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ABSTRACT

In a main storage database system the primary copy of all data
resides permanently in primary (semiconductor) memory. A major
problem for such systems is crash recovery, i.e. ensuring that
transactions are atomic and durable in spite of main memory’s
volatility. In this paper we study several possible crash recovery
mechanisms and analyze their impact on performance.



1.0 INTRODUCTION

Current trends for semiconductor memories include increasing chip densities and decreasing cost
per bit. One result of these trends is that main storage databases are becoming feasible. For the
purposes of this paper, we will consider a main storage database (MSDB) to be one in which the
primary copies of all data reside permanently in primary (semiconductor) memory. _

The migration of data from secondary to primary storage leads us to reexamine the components of
traditional database management or transaction processing systems. In general it will not be a good
idea from a performance viewpoint to simply move a transaction manager (TM) from a disk-based
database to 2 memory-resident one. Any component of the transaction manager whose operation is
premised on disk-based data should first be modified to reflect the new environment. For many, the
modification will result in a simplification of the original code. Thus, the memory-resident system
can realize performance improvements through reduced CPU overhead as well as through the
elimination of disk access times.

One component of a TM which might be troublesome is the crash recovery mechanism, which is
charged with guaranteeing transaction atomicity and durability in the face of system failures and
user-initiated aborts. A crash recovery mechanism is usually implemented as software which logs
database changes to a stable medium such as a disk. The disk activity and CPU overhead associated
with maintaining the log can be a bottleneck for a disk-based system; for a memory-resident system
with no other need for disk traffic this problem may be even more pronounced, possibly nullifying the
advantages of having the data in main memory. Thus, crash recovery appears to be one of the most
critical issues for a MSDB.

The objective of this paper is to study various MSDB crash recovery mechanisms and their impact
on performance. The mechanisms include several that have been proposed or already implemented.
Two others involve special hardware, for we believe that dedicated hardware may significantly
alleviate the recovery problem at relatively low cost. The first of the hardware strategies supposes
that a portion of primary memory can be made non-volatile for use as a buffer for log disks. The
second uses a new hardware logging device we propose, HALO, that would assume many of the crash
recovery duties previously handled by the database processor.

We have also modeled a hypothetical MSDB in which all of primary memory is made reliable,
perhaps through the use of replication and a backup power supply. While such a system might not be
practical for most applications, it does provide a good base case for comparisons.

Our studies concentrate on performance measures like transaction response time and
throughput. They do not attempt to compare the costs (in dollars) of the mechanisms. This is not
because cost is an unimportant measure. Rather, we want to determine the benefits of each scheme so
that their costs can be seen in the proper light. For example, we would want to know what
performance improvements we could expect from migrating logging operations to hardware before we
invest the effort to build that hardware.

This paper is organized as follows. The next section gives a general description of a TM for a
MSDB, and its recovery mechanism. Section 3 discusses the particular mechanisms we have
modeled, including a description of HALO, the proposed hardware logging device. Section 4 covers
the model we have used to compare these mechanisms. Response time and throughput data from the
model are presented in Section 5, where we compare the various recovery alternatives using several
sets of parameter values.

2.0 MAIN STORAGE DATABASES

Main storage databases have been receiving increased exposure in print over the last several
years. Papers of particular interest include [3] which describes IMS/VS Fast Path, a commercial
product that has supported MSDBs for a number of years (it is from this paper that we have borrowed
the term MSDB), and [2], which discusses MSDB crash recovery. This latter paper suggests the use of
non-volatile RAM as a log buffer. Group commits, another mechanism we have modeled, are
described in both papers and are implemented in IMS/VS Fast Path.



Fuzzy checkpoints, potentially inconsistent checkpoints which can be done in parallel with normal
transaction processing, are described in [6], which discusses some of the crash recovery issues raised
by MSDBs. [5] describes applications for very fast transaction processing systems; these are some of
the applications for which MSDBs could be useful.

Several authors have described analyses of database crash recovery techniques. Most recently,
[10] presents a taxonomy of such techniques and a set of models for describing them. The models
differ from those presented here in that the cost metric used as the basis for comparison in the former
is the number of disk I0’s required by the various techniques. [1] focuses on modeling recovery time
rather than normal operation. The model presented there assumes that action-consistent (non-fuzzy)
checkpoints are used, and it considers time-varying transaction loads. Finally, [13] presents a
comprehensive if slightly outdated survey of recovery techniques in general.

2.1 OUR MODEL

We assume that the TM is running on a single processor with enough volatile RAM to hold the
entire database.* In such a system the processor is the critical resource for determining transaction
response times and throughputs.

We expect to see both direct and indirect performance benefits from memory-residence. Direct
benefits come from the elimination of disk accesses. A memory-resident database is an access time
faster than a disk-based one for every time the latter would have had to go to its disks. Thus we could
expect to move an existing TM onto a large-memory system and see significant performance
improvements as a direct result of the increased memory size.

Intuitively, we should be able to do better than just picking up the TM and moving it to a large
memory system. Those parts of the TM that were premised on disk-resident data can be rewritten
and simplified to take advantage of the larger memory. The improvements we see from these changes
can be thought of as an indirect benefit of memory-residence. Because the CPU is critical to the
performance of the new system, the benefits from the simpler, lower-overhead system could be
substantial in themselves.

Specifically, we assume that transactions are executed serially, with no locking.** In typical
transaction processing applications (e.g. banking, reservation systems) transactions are not large ***
The only reason they are not executed serially in conventional systems is that long delays might
result from disk accesses. Clearly, a TM with memory-resident data does not suffer from this
problem. Transactions can be executed one at a time, without the complexity and overhead of
concurrency control mechanisms like locking.

Another component that can be eliminated from memory-resident systems is the buffer manager.
With data permanently in core we can eliminate the CPU overhead involved in copying buffers,
initiating disk 10, and implementing a replacement policy (recovery mechanisms, discussed below,
may have to copy data and manage buffers in certain cases).

