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ABSTRACT

Controlling Benes-Clos networks in full generality has proven to be very slow.
Many approaches have been taken to speed up the control for certain classes of
permutations. In this report, a new approach is developed for 3-stage networks with
nxn switches as building blocks (denoted by B(n,2)). The new approach allows the
network to be self-routed for many interesting classes of problems, or more
precisely, the permutations they need.

The families of permutations that can be self-routed by the new scheme are
characterized. Several problems such as FFT, bitonic sorting, simulation of standard
fixed interconnection networks on B(n,2), and others are shown to produce families
of permutations that yield to the new scheme. A new control algorithm of O(log2N)
complexity is derived for B(n,2) where N = n2 is the number of terminals, and

possible implementation of the scheme is discussed.



1. INTRODUCTION:

Due to the advent of the VLSI technology, it has become feasible to build
machines of hundreds and even thousands of processing elements (pe), each of
which has a moderate computational power. These pe’s are interconnected in some
fashion to allow efficient communication between them. Depending upon whether
these pe's are globally or locally controlled, these machines are called SIMD or
MIMD machines [3]. In either class, performance is hinged on how efficiently the
pe’s can communicate with one another. Therefore, the fashion in which the
processing elements are interconnected is of most concern.

It is possible to build optimal interconnection networks (IN) for classes of
problems, that is, networks that provide a direct link between two pe’s when they
need to communicate. However, the only universal optimal IN’s are the complete
nets (i.e., each pe is connected to each other pe), or crossbar interconnections,
which are prohibitively expensive. The need then arises for less costly, versatile and
efficient networks, fixed or reconfigurable. Some of the standard fixed IN's are
mesh networks, six neighbor networks, eight neighbor networks, hypercubes, cube
connected cycles, trees, shuffle-exchange networks, etc. ... The reconfigurable
networks are usually built with stages of crossbar switches, interconnected in a
defined manner. Every time two terminals need to communicate, some of the
switches are set in some way to establish the connection. Some of the standard
reconfigurable networks are Benes-Clos networks [2], Batcher networks [1], omega
networks [3]. It is worthwhile to note here that a good way to carry out the
communication is by means of permutations. A permutation n represents the fact

that pej wants to send data to pey(). To pass m through the network, the switches



have to be set in such a way that each pe; is connected to pey).

Both classes of networks, fixed or reconfigurable, need control algorithms,
that is routing algorithms. These algorithms can incur additional overhead, and
therefore, should be fast and efficient. There evolves a clear tradeoff between
hardware and control time. To illustrate, Benes networks are near optimal in
hardware but have slow control time, whereas Batcher networks use more
hardware than Benes (less than crossbar nets, though) but can be controlled “on the
fly”. Omega networks, on the other hand, are cheaper than the other two nets and
can be controlled on the fly, too; however, they do not have the same
communication power as Benes or Batcher nets.

Thus, Benes nets emerge as the most hardware efficient reconfigurable IN's
with full communication power, that is, they can pass all permutations. Yet, the
known control algorithms for them are slow [5] and [8] and no self-routed
algorithm exists. To remedy this, special efficient algorithms can be devised to pass

subsets of interesting permutations that come up in the parallel algorithms studied

in the literature. Several such algorithms have been found [4] and [6].

Three approaches to this problem can be identified. First, designing self-
routed algorithms that use local data such as destination tags, stage number and
switch number within stage to set each switch. Such algorithms can pass small
subsets of permutaions, preferably interesting ones. This approach was taken by
Nassimi ans Sahni [6i]. Second, identifying families of permutations that appear
often in the literature and have wide application, then use any peculiar properties
they have so that new, faster control algorithms can be found for them. This
approach was taken by Lenfant [4]. The first approach produces optimal control but
enables only a small fraction of the possible permutations to pass. The second
approach offers more potential for larger families of permutations but still suffers

speed inefficiency and implementation overhead. A third approach is needed, an



approach that combines the positive properties of the previous two approaches and
avoids their limitations. It consists of fixing enough stages so that the remaining
network can be self-routed and can pass the required permutations. This approach
requires that, for each class of problems, the family of permutations be identified
and checked to see if it can be passed with enough switching stages fixed so that the
remaining stages can be set by a fast, self-routing algorithm. (such families are
called compatible).

