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1. Introduction

Consider the permutation of N=n? packets using two sets of n parallel, time
multiplexed buses. If one set of buses is considered to be horizontal and the other
vertical, they can be considered to be superposed with communication between
the horizontal and vertical buses at the bus intersections (Figure 1.1). The time
for the transmission of one packet on a bus is considered to be a single cycle.
With n buses in parallel, there can be at most n simultaneous transmissions on
one set of parallel buses. The overlapped, or pipelined, use of the two bus planes

leads to an overall maximum of 2n packet transmissions in a single cycle.

Using the convetional, Cartesian notation for the n? bus intersections, a
packet destination address z;y; is initially present at each of the square array of
address z;y; (0< 4,5, k1< n-1). For permutation, all n® distinct addresses occur. A
permutation is accomplished by transferring a packet from z;y; to 2y, for all 4,3,
where z;y, was the packet destination address initially in the z;y; position. In the
general case, there are two bus broadcast steps to accomplish this transfer, i.e.,
horizontal then vertical or vertical then horizontal (Figure 1.2). Bus pairs inter-
secting at z;y; or z;y; must be used. Clearly, there are degenerate cases where
source and destination are in the same row or column, z;=z; or y;=y, and only

one bus broadcast is required. Also none is required when z;=z; and y;=1y,

For permutations without degenerate cases, that is, every transfer requires
two steps, a total of 2n® bus broadcast steps are necessary. Exploiting the bus

parallelism and overlap, it is clear that the best schedule or shortest time to
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complete a single permutation would therefore be n cycles. However, to complete
a nondegenerate, single permutation within n cycles, n horizontal bus broadcasts
and n vertical bus broadcasts must be accomplished every cycle including the
first one. For the overlapped operations on the first cycle, mized schedules, or
mixtures of both the horizontal-then-vertical and the vertical-then-horizontal
transfers, are necessary. It is interesting to know if there exists a minimum,

mixed schedule for arbitrary permutations.

On the other hand, Hall's theorem on ‘‘Distinct Representatives’” guarantees
the existence of a uniform schedulef, that is, an unmixed schedule when the
transfers are uniformly horizontal-then-vertical or vertical-then-horizontal.
Because of the inherent serial aspect of the two bus broadcasts, the uniform
schedule takes n+1 cycles. That is, there can be no bus overlap on the first
cycle. The uniform schedule can be regarded optimal as well, because sequential
permutations could achieve an overlap of the additional cycle and thus complete

one of a sequence of permutations every n cycles.

The purpose of this paper is to show that no mixed schedule of n cycles
exists for single permutations. Although a mixed, n cycle schedule exists for
some permutations, one does not exist for all. Hence, the n+1 cycle, uniform
schedule is optimal for single permutations on an nXn square grid of superposed
parallel buses. In section 2, some notation and definitions are given for later use.
In section 3, the main theorem is proved. Finally, in section 4, conclusions are
stated.

2. Mathematical Notations and Definitions
In this section, notation and definitions are described for later use.

Definition 1: A nXn square grid of superposed parallel buses, denoted as
SPB(n,n), is a system with n® processors and two sets of n buses; one, called the
row buses Ry through R, ;, can be viewed as horizontal and the other, called the
column buses Cp through C, ,, as vertical. A processor is located at each cross
point and each processor has two ports; one for a horizontal bus and the other for
a vertical bus. The address of each processor is denoted by (z,y) or zy, where z
represents z-coordinate, called the column address, and y represents y-coordinate,
called the row address. There are n processors on each bus. The row bus R;

+ This is called @ self-pipelined schedule in the previous paper (Arden and Naka-
tani[1986]).
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supports n processors (1,0) through (#,n-1) for 0<i<n-1. The column bus C; sup-
ports n processors (0,7) through (n-1,5) for 0<j<n-1. It is assumed in this paper
that each processor at the address (z,y) has a packet with its mailing address,
called destination address D(z,y), and that a mapping from (z,y) to D(z,y) forms a
permutation from SPB(n,n) to SPB(n,n).