MSDB systems can also benefit by moving system call overhead costs to compile-time. To
illustrate, consider a transaction T that wishes to increment the balance of an account by an amount
AMT. In a conventional system, the transaction would make a system call requesting that a record
(identified with a pointer retrieved earlier) be brought into a buffer local to T. The system would
verify that the pointer points to the right type of record, that the transaction is authorized to read,
that a read lock is set, and would then initiate the 10 operation and suspend the transaction until the
data was in. When the transaction was restarted, it would increment the balance field in the record
and perform a second system call. The system would be told what field was changed (else it would
have to log the entire record), and this information would have to be verified too.

*  There may be, of course, applications where the “entire database” may not fit into RAM or where we may want to have
multiple processors. In these cases, we can view our single processor MSDB system as holding a high-traffic portion of the
database, and connected to other (possibly conventional) systems containing the rest.



In a MSDB, on the other hand, it will be desirable and perhaps necessary to reduce this overhead
by replacing the system call interface with an environment in which transactions and system
structures are integrated at compile-time. Application programmers will use a conventional
programming language, modified only in that certain data structures can be defined to be “system”
structures, and certain procedures or functions can be defined to be “transactions”.

In such a system, the transaction T would be a procedure (in the application programming
language) that included a statement like

BAL()«-BAL())+AMT

The BAL data structure would be declared a “system” structure. At compile-time, statements would
be inserted directly into the transaction code to check whether the user is authorized to read and
update BAL and whether i is a valid index for BAL. Reads and updates of system data structures are
thus treated like system defined macros. At execution-time, the expanded macros are executed with
no system call overhead.

Replacing system calls with compiler macros will be particularly useful in a MSDB for several
reasons. First, because of the simplified nature of transaction processing when data is in core, the
amount of code that needs to be added will be reasonable. For example, no locking and unlocking
need be considered since transactions are executed serially. Second, because transactions suffer no
disk delays and their execution times are CPU-bound, reductions in CPU overhead will translate
directly into decreased response times and increased throughputs. In a disk-based system, such a
savings would be overshadowed by the long delays associated with disk IO.

There are other areas where we can expect indirect benefits from a MSDB system. For instance,
access methods can be designed for rapid retrieval from RAM rather than to minimize disks accesses.
These improvements do not affect crash recovery and are not discussed further.

2.2 CRASH RECOVERY

One potential stumbling block for this kind of low-overhead, high performance transaction
manager is crash recovery. Like a disk-based system, a MSDB should guarantee atomicity and
durability of transactions even though the entire database resides in volatile storage. Furthermore,
this guarantee must be made without sacrificing the performance gains we can get from memory
residence. Because of these requirements, non-volatile storage such as disks must be used to hold
recovery information and a backup copy of the data. Thus with recovery considered we have a system
as shown in Figure 1.

The crash recovery mechanisms we have studied consist of two components, a logger and a
checkpointer. The logger maintains records of transaction activities (particularly updates) in a stable
storage area. The checkpointer periodically copies modified segments of primary memory to a backup
on stable storage.

There are a number of different ways to implement each of these recovery components. However,
in order to achieve the desired properties, a number of constraints must be enforced. These
constraints are discussed in general terms in the following paragraphs. The descriptions of the

#%  We assume that there is no locking even in the scenario where our system is just one node of a larger system. Inter-
node atomic transactions would require that locks be held until a transaction committed. Our hypothesis is that our MSDB
system requires high throughput, and it is too expensive to hold resources for a remote transaction that we have no control
over. We assume that inter-node transactions are executed as a sequence of local transactions. Compensating transactions
(e.g. “cancel the reservation [ just made™) are run if the global transaction has to be rolled-back.

* . . 2 s v ”

¥ As commonly done in transaction processing systems, we assume that long-lived transactions are broken into
sequences of smaller transactions. As with inter-node transactions, a compensating transaction can be executed to roll back a
partially executed long-lived transaction.
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recovery mechanisms given in the next section discuss more specifically how each mechanism
satisfies these constraints.

To guarantee atomicity we must ensure that before an update is migrated (checkpointed) to the
backup database copy, either 1) undo information for that update is logged in a stable storage area, or
2) the updating transaction has committed and has its log record in a stable storage area (undo
information is not necessary in this case). There are a number of ways to enforce these conditions.
One possible scheme, involving time-stamps and multiple copies of database pages to produce a
consistent backup, is described in [2]. Our mechanisms use schemes that are based instead on fuzzy
checkpoints. Either approach requires that updates be recorded in the log area (whether it is stable or
not) before they are applied to the primary database.

To guarantee that aborted transactions do not affect the database, we also need to ensure that the
transaction dependencies determined by the execution schedule are observed by the logging
mechanism. This may become a problem in systems with multiple parallel log disks. When
necessary we assume, as suggested in [2], that explicit dependencies are maintained between
transaction log records. Thus if transaction T executes before Tz, Ty’s log record arrives on stable
storage at the same time or earlier than Tg’s. Transactions can thus freely update the database in
primary storage when they execute with the assurance that any dependent transactions will not be
logged before them. _

To make transactions durable, we ensure that before the transaction commits externally (sends
its output message), either 1) all pages dirtied by a transaction are flushed to the backup copy, or 2)
redo information for the updating transaction is in stable storage. The latter scheme is generally
preferable to the former when the stable storage is high-latency media such as disks, since the former
may involve more IO activity. Our recovery mechanisms all ensure the latter, although doing so is
simpler with some mechanisms than with others.

In addition to these constraints, there are also implementation issues which affect all of the
recovery mechanisms we will describe. They are related more to performance than to correct
maintenance of transaction durability and atomicity. We now briefly discuss some of these issues
that affect the logger and the checkpointer.