In this report, we will characterize the compatible families of permutations,
and show that the families of permutations of FFT and bitonic sorting and other
interesting problems are compatible.

The rest of the report is organized as follows: In the next section, some
preliminaries and definitions are given for Benes and omega networks. Section III
discusses the power of the scheme. In section IV, we characterize the compatible
families of permutations (i.e., those that fit the scheme). Section V and VI show that
the families of permutations of FFT and bitonic sorting are compatible. Section VII
discusses the use of bitonic sorting to build interconnection networks that are as
cheap in hardware as omega networks, with full communication power and fast
control. In section VIII, standard fixed IN’s are optimally simulated on Benes
networks by compatible families of permutations. In section IX, we attempt to
generalize, and give some open questions. Finally, we conclude with some remarks

and possible implementation of the new scheme in section X.

II. PRELIMINARIES AND DEFINITIONS:

In this section, we give some definitions related mostly to Benes-Clos and
omega networks of different building blocks, and give also some preliminary facts

about them.



Definition 1: An NxN Benes-Clos network, where N = 2k, with 2x2 cross-bar
switches as building blocks, is defined recursively as pictured in fig. 1.
Note that the indices before the first stage and after the last one represent
the pe’s. Note also that the number of stages is 2k-1 and that of switches is

(2k-1)N/2.

Generalization 1: An NxN Benes-Clos network (denoted B(n,k) where N = nk) with

nxn crossbar switches as building blocks is also defined
recursively as depicted in fig. 2.

The number of stages is 2k-1 and that of switches is (2k-1)N/n.

An important special case is when N = n2. There are 3 stages, each of which has n

nxn switches. The network when N = 16 = 42isgivenin fig. 6.

Definition 2: An NxN omega network (Q(2,k)), where N = 2k and the building block
is a 2x2 crossbar switch, consists of k consecutive stages, each of which
is a shuffle connection and a column of N/2 switches, as shown in fig. 3

forthe case N = 23.

Note that the shuffle (S) is a permutation of the set Ry ={0,1,...,N-1} such that
S(i) = 2i ifO=i=N/2-1andS(i) = 2i-N + 1 ifN/2 =i <N-1.

Generalization 2: An NxN omega networks can be similarly generalized when N =

nk to form Q(k,n) of k stages, where the building block is an nxn

switch and the shuffle S generalized in a natural way.

Definition 3: Omega inverse (Q-1) is an Q network except that the sources are

conceived as destinations and vice versa.



In the remainder of this section, we will give some facts about these
networks which will be needed later on. For a thorough study of omega networks,
see [3], and for Benes-Clos nets, see [2]. We assume first that the stages are
numbered 0, 1, ..., k-1 (resp. 0, 1, ..., 2k-2) from left to right in omega networks
(resp. Benes networks), and that the switches are numbered 0, 1, ..., N/n - 1 from top

to bottom.

Fact 1: There is exactly one path between each source and each destination in
omega nets.

Fact 2: Omega nets are self-routed as follows: Each source gives a destination tag
(DT) (i.e., the index of the pe to receive that data). It is assumed that no two
destination tags are identical. For Q(2,k), the destination tag is a binary
number aga1...ak-1. A switch in stage i examines a; and bi of the upper and
lower DT, respectively. If aj = bj, there is a conflict and the permutation
cannot be passed; otherwise, the switch is crossed or set straight through,
depending on whether a;jis 1 or 0, respectively.
In the general case (Q(n,k) for N = nk), the destination tag is still of the form
apail...ak-1 but aj is an n-ary digit (i.e., 0=aj;=n-1); a switch in stage i receiving
n tags examines their i-th digits. If any 2 or more of them are identical, there
is a conflict; otherwise, the switch is set as an nxn crossbar connection would

be.

Fact 3: If the first k-1 stages of B(n k) are set to identity (i.e., straight through), then
the resulting network is equivalent to Q(n,k).
Fact 4: If the last k-1 steges of B(n,k) are set to identity, then the resulting network

is equivalent to Q-1(n,k).