Definition 2: A column selection is a set of n processors at the addresses (,,0)
through (z, {,n-1), where z; is an integer which is not necessarily unique
(0<z,<n-1). Similarly, a row selection is a set of n processors at the addresses
(0,3) through (n-1,y, ;), where y; need not be unique (0<y,<n-1). A column-
row selection is a set of n processors that forms both a column and row selections

at the same time.

Definiticn 3: A column selection is called compatible when each processor ¢ 1in a
column selection has a packet with the destination address (z;%;) and a set of n
processors at the addresses {(z;y;)} for 0<i<n-1 forms a row selection. Simi-
larly, a row selection is called compatible when each processor ¢ in a row selection
has a packet with the destination address (z;,%;) and a set of n processors at the
addresses {(z;,5;)} for 0<i<n-1 forms a column selection. A column-row selection
is called perfectly compatible when it is compatible both as a column selection
and as a row selection. Moreover, k sets of column-row selections are called per-
fectly k-compatible, (even if each column-row selection is not necessarily perfectly
compatible but) if the processors in k sets of column-row selections have packets
with exactly & distinct destination row addresses for each of n destination column
addresses or with exactly k distinct destination column addresses for each of n

destination row addresses.

Definition 4: The uniform schedule is n sequences of the horizontal-then-vertical
transfers (or equivalently n sequences of the vertical-then-horizontal transfers) of
packets chosen by n series of compatible column selections (or equivalently n
series of compatible row selections). This is always possible according to Hall’s
theorem on ‘“Distinct Representatives” (Hall[1935]). Since each selection is com-
patible, all the selected packets can be broadacst on the row (the column) buses
right after they are broadcast on the column (the row) buses without further
delays. Therefore, by the uniform schedule, a single permutaion takes n+1 cycles
and each of sequential or multiple permutations takes n cycles in pipeline fashion.
On the other hand, e mized schedule is n sequences including both the
horizontal-then-vertical and the vertical-then-horizontal transfers of packets

chosen by a series of n compatible selections. The minimum schedule of n cycles
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is possible for some specific permutations using the mixed strategy, but in general

n+1 is the best that can be achieved. Hence, such schedules are optimal.

Definition 5: A permutation is called degenerate, if some pairs of source and
destination are in the same row or column. Otherwise, a permutation is called
nondegenerate.

Example 1: The bit-reversal permutation is nondegenerate and has an n-cycle

mixed schedule (Figure 2.1).

Example 2: The permutation Dj(z,y) is a bijection from the SPB(n,n) to
SPB(n,n) by the following rule:

Dl(x:y):([x_Q]m[y_{_l]n” for y;'én_l
Dl(x?y)r:([x_l]m[erl]n) for y:—:n"l
This permutation Dj(z,y) is nondegenerate and has no n-cycle schedule, as will be

shown in the following section (see Figure 2.2 and 2.3 for uniform schedules of
Dl(xﬁy))

3. Proof of Optimality of the Uniform Schedule

In this section, the main theorem is proved by showing an existence of a sin-
gle permutation that requires at least n+1 cycles and n cycles, in pipeline fashion,

for each of a sequence of permutations.

Theorem: The uniform schedule is optimal for arbitatry permutations on the
nX n square grid of superposed parallel buses. That is, it takes nt+1 cycles for a
single permutation and n cycles in pipeline fashion for each of a sequence of per-
mutations.

Proof: From Lemma 4, the permutation D(z,y) has no n-cycle mixed schedule.
The uniform (n+1)-cycle schedule exists for all permutations and is therefore
optimal.dd

Lemma 1: The permutation Dy(z,y) is non-degenerate, that is it takes at least n
cycles on the nX n square grid of superposed parallel buses. This can be achieved

only by compatible selections.