If logging is to be done by the database CPU, we assume that it is done by the individual
transactions without recourse to system calls. This will be handled by the mechanism described in



the last section, i.e. logging instructions are generated at compile-time and added to the transaction.
For example, consider once again the account balance example. The statement updating BAL is
supplemented with recovery code like: :

LOGOLD VALUE(]) «—BAL(),
LOGNE WVALUE()') «—BAL(()+ AMT,
LOGADDRESS(j) « address{BAL(i)};

Je=j+l;

BAL()) « BAL({)+ AMT;

Thus, when transactions run, they do their own logging in a very simple and efficient way. As shown
above, both redo and undo information is assumed to be logged for each update. The redo information
is useful for guaranteeing transaction durability, as discussed above. Undo information is useful for
backing out aborted transactions, however it is not necessary to flush this information to the log disks
once a transaction has committed. We have not investigated the trade-offs involved in compressing
the log to remove undo information (at the cost of additional CPU overhead) vs. the cost of flushing
the extra undo information to the disks since the trade-off can be applied to any of the mechanisms we
consider. All of our mechanisms flush undo as well as redo information to their logs.

We assume that the checkpointer is active only between transactions. (We are referring here to
the execution of checkpointing instructions by the database CPU. DMA devices, such as disks,
activated by the checkpointer will certainly operate asynchronously and concurrently with
transactions.) When the checkpointer is active, it scans through the database from the most recently
checkpointed page until a dirty page is found (or until some maximum number of pages have been
examined). Depending on the particular mechanism, the dirty page may be copied to a buffer area. A
flush to the checkpoint disks is then initiated before control of the database CPU is relinquished for
execution of the next transaction.

3.0 RECOVERY MECHANISMS

The recovery mechanisms we have modeled differ in the way their components are implemented.
Two of the mechanisms are completely software-based. The remaining four involve modifications to
the basic system of Figure 1, such as the availability of a non-volatile log area. The following
subsections describe each of the mechanisms in turn.

3.1 IMMEDIATE COMMIT

The term immediate commit (IC) was chosen to contrast with group commit, the mechanism we
will describe next. Immediate commit is the base mechanism; the others we describe are
modifications designed to improve its performance. '

Immediate commit means that each transaction flushes its own transaction record to the log
before completing. Each transaction goes through a procedure like the following:

@ The body of the transaction is executed. Modifications (if any) are first noted in the log buffer
area, and are then made directly to the primary data copy.

® When the transaction reaches its commit point, the CPU initiates a flush of a copy of the
transaction’s log record to the log disks. No further action occurs until the flush is completed
successfully (although the CPU is free to work on other transactions).

® When the flush is completed, the transaction commits externally by sending its response
message.



Thus each transaction results in a flush to the log disks, and that flush time is part of the response
time of the transaction. This procedure guarantees transaction durability by ensuring that the log
record is flushed to the disk before external commit. (This is known as a log write-ahead protocol [4].)

Dependencies between log pages are maintained explicitly by the system. A log page is
considered successfully flushed when it has been written to the disk and the previously queued log
page has been successfully flushed. With each write to the log disks, the system marks the next page
in the log queue (whose flush may have already begun) to indicate the completion of the previous
page’s write. These operations result in CPU overhead for the maintenance of the dependency marks.

Checkpointing is handled by the database CPU. New checkpoint processes are initiated at
regular intervals specified by a model parameter. Frequent checkpoints, though more costly, reduce
recovery time by reducing the amount of log data that must be scanned.

The checkpointer copies pages to a special checkpointing buffer area before flushing them. There
are several reasons for this. First, it is a way of ensuring that transaction updates do not
inadvertently get “caught” by the checkpointer, possibly violating the transaction atomicity
requirement. Since checkpointing is done asynchronously, updates from uncommitted transactions
might otherwise be flushed to the checkpoint disks. In the case of a system crash this could leave the
database in an inconsistent state, even after the log is applied to the checkpointed data. Secondly,
copying a page before flushing ensures that the set of transactions on which that page depends does
not change once the copy has occurred. Dependencies between database pages and transaction log
records are discussed next.

Explicit dependencies are maintained between database pages and transaction log records. The
checkpointer is prohibited from flushing any database page until transactions that have updated that
page have committed and successfully flushed their log records to disk, or have aborted and undone
their updates. We assume that the extra overhead costs entailed by these dependencies are borne
entirely by the checkpointer, and not by individual transactions. Before flushing a page to disk, the
checkpointer will scan the in-core log queue for any entries that affect that page. If any are found,
checkpointing is delayed and a special marker is placed at the end of the log queue. The page can be
checkpointed when all log records that affect the page and that are before the marker have been
flushed.

3.2 GROUP COMMIT

The group commit mechanism (GC) is identical to immediate commits except for the manner in
which the transaction logs are flushed (step 2 in the IC logging procedure). The group commit scheme
attempts to reduce traffic to the log disks by delaying flushes of transaction log records so that several
can be combined into a single flush.

Transaction log records remain in the log area in primary storage until a log page is full. At this
point the log page is flushed to disk. Transactions whose records are contained on that log page are
termed a commit group. All of the transactions in the commit group are simultaneously internally
committed and can proceed to step 3 in the procedure when the log page is safely on disk.

Grouping commits reduces the number of flushes to the log disks and therefore queueing delays
and CPU overhead. However, transactions must spend additional time waiting for their commit
groups to assemble. This becomes particularly important when transaction throughput is low.

Checkpointing under the group commit scheme is handled in the same manner as IC
checkpointing.

3.3 BATTERY BACKUP

The remaining mechanisms involve modifications to the hardware of the basic system we have
considered thus far. The battery backup mechanism (BB) is the simplest of these. We assume that the
log area of primary storage can be made non-volatile (perhaps through the use of batteries as a
backup power source) as depicted in Figure 2. Transaction processing would proceed exactly as in the
group commit case. This time, however, transactions do not have to wait for commit groups to
assemble or for log records to be flushed to disk. Once transaction records have been placed in the log
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area they are safe and the transaction is free to commit externally. The transaction processing
procedure would go as follows:

@ The body of the transaction is executed. Modifications (if any) are first noted in the log buffer
area, and are then made directly to the primary data copy.

® The transaction reaches its commit point.

® The transaction commits externally by sending its response message.