Fact 5: If the first k-1 stages of B(n,k) are fixed to any configuration, the resulting
network can be self-routed in the same way as described in fact 2. Note here
thatstage k +i (0<i<k-1) istreated as stage i in fact 2. The resulting

network is a “modified” omega. Precisely, itis hQ for some permu-
tation h.
Fact 6: In the important special case where N = n2, fixing any of the three columns

of B(n,2) enables the resulting network to be self-routed.

The main concern in thisreport is:

Given a family of permutations, can we fix the first column of B(n,2) to some
configuration in such a way that the resulting network can pass the whole family

without conflict?

If the answer is positive, we fix the first column and the network is self-
routed thereafter for the duration of the whole family. Some new definitions and
notations will be useful in dealing with these families of permutations. We assume
that N = n2in the rest of the report unless stated otherwise.
Denote by Ry the set {0, 1, ..., N-1} of the indices of the pe’s. Any number x in Ry is
uniquely written as pn +qwhere0 = p,gq = n-1.
Let H be the set of permutations (of Ry) that are admissible by any column of
switches of B(n,2), by f the interconnection (permutation of Ry) between the first
and second column of B(n,2). The interconnection between the second and third
columnis f-1.
It is straightforward to prove that f(pn +q) = qn + p by induction on p and q. This
yields that f = f-1.

Observe that H is a subgroup of the symmetric group Sy (i.e., the group of



permutations of Ry), and hisin Hif h(pn +qg) = pn + g’ for some g’ function of p
and q.

The stages of B(n,2) are numbered 0, 1, 2 from left to right, and the switches
in each stage are numbered 0,1, ..., n-1from top to bottom.

If hisin H, we say that some stage of B(n,2) isset to h (or h-configured) if the
p-th switch of that stage is set in such a way that the g-th source port of that switch
is connected to its h(pn +q)-th destination port. Naturally, if a destination tag
appears at input port pn + g (i.e., the g-th input port of switch p), it comes out from

the stage at output port h(pn +g) = pn + q' (g'-th output port of switch p).

Definition 4: A permutation is said to be admissible by a network if the network

can pass it without conflict.

Definition 5: A permutation is said to be h-admissible for some h in H if B(n,2) can
pass it with column 0 set to h.

Definition 6: Let ¢1, d2, ..., dm be m permutationsin Sn. &1, d2, ..., dm are
compatible if there is some h in H such that $1, 2, ..., dm are all
h-admissible. Then &1, ®2, ..., dm are called h-compatible.

Definition 7: If t(p,q) is a mapping from RyxRn to Rp, we define t(p,.) to be the

mapping from Ry, to Rp such that t(p,.)(q) = t(p,q). We define t(.,q)

similarly.

To conform to the topology of B(n,2), we put a parameter x on the left side of a
composition of mappings of the sort hgfth1fha where hg, h1, and hz are in H, but we
reserve the liberty to put it on the left or right side of a simple mapping since no

confusion arises.



Fact 7: If column 0 of B(n,2) is h-configured, then the resulting network is hQ.
III. USE AND POWER OF hQ NETS:

As mentioned earlier, the advantage of hQ is self-routedness, but a
question arises about its power. The following shows the extent of hQ's power.
IhQl = (n!)2n  (where IEl denotes the cardinality of the set E). To show this, note
thatIhQl = IQl because we are working in a group, namely,Sy.
H is the set permutations passed by column 0. Each switch can pass n! permutations.
Thus, n switches pass (n!)n» permutations and the two stages of Q pass (n!)2n

permutations.

note that IhQI/ISyI = (n!)2n/(n2)! -> 0 as n goes to infinity. Thus,
hQ is a small fraction of Sy.Nevertheless, we can change h to our liking, adding
versatility and more potentiality to include in our scheme many interesting classes
of problems . It is in this freedom of selecting h where the power of our approach
lies. As will be seen later, many known numerical and semi-numerical parallel
algorithms discussed in the literature give rise to compatibe families of

permutations, something that proves the power and benifit of our scheme.



IV. CHARACTERIZATION OF COMPATIBLE PERMUTATIONS:

Each class of problems, such as sorting, FFT, matrix computations etc. ..., gives
rise to a family of permutations needed to carry out the communication required if
that class is run on a Benes-connected machine. Of most interest is to know whether
a given family of permutations is h-compatible for some h in H, and if so, find such
an h. The following is a theorem that characterizes compatible families. We start
with a few lemmas, first.

