ready queue for a
given interval; a possible load metric would then be the average number of
ready jobs during the last minute. This metric is essentially the “load average”
metric provided by the UNIX 4.2 BSD [Leffler1984] uptime command. In the
next two sections we consider load metrics and decision policies in greater
depth.

Our current study of the load balancing problem comprises three phases.
First, to consider what are suitable load metrics for our environment. Then, to
list a number of possible decision policies that make use of the load metrics
being studied. Finally, implementing various combinations of policies and
metrics, in order to study their performance for a number of synthetic work-
loads.

We have already developed a prototype implementation of a load balancing
mechanism, which can be used with different load strategies. It consists essen-
tially of a shell that can make scheduling decisions based on load information
broadcast by cooperating daemons (see [Alonsol1986a] for more details). Our
prototype now runs in a laboratory consisting of a variety of SUN workstations,
connected by an Ethernet [Metcalfe1976]. Although experiments are still being
carried out, we will briefly comment on our current results in the concluding
section of the paper.

3. Load Metrics

The selection of a load metric requires a careful definition of what is meant
by the load of a processor. It seems clear that load should be defined, at least
partially, in terms of a set of performance indices (such as CPU utilization or
mean number of 1/O requests), but it is less clear that two different processes



o s

should use the same definition of load; for example, an I/O intensive job will
probably perceive load in a different way than a CPU-bound job. Whether the
benefits, if any, of using different load metrics for different tasks are sizable is
not immediately obvious; at any rate, at present we are considering only global
load metrics. Our rationale for this decision is twofold. In the first place, in
our computational environment we typically do not know the characteristics of
the jobs being executed, and thus, cannot compute job-specific load metrics.
Secondly, we feel that a simpler technique has a better chance of working well
in an implementation than a more complex approach.

A compromise between global and job-specific load metrics is to compute a
different load metrics for each job class. The simplest such scheme would
involve categorizing processes as either CPU or 1/O bound. Although promis-
ing, this approach would not be of interest in our system, since most user jobs
obtain their data (more precisely, all their pages) from a network file server.
Thus, there is little one can do (in terms of migrating the task) for I/O bound
jobs, except to exclude them from the load balancing algorithm. (Actually, this
is equivalent to a load metric that has the same value for all machines under all
conditions.) More will be said about the types of jobs that should not be
migrated in the next section.

Another important issue is that, since load metric information cannot be
constantly broadcast (because it would be too costly), the rate at which such
broadcasts are made needs to be studied. The problem that arises is that
machines are making their job scheduling decisions based on possibly stale data.
This could lead to unstable behavior; for example, an idle node could start
receiving migrated jobs from many other machines, and by the time it broad-
cast that it was overloaded, perhaps too many jobs would have been sent to it.
We have already seen such behavior in our previous study of the possible
improvements of introducing load balancing strategies in distributed database
query optimizers [Alonso1986b).

Actually, the cost of frequent load information broadcasts involves two fac-
tors: the cost of computing the load metric, and the overhead of sending and
receiving the messages over the network. One possible compromise would be to
gather the load information more frequently, but broadcast it at less frequent
intervals. The rationale for this is that, with this approach, each machine has
a better idea of its local load, and can start migrating all of its jobs when it is
overloaded. One of the results described in [Alonso1986b] suggests that, at least
in the context of database jobs, this strategy can be quite successful. We plan
to determine if that result holds for general purpose jobs.

A possible candidate for a load metric is the load average described above.
Another is the effective load average, defined as the load average divided by the
processor MIPS rate. A third is CPU utilization. The number of ready jobs
plus the number of disks requests per unit of time seems a more comprehensive
measure of load than a metric that involves solely the demand on the CPU.
Another possibility is to compute the utilization of the bottleneck resource at
every machine (since the throughput of a system is dominated by the scarcest



o e

resource, the utilization of this critical resource is a good indication of the node
load). Lastly, a binary metric (‘“‘idle” or “‘not_idle’”) would be an appropriate
choice if we were interested in migrating jobs primarily to unused machines on
the network. Currently, we are planning to study most of the metrics just
described.

The are a number of issues involved in evaluating a load metric:

[1] The stability of a metric is important, because if it responds too quickly
to minor changes in system parameters it may lead to unstability in our
load balancing strategies. The measurement technique used to compute
the metric is relevant here (for example, exponentially smoothing a sample
metric can improve the stability of the metric).

[2] We are also interested in the generalizability of the metric, since we
desire our schemes to be useful for non-UNIX systems as well as being valid
for a heterogeneous set of hardware configurations.

[3] Clearly, the implementability of the metric is of primary concern. Since
we intend to carry out experiments using the various metrics, the ones that

are either too difficult or too expensive to implement or to compute must
be discarded.

[4] Finally, there must be empirical evidence that the metric to be imple-
mented actually reflects our intuitive notion of ‘““load”. This can be deter-
mined by experimental study.

Before we leave this topic it should be pointed out that, clearly, a load
metric is only as good as the operating system statistics on which it is based.
In the case of UNIX 4.2 BSD, it is not clear that the statistics provided by the
kernel can be trusted completely. Thus, we also plan to carry out a study of
the statistics gathering software of BSD UNIX.