The CPU must still flush pages from the log area to the log disks, but the time involved is not
directly a part of the response time of any transaction. We assume that there is sufficient non-volatile
buffer space so that the log area never overflows as a result of a discrepancy between the flush rate
and the rate at which transaction records are being placed into the buffer. The amount of such
memory we would need is not great; some simple estimates are made in appendix A.

Since log records of updates are in stable storage before the update is actually made, it is not
necessary for the checkpointer to worry about dependencies between database pages and transaction
log entries. Any update inadvertently “caught” by the checkpointer will be corrected when the log is
played back after a system crash. Also, dependencies need not be enforced between log pages, since
all log data enters (in-core) stable storage in a correct order. In fact, log pages can be flushed to the
disks in any order without consequence as long as the in-core version of a page is not disposed of until
its write is completed successfully. Note that aborting a transaction may be somewhat more complex
using this scheme than when using the scheme proposed for IC and GC. This is because it is possible
that updates from the aborted transaction will have migrated to disk, and will have to be corrected
there as well as in-core. We do not consider the cost of aberting transactions in the model.

Because we do not have to worry about which updates get checkpointed with a database page, and
because dependencies are not maintained between database pages and transaction log records, there
is no need for the checkpointer to copy pages to a buffer area before flushing them. In other respects,
checkpointing under BB proceeds as it did under previous mechanisms.

3.4 HALO



Recovery-related operations appear to be costly in terms of CPU time. The database processor
must expend valuable cycles on tasks such as initiating IO to the log disks and copying to buffers. We
have considered a hardware logging mechanism which could assume many of the recovery duties
normally handled by the main processor as a way to eliminate this problem.

The salient features of the HALO (HArdware LOgging) mechanism are:

1) Logging functions are implemented in hardware.

2) Log entries are made at the word level.

3) Internal buffers are non-volatile.

4) The logging is transparent to the database CPU.

5) Disk delays are avoided by initially storing the log on non-volatile memory (as is used in the
BB mechanism, above). As time permits, the log is then written out to disk.

Figure 4 shows a block diagram of a system incorporating a HALO device. Figure 5 describes
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HALO in more detail, showing the internal registers and data and command paths to the CPU and
primary memory. As shown in the figure, HALO intercepts communications between the processor
and the memory to produce a log. The log is stored within HALO in a circular queue implemented in
hardware. Registers IN and OUT point to the head and tail of the queue. The queue and other
registers are non-volatile.

Each queue entry represents an update made to memory, and contains the address of the word,
the old contents of the word, and the new contents. A new entry is made each time the processor
writes a database word. Only modifications to the database need be logged, HALO can ignore
changes to data in other areas, such as system tables. The entries at the tail of the queue are
constantly being written out to disk to make room for new entries*.

When HALO detects a write command, it must make a new log entry. To begin, it stores the
address and write value in a temporary register queue. Once this is done, the database CPU is
allowed to continue. HALO does not immediately forward the write request to the memory unit, for it
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must first obtain the old value stored at the given address. Thus, the write request is converted into a
read request. When the old value is obtained, a new log entry is made. Once the log entry is safe in
the queue, HALO uses a spare main memory cycle to perform the write.

Read commands issued by the CPU are inspected by HALO. If the address corresponds to a
pending write, HALO returns the new value stored in the register bank. Otherwise, HALO forwards
the request to the memory unit. (This same strategy is used to handle pending writes in some caches,
e.g. in the IBM 3033. A small number of write registers is usually sufficient [12].)

There are several commands the CPU issues directly to HALO. One is a “begin/end transaction”
command. It causes a special BET entry to be made in the log, indicating the end of the previous
transaction and the beginning of a new one. (As soon as the BET entry is made, the ending
transaction is committed. At this point, the old data values in the log, i.e. the undo information, can
be discarded.) A second command is the “abort transaction” command. When HALO receives this, it
goes through each log entry until the last BET record. For each entry, it stores the old data value in
the corresponding memory location.

Thus HALO manages logging transparently to the CPU. HALO would also cooperate with the
CPU in restoring the primary copy of the data in the event of a system crash.

* Aswiththe BB mechanism, we assume that HALQ’s log queue is sufficiently large to handle bursts of writes from the
CPU.



The CPU is still responsible for checkpointing in this scheme, however, and continues to pay
those overhead costs. Checkpointing under HALO is like checkpointing under BB, i.e. pages are not
copied to a buffer area before being flushed and no dependencies need be maintained between
database pages and transaction log records.

3.5 RELIABLE MEMORY

We have considered two additional recovery schemes which we have dubbed the reliable memory
mechanisms. In these we assume that all of primary memory is made non-volatile and error-free,
perhaps through the use of battery power, replicated data, and a voting mechanism or an algorithm
for reliable stable storage such as the one described in [9]. While this kind of reliable memory would
be costly, it would offer a number of performance benefits. Unlike their unreliable counterparts,
reliable memory systems need not perform any checkpoint operations since the primary data copy is
never lost. Also, log disks (and their associated overhead costs) are not necessary since log records
need only be maintained for the life of the transaction. Thus, a reliable memory system might be
useful when system restart time or transaction response times are critical. The results we obtain for
these systems are useful in themselves as a base against which to compare results from the unreliable
memory systems.

We model reliable memory systems with and without HALO devices. The latter case (RM) is
similar to the BB case discussed previously. The former case is called RMHALO. Block diagrams for
RM and RMHALO are shown in Figures 6 and 7, respectively. Note that a hardware logger for a
reliable memory system could be designed somewhat differently than we have described since it is
only necessary to maintain log records for the life of their transaction. Thus HALO could keep log
records temporarily buffered instead of flushing them to disk.

4.0 PERFORMANCE MODEL

There are two important situations in which one can compare the performance of recovery
mechanisms. The first is during normal system operation, when transactions are being processed. In
this situation we can compare degradations in the system’s performance caused by the various
mechanisms. The second is during recovery itself, when no transactions are running and the system
is trying to attain a consistent state from which to restart.