Lemma 1: If ¢ is a permutation, there exist hg, h1, h2 in H such that $ = hgfhfhs.
Proof: B(n,2) passes all permutations in Sy [2], and any configuration of any of
the three columns of B(n,2) isin H.Therefore, Sy = HfHfH. Q.E.D.
Lemma 2: If ¢ is in SN, there exist two mappings a and p from RyxRp, to Ry such
that ¢(pn+q) = a(p,9)n + B(p,q).
Proof : Define a(p,q) = td(pn+q)/n! and B(p,q) = d(pn+q) -a(p,g)n. Itis

easy to see that a and  are two mappings from RyxRp to Ry,

Lemma 3: hisin H iff there exists t : RnxRpn ->Rpsuch thath(pn+q) = pn + t(p,q)
and t(p,.) is a permutation of R, for every p,q in Rp.
Proof: Only if:
Define t(p,g) = h(pn +q) - pn. It is obvious to see that t is a mapping

from RhxRn to Ry, and t(p,.) is a permutation of R for every p.

It is enough to show that h is one-to-one.
If h(pn+qg) = h(p'n+q’), then pn+t(p,gq) = p'n+t(p’.q") , which
implies that p = p’ and t(p,q) = t(p".q"). Thus, t(p,.)(q) = t(p,.)(q") and
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therefore g = g’ because t(p,.) is a permutation. Hence pn+q =
p'n+q’. Q.E.D.
Note thatif a column isset to h, then its p-th switch is set to t(p,.).
Lemma 4: If ¢ is in Sy and ¢ = hofhthz for some hg, hq, h2 in H, and if tg is such that
ho(pn +4q) = pn + to(p.q) and d(pn + q) =alp,q) n+ B(p,q), then
hi(to(p,a)n + p) = to(p,q)n +alp,q) and
ha(a(p,)n + to(p,q)) =alp,q) n + B(p,q).
Proof: (pn + q)hgofhifhy = (pn + to(p.q))fthitha = (to(p.g)n + p)hithz =
(to(p.q) + p')th2 = (p'n + top,g))h2 = p'n + q' for
some p’and q' in Rp.
Since ¢ = hofhqth, p'n + q' =alp,q) n + B(p,q) and therefore a(p,q) = p’
and B(p,q) = q'. Hence:
hy(to(p.g)n + p) = to(p,a)n + p’ = to(p.q)n + alp,q) and
ha(a(p,g)n + to(p.q)) =h2(p’n + to(p,q)) = p'n + q" = alp,q) n + B(p,q).
Q.E.D.

Characterization theorem: Let ¢1, d2, ..., dr be r permutationsin Sy. ¢1, o2, ..., dr

are compatible iff thereist : RnxRn-> Rp such that
(i) t(p,.) is a permutation of R, for every p in Rp.
(ii) If for some i ai(p,q) = ai(p’,q’) and p= p’, then t{p.q) = t(p’.q"),
where aj(p,q) = Ldi(pn + q)/nL
Proof: The if part. We have t : RpxRp -> Ry satisfying (i) and (ii).
Let hg be the following permutation of H: ho(pn +q) = pn +t(p.q).
After lemma 3, hgeH.
Define h,® and h,® fori = 1,2, ..., ras follows: h.%(sn + p) = sn + ai(p,q)
where q = (t(p,.))-1(s)
and h,%(aj(p,q)n + t(p,q)) = ai(p.g)n +Bi(p.q) = di(pn +q).
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Since t(p,.) is a permutation of Ry, then (t(p,.))-1, the inverse mapping,
exists and is a permutation too.Thus, h,® is well defined as a mapping
from R to Rp.
h,% is one-to-one:
h,@(sn+p) = h,%(s'n +p’)
=sn +ai(p,q) = s'n +ai(p’.q") where q =(t(p,.))-1(s)
and q’' = (t(p’,.))-1(s"),
=s = s’ and aij(p,q) = aij(p’,q’) after hypothesis (ii).
We claim that p = p’ because otherwise
t(p,q) = t(p,.)(q) = sand t(p’,q") = t(p",)(q") = s'ands = ¢,
contradicting (ii). Therfore, p = p’, and consequently,sn +p = s'/n +p".
Hence, h,% is one-to-one, a property that is enough to make h,¥ a
permutation of Ry because Ry is finite.
h, is a permutation:
We have to prove that h,” is well-defined and bijective.
By well-defined we mean that if aj(p,p)n + t(p,q) =ai (p".g)n +t(p’.q")
then h,®((p,q)n +t(p,q)) = h,"((p".q")n +t(p’,.q")).
ai(p,g)n +t(p,q) = ai(p’,.q)n +t(p".q") =ailp.q) = ai(p’.q")
and t(p,q) = t(p’.q") =p = p’ by hypothesis (ii).
p = p’ and t(p,q) = t(p".q") = t(p..)(q) = t(p,)(q") = q = q' because
t(p,.) is one-to-one. Thus, we havep = p’andq = q".
=ai(p.q)n + Bi(p,q) = ai(p’.q")n +Bi(p".q")
= h,%(aj(p,q)n + t(p.q)) = h,(ai(p’,.q")n +t(p’.q"))
Hence, h,is well-defined, and the same argument proves that h,7is
one-to-one where it is defined. So if we prove that h,"” (Ry) = Ry, then
h,® should be totally defined because 1h,? (Ry)l = I{x¢Rn! h,® (x) is
defined}l.
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For every x in Ry, there exists pn+q in Ry such that ¢i(pn+qg) = x
because ¢; is a permutation.