Proof: Every destination address of Dj(z,y) requires both column and row broad-
casts. One cycle of SPB(n,n) can transmit at most n packets on the column
buses and at most n packets on the row buses. Therefore, at least n®>X2/(2n)=n

t [m],=m (mod n)
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cycles are required and this can be achieved only by compatible selections.[]

Lemma 2: Any compatible column selection of Dy(z,y) is also a row selection but
not compatible row selection. Therefore, any compatible column selection of

Dy(z,y) is a column-row selection but not perfectly compatible.

Proof: For any compatible column selection of Dj(z,y), let (0,y) through
(n-1,y,.,) be the destination addresses of the selected processors’ packets. Then,
{y;} for 0<j<n-1 must form a permutation of integers {0,1,...,n-1}. Since (z,3;)
appears only on the row y;+1 for any z, a set of n processors, which have the
packets with the destination addresses {(j,3;)} for 0<j<n-1, forms a row selec-
tion. However, in any compatible column selection of D;(z,y), exactly one proces-
sor must have a packet with the destination address (z,_;,n-1) and the other pro-
cessors must have packets with the destination addresses (z;f) for 0<:i<n-2.
Moreover, one processor must be selected from the column [z, ,-1], excluding the
location ([, ;-1],,0), on which any of the processors has a packet with the desti-
nation address (z, ,h) for a h (0<h<n-2). That is, two processors, which have
the packets with the destination addresses (z, ;,n-1) and (=, ;,h), must be
selected as a part of any compatible column selection. Therefore, this is not com-

patible row selection, that is, not perfectly compatible column-row selection.C]

Lemma 3: In any compatible column selection of Dj(z,y), there are exactly two
processors whose packets have the same destination column address and the rest
of the processors have packets with distinct destination column addresses from

each other and also from the two processors.

Proof: From the proof of Lemma 2, any compatible column selection contains
exactly two processors at the addresses ([z,;-1],,0) and ([2, ;-2],A+1), which
have the packets with the destination addresses (z, {,n-1) and (z, ,,k) respec-
tively. The rest of the processors are located at the addresses {(j,7)}, for any i
(15£0,h+1) and any j (j7(2,1-1][2,1-2],), and have the packets with the desti-
nation addresses {([j+2],[1],)}. Therefore, the rest of the processors have the
packets with distinct destination column addresses {[z, ;+{],} for 2<¢<n-1 and
only two processors have the packets with the same destination column address
Z,1-0

Lemma 4: The permutation D;(z,¥) has no n-cycle mixed schedule.

Proof: From Lemma 3, in any compatible column selection of Dy(z,y), the
selected processors’ destination column addresses are distinct except for the two.

More precisely, the processors in a compatible column selection contains the
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destination column addresses of two 2, ; and no [z, ;+1],, and each of the other
integers. Because of this rule, for any k (1<k<n), the processors in any k sets of
compatible column selections cannot have the same number of the aliases for
each destination column address except for the case of k=n. That is, any k sets
of compatible column selections cannot be perfectly k-compatible column-row
selections except for the case of k=n, when all the compatible selections are the
column selections. Therefore, either n compatible column selections or n compa-
tible row selections are the only compatible selections for the whole permutation
of Dy(z,y). From Lemma 1, the permutation Di(z,y) takes at least n cycles and
this is possible only with compatible selections. The only way with compatible
selections is either by n compatible column selections or by n compatible row

selections. That is, the permutation Dy(z,y) has no n-cycle mixed schedule.[]

4. Conclusions

In this paper, it is proved that the uniform schedule is optimal for arbitrary
static permutations on the square grid of superposed parallel buses. Further stu-
dies include the classifications of the permutations that can be completed on the
square grid of superposed parallel buses within fewer cycles than by the uniform

schedule.
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Figure 1.1: A 4x4 square grid of superposed parallel buses
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Figure 2.1: The n-cycle mixed schedule of the bit-reversal permutation
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Figure 2.2: The uniform (row-column) schedule of D.(4,4)
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Figure 2.3: The uniform (column-row) schedule of D,(4,4)