Recovery consists of reloading primary storage from the checkpoint disks and processing the log
to redo transactions that have been committed since the most recent checkpoint. Except for reliable
memory*, none of the recovery mechanisms we have considered will differ significantly in the size or
content of their logs. Each handles checkpointing in a similar fashion. Factors which do affect
recovery, such as parallel paths from disks to primary memory, and log compression, will have their
effects on any of the mechanisms. (See, for example, [6] or [11] for more complete discussions.) For
these reasons, we expect recovery times to vary little from mechanism to mechanism, and have
concentrated out efforts on the normal processing situation.

Degradations of transaction throughput and response time are the metrics we use to compare the
mechanisms’ effects on the normal operation of the transaction manager. Throughput is defined as
the maximum number of transactions per second we can run while maintaining an average response
time below some prescribed value. Response time is the sum of the time a transaction spends at the
database CPU (CPU time) and the time, if any, spent at the log disks (disk time). The remainder of

*  The reliable me mory mechanisms do not suffer failures in the sense that the unreliable mechanisms do. A reliable
memory mechanisms has no storage reload time since its st.orage'is never destroyed. It has no log processing time since a log
is not maintained. Transaction recovery information is only kept until commit time, in case the of a user-initiated abort.
Thus we can consider recovery time for the reliable memory mechanisms to be zero.

10
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this section describes our performance model. The model consists of a simple queueing system with
servers to represent the CPU and the log disks.

Section 4.1 describes the computation of CPU time, the response time of a transaction at the CPU
server. We express the service time of the CPU server as a function of the amount of instruction
overhead incurred as a result of using a particular recovery mechanism. ‘We break this overhead
down into two types, general and transaction specific, and develop equations to express each of them
in terms of the model parameters. Once the service time has been determined we can determine CPU
time using our queueing system.

Section 4.2 deals with disk time. Only two mechanisms (IC and GC) have disk time since the
others do not require transactions to wait for log disks as long as there is sufficient bandwidth and
buffer space available to handle the expected transaction rate.

4.1 CPUTIME

The database CPU is modeled as a single FCFS server with A-dependent (A is the transaction
arrival rate) service time t.,,. We determine ¢, using

11



(4.1)

cpu

> | G

A= s general recovery overhead

S = T+ transaction specific overhead

where T is the size of the transaction body and r¢p, is the processor instruction rate. The units of A,
Tepus and the general recovery overhead are instructions per second, while S, T, and the transaction
specific overhead are measured in instructions per transaction.

A can be thought of as the net processing power available for transaction processing after general
recovery overhead has been accounted for. General recovery overhead is overhead that is not
attributable to any particular transaction, for example the overhead costs of the checkpointer.
Although this overhead is not transaction-specific, its magnitude can depend strongly on the
transaction rate (e.g. checkpointing). Therefore the general recovery overhead is a function of A as
well as the model parameters.

On the other hand, some types of overhead can be attributed to individual transactions. We term
those costs the transaction specific overhead. Such overhead effectively increases the size of the raw
transaction. Thus we add transaction specific overhead to T to get S, which can be thought of as the
actual size of a transaction after crash recovery is considered. The transaction specific overhead is a
function of model parameters only.

We assume that 7 is an exponentially distributed random variable with mean T". For a given set
of values for the model parameters and a given input rate A, the recovery overheads, rcpy, and A are
constants. f.p, is then exponentially distributed with mean given by

SI
==
cpu A
Assuming that transaction inter-arrival times are exponentially distributed allows us to calculate
the mean response time for transactions at the CPU using the standard equations for M/M/1 servers
[7], namely

1
CPUtime= ——X (4.2)

where the mean service rate yi¢p, is simply

The following subsections describe in more detail how we arrive at values for A and S'. Table 1
lists model parameters which are used in these calculations, along with their default values.

4.1.1 TRANSACTION OVERHEAD

The net transaction size, S, is the sum of the raw transaction size (in CPU instructions) plus any
instruction overhead related to crash recovery. This overhead may include the log copying cost,
flushing transaction records to the log disks, maintaining dependencies between log pages, and
context switching, depending on which recovery mechanism we are considering.

Transactions incur a cost when they note modifications in the log area before actually making
changes to the database; we call this expense the log copy cost. The log copy cost is taken to be
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description

default value

units

processor speed

MIPS

CPU disk IO constant

instrs.

CPU checkpoint initialization constant

5000

instrs.

CPU buffer copy constant

instrs.

CPU context switch constant

instrs.

CPU checkpoint-log dependency constant

10

instrs.

CPU log-log dependency constant

instrs.

mean transaction size

instrs.

database pages written by one transaction

database records written by one transaction

database words written by one transaction

d; per transaction log data constant 32 bytes
d. per entry log data constant 8 bytes
Slog log page size 8K bytes
Sdb DB page size 4K bytes
I 85 record size 512 bytes

word size

4

bytes

total number of pages

250000

locality parameter

0.01

inter-checkpoint interval

300

seconds

mean transaction arrival rate

transactions/sec

logging granularity

Table 1 :
d [ data ite 2(si data item)
1 + (# of data items) (sizeof item) 3 (sizeof m
s s s
w w w

w

(4.3)

b

instructions per transaction. The first term represents the cost of writing the transaction’s log header
information (e.g. transaction ID) to the buffer. The terms in brackets represent the costs of reading
undo data, writing redo and undo data, writing header information (e.g. address), and initialization
overhead, for a single data item. (Reading or writing one word of data is assumed to cost a single
instruction.) A data item may be a page, a record, or a word depending on the logging granularity
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chosen (this is specified by the parameter gran). The size of a data item is thus given by one of 54, s,,
or s,. A single transaction handles either w,, w,, or w, data items, again depending on the logging
granularity. '

The log copy cost is paid under any mechanism in which the database CPU manages the log. This
includes IC, GC, BB, and RM. It does not include the HALO schemes since logging there is
accomplished by special purpose hardware transparent to the database CPU.