di(pn +a) = ai(p,a)n + Bi(p.,q) = x = ai(p.q)n + Bi(p,q).

But h,® ((ai(p,q)n +t(p,q)) = ai(p.q)n + Bi(p.q) = x.

Therefore, h,® (Rn) = Ry, and h,% is well-defined, totally defined, and
one-to-one = h, ¢ H.

Now, it is a simple matter to prove that ¢;=hofhithpfori = 1,2, ..., r.
Thus, 1,92, ..., dr are hgp-compatible.

The only if part. We have ®1,92, ... , r compatible = there exists h in H

such that ¢1,92, ... , dr are h-compatible = there exist h."’ and h," such

that §i = hth,fh,® fori = 1,2, ..., r.

h €H = there exists t :RnxRp -> Rp such that h(pn+q) = pn+t(p,q) and

t(p,.) is a permutation of R, for all p, q in R, after lemma 3.

Thus, (i) is satisfied.

To prove (ii), We reason by contradiction.

If, for some i, ai(p,q) = ai(p’,q") and p = p’, and t(p.q) = t(p’.q’), then

h, (ai(p,a)n +t(p,q)) = h,(ai(p’.q')n +t(p".q").

After lemma 4, h,% (ai(p,g)n +t(p,q)) = ai(p,a)n +Bi(p.q) = di(pn +q)
h,%(ai(p’,q)n +t(p",q")) =ai(p’.a')n + Bi(p".q") = di(p'n +q').

Therfore, i (pn +q) = di(p'n+q’).

=pn+q =p'n+q'=p =p’'andq = q' = p = p'. Contradiction.

Thus,(ii) must be true.

Q.E.D.

The theorem can be easily mapped into a graph-theoretic problem, namely,
n-coloring problem. Let 1, 2, ... , dr be r permutations in Sy. Let G = (V,E) be the
following graph: V = RnxRp and ((p.q).(p’.q")) € Eif
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(@)p = p'or

(b) ai(p.q) = ai(p’.q") forsomeii.
The theorem can now be termed as follows: ¢1, $2, ..., ¢r are compatible iff G can
be n-colored in such a way that no two adjacent nodes have the same color.
To prove this, let t(p,q) be the color of (p,q). (a) is equivalent to (i) and (b) is
equivalent to(ii).

The general n-coloring problem is NP-complete, but it remains open whether
these graphs have any peculiarities that open the door to a fast (i.e., polynomial)
algorithm to n-color them. Such an algorithm would be of paramount importance.

The characterization theorem will enable us to prove in the following
sections that the two families of permutations required by FFT and bitonic sorting
are both compatible, opening the way to efficient computation of these two
interesting problems on B(n,2).

Before getting to the next sections, it is worthwhile to note that not every
two permutations are compatible.This is shown by a counter example using the
theorem and its graph formulation.