4. Decision Policies

Before we describe some of the decision policies that seem attractive, we
will touch upon some of the salient features of such policies. Policies can be
categorized as more static or more dynamic; for example, always using the same
computational server to offload a machine would be a very static policy, while
choosing the server at runtime is more dynamic. Some policies require knowing
varying amounts of information about a process in order to schedule it (e.g., a
strategy may require that we know if a process is CPU or I/O bound). The
scheduling decision may be made at a central site or in a distributed fashion
(we are only interested in the latter); also, the location of the decision mechan-
ism may impact the number of messages that have to be sent to communicate
load information. A key feature of any policy is whether it allows preemption
or not (i.e., whether we are allowed to keep migrating jobs after they start exe-
cuting); we will not consider such policies since we cannot currently implement
them in a UNIX environment. Some policies may limit the processors that may
be chosen; a possible strategy may be to let only idle nodes compete for tasks,
or to consider only machines with a certain MIPS rate for task allocation. The



R

choice of sender-initiated versus receiver-initiated balancing must be settled
(i.e., whether to allow busy nodes to look for an idle node, or to have idle nodes
advertise their ability to work). Finally, it is clear that some jobs should never
be migrated; this may be so for a variety of reasons: perhaps the jobs should
only be run locally for security reasons, or maybe the computational demands of
the task are so slight that the overhead of moving it overshadows any possible
performance gain. There are still many other issues to be considered: do we
optimize for the current task or do we look at sets of tasks? do we examine only
jobs that have arrived at our local decision maker mechanism or at all the
incoming jobs in the network? do we remember previous task assignments when
we make a decision? which performance index do we focus on?

There are many policies that could be of practical use. Perhaps the most
natural policy is to send jobs to the “least loaded” machine. A variation that
may prove more stable consists of migrating jobs to any machine whose load is
less than the local load by a specified amount. In order to decrease the chance
that all busy machines select the same host to which they will migrate their
tasks, each machine could choose the destination randomly from the n least
loaded processors (for some n). Another alternative is to only move jobs to idle
processors. Finally, always sending the jobs of overloaded processors to a
powerful computational server may be reasonable for some environments.

In judging a decision policy we may consider a number of factors:

[1] As we mentioned above, the stability of the policy under imperfect infor-
mation is important, since we expect that imperfect information will be the
rule rather than the exception.

[2] We would prefer that the cost of the load balancing scheme be negligible
compared to its benefits (note that there are two types of costs, the costs
to users of using the system, and the cost to non-users of the added over-
head of running the decision mechanism).

[3] Also, the load balancing scheme must not force all the processors in the
network to guarantee a given level of service; in particular, some processors
may refuse service or allow only certain classes of tasks to be assigned to
them. Thus, the amount of autonomy that machines have under a given
policy is important. (Note that the receiver-initiated policies mentioned
above seem to simplify achieving this goal.)

[4] Finally, the amount of transparency in the load balancing scheme is also
of critical importance, since it would be desirable to maintain users
unaware of the fact that their jobs may be running remotely.

5. Conclusions

In this paper we have presented our ideas concerning the implementation
of load balancing mechanisms. We have pointed out possible load metrics as
well as sample decision policies, and have detailed some of the relevant issues
involved in making a choice from the many possible strategies. It seems clear to
us that the selection of a load balancing strategy involves many complex choices



- i

which require careful study, and it is certainly not clear a priori which strategy
to pursue.

At the present time, we are actively involved in a series of experiments
that explore some of the ideas presented in this paper. Our previous work
([Alonso1986a] and [Alonso1986b]) suggests that the gains due to load balancing
can be quite sizable, and our current results continue to be promising. More-
over, we feel that this area of research contains many problems of both practi-
cal and research interest and merit further study.

References

Alonso1986a.
Alonso, Rafael, Goldman, Phillip, and Potrebic, Peter, ‘A Load Balancing
Implementation for a Local Area Network of Workstations,” Proceedings of
the IEEE Workstation Technology and Systems Conference, March 18-20,
1986.

Alonsol1986b. :
Alonso, Rafael, “Query Optimization in Distributed Database Systems
Through Load Balancing,” Ph.D. Dissertation, U.C. Berkeley, 1986.

Chul980.
Chu, W. W,, Holloway, L. J., Lan, M., and Efe, K., “Task Allocation in
Distributed Data Processing,”’” IEEE Computer, November 1980.

Hwangl982.
Hwang, K., Croft, W. J., Goble, G. H., Wah, B. W., Briggs, F. A., Sim-
mons, W. R., and Coates, C. L., “Unix Networking and Load Balancing on
Multi-Minicomputers for Distr. Proc.,” IEEE Computer, April 1982.

Leffler1984.

Leffler, S., Joy, W., and McKusick, K., 4.2 BSD System Manual, Computer
Systems Research Group, University of California, Berkeley, 1984.

Metcalfe1976.
Metcalfe, R. M. and Boggs, D. R., “Ethernet: Distributed Packet Switching
for Local Computer Networks,” CACM, vol. 19,7, pp. 395-404, July 1976.