Flushing log pages to disk also incurs a cost. Transactions are charged

4.4

c d i+ ccs + G w (a.a)
instructions for each page flushed. The first two terms represent the costs of initiating the 10 and
handling the interrupt that occurs when it completes. The last term represents the overhead
associated with maintaining dependencies among the queued log pages. IC is the only mechanism
under which these charges are incurred by transactions. The database CPU is responsible for log
flushes in other mechanisms (GC, BB) as well, however in those cases we will treat the flushing costs
as part of the general recovery overhead. This is because the log flushes are shared among
transactions under the GC and BB mechanisms. Note that the ¢jpg term is not part of the flush cost
for BB since the BB mechanism does not need to maintain log record dependencies.

Each IC transaction only incurs the log flush cost once as long as the total size of its log data is
less than the log page size sj,. A transaction’slogdata is

transaction data = d,+ (# of data items)(@(size of data item) + d.) Sl
bytes in size, where the number and size of units depend on the logging granularity, as described
above.

4.1.2 GENERAL OVERHEAD

Determining A, the number of CPU instructions per second available for transaction processing,
involves subtracting from rcp, any recovery-related overhead costs which are not specifically
attributable to any single transaction. These are principally checkpoint costs although log flushing
and context switching overheads are sometimes included, as described below.

The cost of checkpointing is a function of the number of database pages dirtied since the last
checkpoint. Each dirty page must be flushed to the checkpoint disks. Specifically, the model takes
the total cost of a checkpoint to be

ccp+ (# of dirty pages) [Z(Cd +e )I BB, HALO (4.6)
stb @.7)
ccp+ (# of dirty pages) [ 2(cd+ c, )+ —s— + (total queue sx.ze)ccpa IC,GC
- ;

An expression for the number of dirty pages is given by equation 4.8. In equations 4.6 and 4.7 the
bracketed term in the expression is the cost of checkpointing a single dirty page. This includes the
costs of copying the page to a temporary buffer (IC and GC only) and flushing it to the backup copy.
For the IC and GC mechanisms only, the per-page cost also includes checking for dependencies
between the page and transaction log records. This takes time proportional to the number of such
records in the log queue, which will be determined in the next section (equation 4.12 for IC, 4.15 for
GC) when the log disks are considered.

We assume that each dirty page must be flushed twice for the sake of “careful” updating. Each
flush incorporates the cost of a context switch (ccs) since the checkpoint process must block while
waiting for the disks each time a page is flushed.
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This total checkpoint cost is assumed to be spread by the database CPU over the entire interval
between checkpoints, £,,. We therefore divide the above expressions by this constant to arrive at the
checkpoint overhead per unit time.

The number of dirty pages needing to be checkpointed is a function of the number of page writes
that have occurred since the last checkpoint. We assume that the number of dirty pages approaches
the total number of pages in the database (n) according to the function

(#of dirty pages) = D(w) = n|1 _e"’“’] (4.8)

where w is the number of writes and D(w) the number of dirty pages.

The parameter B is used to set the rate of approach. This rate depends on the locahty of the
database references, since highly local updates will dirty new pages more slowly than less local
updates. Therefore, § depends on the locality parameter a. Specifically, B is given by

—log (1 —a)
p=———

n

This relation guarantees that

D(n)=an
which is intended to provide a convenient guide for choosing a value for a, the locality parameter. a
should have a value between zero and one, and it can be interpreted as the fraction of the n database
pages that will be dirtied when n updates have been made since the last checkpoint. Choosing a value
of a exactly specifies the function D(w).
We use w', the expected value of w, to determine the number of dirty pages. w'is given by

w'=Aw t
pep

which is just the expected number of transactions during the checkpoint interval times the number of
pages modified by each transaction.

Checkpoint overhead costs are not paid by the reliable memory mechanisms (RM and RMHALO). '
These mechanisms do not require checkpoints since their primary storage is never lost.

The GC and BB mechanisms have additional overhead costs for flushing log pages to the log
disks. These costs are treated as general overhead and not as part of the transaction size because they
apply to groups of transactions when using group commits. As was the case with per-transaction
commits, the cost per log page flushed is

(4.4)
c 4 + ccs + cl -
instructions. The expected number of flushes per unit time is given by
transaction data)
( X (4.9)

slog

An expression for transaction data was given in equation 4.5. The total overhead, in instructions per
second, is then the product of the expressions 4.4 and 4.9.

4.2 DISK TIME

For the IC and GC mechanisms it is necessary to determine the response time of the log disks,
since it is a part of a transaction’s response time. This is not true of the other mechanisms because
their log entries are maintained in stable storage. Table 2 lists some parameters we will use in our
calculations. We will also make use of the rotation time of the log disks and the transfer time for a log
page, which we determine using
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description default value

number of log disks

log disk rotation speed

Strack log disk track capacity

s
_ [ log
trans rot s

track

1
t =-— t
v

and values from Tables 1 and 2.
We assume that each of the log disks is a FCFS server with service time distributed as shown in
Figure 8. There are d such disks, and record is flushed to a given disk with probability 1/d, as shown

(1) 4

WMot

L
1
1
1
I
i
|
I

0 terans terans + trot

Figure 8

in Figure 9. We now discuss the response time for each of the mechanisms in turn.
4.2.1 IMMEDIATE COMMIT

For the IC mechanism, the inter-arrival times for the log disk system are distributed in the same
way as the inter-departure times for the database CPU, since each transaction creates one log flush

(provided it does not write more than a log page full of data). Thus the disk servers are each M/G/1,
the average total input rate is Az = A, and the input rate for each disk is
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Response time is then given by [7]

2
, 1 PA+CY (4.10)
IC responsetime = — + ————
M, 2u(l-p)
2 2
po= 1 F trotpd p }_g
d- b -

i 2 Hy

trans 2

To determine the CPU overhead for checkpointing, as discussed in the previous section (equation
4.7), we need to determine the total queue size for the IC log disks. The total queue size is the total
number of data items queued or being serviced at the log disks. The checkpointer needs to scan this
queue to check for data dependencies before flushing database pages.