Taken = 2.Thus,N =4,and Ry = {0,1}. 1 =(012)(3) and 2 = (0)(123). It
can be shown that
a1(0,0) = a1(1,0) = 0 and ag(1,1) = a2(0,0) = 0
a1{0,1) = a1(1,1) = 1 a9(0,1) =ag(1,0) = 1
The corresponding graph G is depicted in fig . 4. G has a 3-clique, and it cannot
therefore be 2-colored. Thus, $1 and ¢9 are not compatible.

In the rest of the report, we assume that n is a power of 2.

V. FAST FOURIER TRANSFORM :

To compute FFT in the way described in [7], two permutations are
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needed: Shuffle (S), and exchange (E). However, at the end of the computation, the
components of the resulting vector are in bit reversed order. To restore the order,
the bit reversal permutation (B) is needed. Thus, the overall family of permutations
needed by FFT is S, E and B.
The approach is to express S, Eand B as S(pn + q) = ag(p,g)n + Bs(p.q),
E(pn +q) = ag(p.q)n + Br(p.q) and B(pn +q) = ap(p,q)n + BB(p.q) to compute as, ag
and ap. Afterwards, we find the conditions (C) that p,q,p’,q" should satisfy when p =
p’ in order that a(p,q) = a(p’.q’) for a = ag, ag or ag. Then, we see if we can find t
such that t(p,q) = t(p’.q") wherever (p,q.p’,q") € (Q).
Before we proceed, the following lemma should prove useful:
Lemma 5: If d1, b2, ..., dr are compatible, then the family Hu{®1, d2, ..., dr}is
compatible too.
Proof: Suppose that ¢1, d2, ..., dr are hp-compatible for some hg in H. For every h
in H, h = hofef(h,'h) because f = f-1 (for the N = n2 case). Set column 0
to hg, column 1 to e (identity) and column 2 to h0'1h which is in H because
H is a subgroup. Hence, H is hg-compatible and consequently Hu{®1, ¢2,
..., &r} is @a compatible family.
Q.ED.

E is in H because n is even. Therefore, it is enough to prove that S and B are

compatible.
2(pn+q) ifpn+g=N/2 - 1

S(pn+q) = T
2(pn +q)-N+ 1ifN/2 < pn +q = N-1

=

o)
2pn +2q ifp=n/2 - 1,q=n/2 - 1 &)
(2p + 1)n +2g-n ifp=n/2 - 1,g=n/2 (2)

S(pn +q) = ¢
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(2p-n)n +2q + 1 ifp=n/2,q=n/2 - 1 (3)
(2p-n+1)n+2g+1-n  ifp=n/2,q=n/2 (4)

ag(p.q) is the coefficient of n in the definition of S.
If p=p’ (say, p<p’) and ag(p.q) = ag(p’.q’), then
((p.q) € (1) and(p’,q") € (3)) or ((p.q) € (2) and (p",q") € (4)) because otherwise as(p,q)
and ag(p’,q’) would be of different parity.
((p.q) € (1), (p’.9") € (3) and as(p,q) = as(p’.q")) =2p = 2p’-nandq,q' =n/2-1
=2p'=p+n/2andq,q'=n/2 - Tandp=n/2 - 1
((p.9) €(2), (p".9") € (4) and ag(p.q) = as(p’,q)) =2p = 2p’-nand q,q" =n/2
=>p'=p +n/2andq,q9'=n/2andp=n/2 - 1
= condition (C1) that p, q, p’, g’ should satisfy is:

(C)=p'=p+n2forp=n/2 - Tand({(q,q" =n/2 - 1) or(g.q" =n/2))
(C1) means thatt(p,q) =t(p+n/2,q") forp’ = p+n/2andp =<n/2 - 1and((q,q" =n/2
- 1) or(qg,9" =n/2)). In terms of switch constraints, (C1) says that forallp =n/2 - 1,
switch p and switch p + n/2 of column 0 should be set such that if the first half of
switch p maps to some subset k of Ry, then the first half of switch p + n/2 maps to
Rn-k.

What remains is to find ag and (C2) that t should satisfy. Suppose thatn = 2|,

N = 22! B(az/.1a2/-2... ag) = apaq ... azi-1ifaz.1az-2...agis a binary number.
B(pn +q) = B(q)n + B(p) = ag(p.q) = B(q).
ap(p,q) = aB(p’.q) =B(q) =B(q)=q =4’
Thus,(C2)=p=p'andg = q’
= t(p,q) # t(p’.q) forevery gand everyp # p'.
That means that no two switches of column 0 are set in such a way that they map
the same relative input port to tha same relative output port.