We use Little's result [7] and the response time just determined to get the average number of log
pages queued at an individual disk. We then multiply by the number of data items per log page and
the number of log disks to get the mean total queue size, which is used in the checkpointing overhead
calculation. Thus
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pagesinIC disk queue = X (IC response time) (4.11)

by Little’s result, and

total IC queue size = (pages in IC disk queue)(# of data items)d (4.12)

The number of data items per log page is simply the number of data items per transaction, since each
transaction writes a single log page. As before, this is given by one of wy, wy, or wy,, depending on the
logging granularity.

4.2.2 GROUP COMMIT

The situation is slightly more complex for the GC mechanism because arrivals to the log disk
system are no longer Poisson. Departures from the database CPU are Poisson, but they are then
grouped into commit groups of size f transaction log records. f, the number of transaction log records
per log page, is given by

s
fes log
(transaction data)
Inter-departure times of full log pages are thus distributed as the sum of f transaction record inter-

departure times, i.e. with mean f/A and variance fiA2. We can then determine the mean arrival rate
and variance of the inter-arrival times at each of the d log disks (see appendix B):

2
R AR Sl 7 (4.13)
g Af ¢ A%2d-1)
Since the log disk queues are G/G/1 it is difficult to get an exact value for response time. The

service rate g is the same as for the IC case. Cpand p are also calculated as before, using the new
values for pgand Ag. We then use the following approximation [8]

1Lt 0’402
GCresponsetimez[ 2 = bh ‘
2 b
%~ 12

The approximation gets better as p-->1. This is reasonable since for small values of p response time
is often dominated by grouping time, which we discuss next.

To the response time just determined for the log disks we add another term called the grouping
time. This represents the time a transaction’s log record sits in memory waiting for its commit group
to form. Grouping time is unusual in that it decreases as the transaction input rate A increases. To
account for grouping time we note that the ith transaction record to become part of a commit group
must wait for f—i additional transactions to arrive. If x is the inter-arrival time, the average grouping
time across transactions is given by

.

Z(f—i)x fif—1)x

i=l vi; 2 _(f—l)
flgisiom nggth o7 Bib |

The model uses the expected value of the average grouping time, which is just

grouping time =
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2 A

This value is added to the response time of all GC transactions.

Total queue size needs to be determined for the GC mechanisms as well. The number of pages in
the disk queue is determined in much the same way as it was for the IC mechanism (equation 4.11),
namely

pages in GC disk queue = };d(GC response time) + 0.5 (4.15)

The extra half-page arises because on the average half of a log page will be in-core waiting to be filled
before being placed in a queue. Total queue size (compare equation 4.12) is then determined by

total GC queue size = (pages in GC disk queueX# of data items)fd (4.16)
The extra factor fresults from grouping multiple transaction log records onto a single log page.

5.0 RESULTS

In this section we compare the six recovery mechanisms according to transaction response time
and throughput. In addition we examine the sensitivity of the results to variations in parameter
velues. Figure 10 shows average transaction response time as transaction input rate is varied, using
the default parameter values.

Most noticeable are the relatively long response times for GC transactions and the unusual shape
of their curve. Both of these are the result of grouping time, a delay which increases with decreasing
transaction rates. This delay can be reduced by introducing time-outs to the log buffers, so that
partially empty log pages are flushed if they remain in core for too long. IMS/VS Fast Path
implements such a time-out mechanism [3]. Of course, time-outs increase the number of log flushes,
which was troublesome for the IC mechanism, so the choice of an appropriate limit is very important.

We define the maximum throughput for each mechanism as the greatest A such that the expected
response time is less than f.y;,, a parameter. Maximum throughput can be determined graphically
from the response time curves by drawing a horizontal line corresponding to the desired response
time and looking at the crossing points of the curves for the various mechanisms. These throughputs
are given in Table 3 for the default set of parameter values and for several other sets whose response
time curves are not shown. The table briefly describes how these other sets differ from the default. In
all cases, i, 1s 1 second.

For the default values there is little difference among the mechanisms except for the inferior
performance of IC. The primary cause of this gap is the high CPU overhead paid by IC for log flushes
(one flush per transaction). We ruled out queueing time at the log disks as an important factor by
observing only a slight change in IC’s throughput when we increased the number of log disks.
Similarly, we eliminated checkpointing overhead as an important factor since it is identical for the IC
and GC mechanisms.

None of the other parameter sets change the performance ranking observed for the default set
(except between HALO and RM), but the gaps between mechanisms vary significantly. As expected,
the relative benefits of special-purpose recovery mechanisms, e.g. HALQ, increase with increasing
logging overhead costs or volume of log data. ' _

To determine the sensitivity of our numbers to changes in parameter values, we varied each
parameter over a wide range and plotted throughputs for each of the mechanisms. Graphs for three of
the parameters are shown in Figures 11-13. Not all of the mechanisms are represented in every
graph; only those which are affected by the parameter are plotted.

The first graph describes throughput variations with T", the mean transaction size. Although the
actual throughputs vary, the relationship among the various mechanisms changes little. The
flattening of the IC curve for small transaction sizes is due to a log disk bottleneck.

Figure 12 shows the effect of variation of the disk IO constant, ¢g. The fact that the HALO, BB,
and GC values vary at a similar rate implies that most of the IO is a result of checkpointing;
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recovery mechanism

parameter
set

defaults

logging granularity
= RECORD

high overhead
(10x ¢4,€cp. Coe, Ccs)

low overhead
(0.5x ¢g,€cp. Che,Ccs)

otherwise BB and GC would have steeper curves than HALO. The IC mechanism suffers for its log
flush rate.

The last figure describes throughput changes when we vary the number of updates done by each
transaction in the least local way, i.e. every word updated by a transaction resides on a different page.
This results in increases in checkpointing costs as well as logging costs as we increase the number of
updates. The drop-off of throughput described by the graph is different for the various mechanisms,
introducing performance discrepancies where there were none. By comparison, varying the number
of words updated without changing the number of pages touched (not shown) results in nearly
identical rates of decline for BB, and GC, while HALO’s throughput is not affected at all.

5.0 CONCLUSIONS

We have studied transaction processing in systems where the database resides in main memory.
Because of their simplicity, MSDB systems have the potential for very high performance. That is, as
long as crash recovery is performed efficiently.

We have presented a family of crash recovery mechanisms for MSDB systems and have developed
a simple model to compare their impact on performance. The model identifies three sorts of recovery-
related CPU overhead, namely copying to and dumping the log, and checkpointing. In addition we
model the log disks for the two mechanisms in which the disks figure in a transaction’s response time.

We have compared six mechanisms, two of them based on a hypothetical reliable primary
memory. The others include a proposed hardware logging device, group commits, and the use of non-
volatile memory to maintain log buffers. By comparing these mechanisms, we have also determined
the relative importance of the various types of recovery overhead.

Our results indicate that if transaction throughput is the major consideration, then a group
commit (GC) strategy may be indicated. As long as the log disks do not represent a serious
bottleneck, throughputs for GC are almost indistinguishable from those of the more expensive
hardware-based approaches.

This is not true of GC’s transaction response times, which suffer because it is necessary to wait for
the log disks. If response times are critical, then the battery-backup (BB) strategy may be the best.
For our default parameter set the BB mechanisms proved to be nearly the equal of HALO in terms of
both throughput and response time. The former mechanism would be significantly easier to
implement; all that is required is static RAM or a battery backup and reserve power supply on a
small portion of the system’s memory. Therefore it appears that BB is a very practical alternative as
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long as transactions are not extremely verbose and recovery software overheads (e.g. for disk I0) are
reasonable.

If transactions update substantial amounts of data, if the disk IO overhead is high, or if we wish to
push the system to its limits, then a device like HALO may be indicated. However, in all the cases
considered, the improvement in throughput was less than 10%. Similarly, the reliable memory
mechanisms (RM) provide a minimal performance improvement over HALO. (In fact, HALO
outperforms RM when transactions make a lot of clustered updates.) Comparing BB to RM shows
that most of the performance gains we can expect from converting to non-volatile RAM come as soon
as we have converted enough to maintain the log buffer.

Although our results for HALO and RM are not encouraging (given their current costs), they are
interesting because they show that clever crash recovery mechanisms (like GC) on conventional
hardware do fairly well. Furthermore, HALO and RM have advantages that are not observed directly
in the performance numbers. As discussed earlier, RM recovers from a system failure in negligible
time. HALO simplifies the software substantially. Since it lets one "play back” CPU activity, it could
be useful for debugging and recovery from operating system errors (when an inconsistent state is
detected, we roll back to a previous consistent state).
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APPENDIX A - LOG QUEUE SIZES

In section 4.2.2 we determined the total number of data items (words, records, or pages) in the log
queue for the GC mechanisms. We can use the same procedure to estimate the mean size of the log
queue for the mechanisms with non-volatile memory (BB and HALQ). Recall that the mean total
number of queue data items was given by

(A d(response time) + 0.5)(# of units)fd

Log disk response time using BB or HALO will be the same as the response time determined for GC
since all three mechanisms group their commits. A4and fcan also be determined as was done for GC.
We multiply the number of data items in the queue by the size of a data item (sgp, sy, O 55) to get the
mean total size of the queue in bytes. Figure 14 shows a plot of the mean total queue size as A is
varied (Agis a function of A). The default parameter set is used, except that curves for several values
of 5104, the log page size, are shown.

The actual size of non-volatile storage will have to be greater than is indicated in the figure if we
expect overflows to be rare. However, having even three of four times this much buffer space
available will not result in a huge non-volatile store. For example, 32K bytes of stable storage should
be more than adequate for the buffer area using the parameters given, even at very high transaction
rates. By using more log disks, we can reduce the necessary buffer area still further.

APPENDIX B - INTER-ARRIVAL TIMES OF GROUP COMMITS

We wish to determine the mean and variance of inter-arrival time at the log disks for the group
commit mechanism. The situation is illustrated in Figure 15, where the Y; is the time between the
departures of the (i-1)th and ith groups from the grouping mechanism. These groups go to one of the d
disks at random, with probability 1/d of going to any particular disk.

Without loss of generality, we can assume that the (i-1)th commit group was dispatched to disk j.
The next inter-arrival time for disk j, call it X, is the amount of time that will elapse before another
commit group is sent to that disk. If group i goes to disk j, then X;=Y;. This event occurs with
probability 1/d. If group i goes to some other disk, but group i+1 goes to disk j, then X;=Y;+Y;+;.
This occurs with probability (1/d)((d-1)/d). Continuing in this fashion, we arrive at an expression for
X

- k k
1] (d-1) ] [
Kol Ty [ — 11>y
+1
/ k=0d d (=0 }
We then rearrange the terms to put the outer summation in terms of the variables Y; and arrive at
the new expression:

=Y, i d—1
= m[zrkl r:[ d l
=0 d k=1
Rewriting this equation as
Y, e @ Y'-H @ [-1
IR W0 ) L 3
k=0 =1 k=0 k=0
and making use of the equalities
® -1 1
1 1-r
1—-r 1-r
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The grouping mechanism clusters transaction log records into groups of f records each, where fis
determined by the size of a log page and the amount of log data written by a transaction. Arrival of
transaction log records at the grouping mechanism is Poisson since transaction arrivals to the system
and processing time are both Poisson. Therefore all of the Y; are distributed as the sum of fidentical
exponential random variables, each with parameter }, i.e. with mean and variance given by:
T=l =t
. A 4 A2
(We drop the subscript i since all of the times Y; are identically distributed.) With this knowledge we
can determine the mean and variance of the disk inter-arrival time X (we again drop the subscript
since all of the disks are identical). The mean is given by

1

1—r

&
A

The Y, are independent, so we can write a similar equation for variance
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Figure 15
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