Theorem 2: t(p,q) = (p +g) mod n satisfies (C1) and (C2), maps RnxRn to Ry and t(p,.)
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is a permutation for every p.
Proof: Clearly 0 < ((p + q) mod n) =< n-1 for (p,q) € RnxRn. Therefore, t maps
RnxRnto Rp
tsatisfies (C1): Fixp=n/2 - 1,andq,q" =n/2 - 1.
Ift(p,q) = t(p +n/2,q"),thenp+qg = (p +n/2 +q') mod n.
=q = (9" +n/2) mod n.
g =n2-1=n2=<qg'+n/2=n - 1,andsinceq=n - 1,
we would have q = q'+n/2 implying q = n/2.
Contradiction.
Thus, t(p,q) = t(p +n/2,q").
If g, q" = n/2, it can be similarly shown that
t(p,q) = t(p + n/2,q").
t satisfies (C2): Fix p, p’ and q such thatp = p".
If t(p,q) = t(p’,q), then p+q = (p’ +q) mod n.Thus, p = p’
mod n and consequently p = p’ because p,p’ = n-1.
Contradiction.
t(p,.) is a permutation: t(p,q) = t{p.q)=(p+g)modn = (p+qg’) modn
=2g=q modn=q =q".
Q.E.D.
Hence, B and S are h-compatible where h(pn +g) = pn +t(p.q). Finally, B, Sand E

are all h-compatible and FFT can be computed on B(n,2) with great efficiency: Set

column 0 to h at the outset of the computation of FFT, then any permutation

needed(i.e., E, B, S) is self-routed.

VI. BITONIC SORTING:

As shown in [7], N numbers can be sorted in O(log2N) time using a
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bitonic network of logN(logN + 1)/2 stages of switches. The switches have
comparison power, and the interconnections between the stages are shuffle (S),
unshuffle (U), shuffles within segments (S;) and unshuffles within segments (U;) to
be defined more rigorously later. Since the switches in B(n,2) have no comparison
power, the comparisons done by the “bitonic switches” should be done by the pe’s
of B(n,2). This can be implemented (or simulated) by an exchange permutation and

bitonic switch i is simulated by pezj and pey; ; 1 as follows:

Suppose x and y are the inputs to bitonic switch i. By our simulation, x isin pejand y
in pezj + 1. After doing the exchange (via E), both pejj and pejy; + 1 have both x and y.
If the switch is in state (a) as in fig. 5, pe2i keeps min(x,y) and discards max(x,y), while
pe; + 1 does the opposite. If in state (b), pez; keeps max(x,y) and discards min(x,y),
while pejy;j ;+ 1 does the opposite. Consequently, the bitonic network is simulated on
B(n,2) by 2logN(logN + 1)/2 = logN(logN + 1) permutations (not pairwise distinct).
The interesting fact is they are all compatible.

To show their compatibility, we have to define precisely what the shuffles
and unshuffles within segments are. '
For0 =i =< 2!- 1 (recall thatn = 2l), Ry is broken into 2i contiguous segments, each
of length 22'-i = N/2i. The k-th segment ranges from kN/2i to (k + 1)N/2i - 1. LetS; be
the permutation that shuffles each of the 2i segments as if the segment stands
alone, and U; the permutation that unshuffles each of the 2i segments. The
interconnections between the stages of the bitonic network are the Si's and Uj's. For
i = |, the segments fall inside the switches of B(n,2), making S; and U; elements of H.
Consequently,it remains to show that Sg, S1, ..., Si-1, Ug, U1, ..., Uj-1 are compatible.
Note that the exchange permutation (E) is in H and therefore does not have to be

considered.
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Lemma 6: Define aj(p,q) = LSi(pn +g)/ni. Then

2p-kn/2i if kn/2i =p=(2k+1)n/2i+1 - 1andq=n/2 - 1 (1)

2p-kn/2i + 1 if kn/2i =p=(2k+1)n/2i+1 - 1and g =n/2 (2)k
ai (p,q)

2p-(k + 1)n/2i if(2k + 1)n/2i+1 <p=<(k + 1)n/2i-1and q=n/2-1 (3)x

2p-(k+ )n/2i+1  if 2k + 1)n/2i+1 =p=(k+ 1)n/2i-1and q =n/2 (4)
forO<k=<2i - 1
and
(ai (p.q) = ai(p'.g)andp <p)e(p’ = p+n/2i+1
and kn/2i=sp=(2k + 1)n/2i + 1 -1for some k
and ((gq, 9" =n/2 - 1) or(q,9" =n/2)))
Proof: The proof is nothing more than expressing Si(pn +q) = p'n +q’ for some
p’=n-1and q'< n-1, function of p and q. Then, have aij(p,q) = p'.
2(pn +q - kN/2i) +kN/2i if KN/2i =pn +q =
(2k + 1)N/2i+1 - 1

Si(pn +q) =4

2(pn +q - kN/2i) - N/2i + kN/2i + 1if (2k + 1)N/2i + 1< pn +q

=(k + 1)N/2i

. L

r(2p -kn/2i)n + 2q if (p,q) € (1k

(2p-kn/2i +1)n+2g-n if (p,q) € (2)k
Si(pn +q) =9

(2p-(k+ 1)n/2)n +2q + 1 if (p,q) € (3)k

£2p—(k+1)n/2i +1)n+2g+1-n  if(p,q) € (4

Itis trivial now to derive q;. It is also trivial to prove that

kn/2i<qi(p,q)=(k + 1)n/2i - 1if(p,q) isin the k-th segment, implying that if
ai(p,q) = ai(p’,q’), then both (p,q) and (p’,q’) are in the k-th segment.
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Fori=1-1,n/2i = 2l-iis even. Hence, ai(p,q) is even in (1)x and (3)x and
odd in (2)kx and (4)k.
So we conclude that
(ai(p,q) =ai(p’,q") and p<p’) = ((forsome k=<2i- 1)
((p,a) € ()kand (p'.q") € (3)i) or
((p.9) € (2)k and (p",q") € (4)k))
((p.q) e (Mkand (p’,q) € B))=p ' =p +n/2i+1 & kn/2i=p=(2k + 1)n/2i+1-1
&qg,q'=n/2 -1
((p,9) € (Qkand (p".q") € (A))=p ' =p +n/2i+1&kn/2i=p=(2k + 1)n/2i+1-1
&q,9'=n/2
Hence
(aj (p,q) = ai(p’,q)and p < p’) = (p’ = p+n/2i+1
and kn/2i=p=(2k + 1)n/2i +1 -1for some k
and ((g,9' =n/2 - 1) or(q,q" =n/2)))
The other direction is simple.
Q.E.D.
Therefore, in the search for t(p,q), t must satisfy condition
(C1) =t(p,q) =t(p +n/2i+1,q") foreveryk < 2i-1,and everyi <|-1and everyp,q,q’
such that kn/2i=p=(2k + 1)n/2i+1-1 and ((q,q" =n/2 - 1) or(q,q9" = n/2))
Next, we will do the same with the Uj’s.
Lemma 7: Define aij(p,q) = LUij(pn +g)/ni,then
(p + kn/2i)/2 if knl2i=sp=(k+1)n/2i-1,gandpeven (1)
(p - 1+kn/2i)/2 if kn2i=sp=(k+1)n/2i-1,qeven,podd (2)k
ai(p,q) =
(p + (k + 1)n/2i)/2 if kn/2i=sp=(k+ 1)n/2i-1,godd, peven (3)k
p-1+(k+1)n/2i)/2 if knl2i=sp=(k+ 1)n/2i-1,qeven,podd (4)
forO=k=2i-1
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and
(forsome i)(ai(p,q) = ai(p.q) and p<p’) e (p'=p + 1and piseven
and (q, q" havethe same parity))
Proof: The proof follows the same line of reasoning as the previous lemma.
Therefore, we will only express Uij(pn + q).
(pn +q - kN/2i)/2 + kN/2i if kN/2i=spn+q=(k+ 1)N/2i -1,
pn +q even
Ui(pn +q) =
(pn +q - kN/2i N/2i -1)/2 + kN/2i if kN/2i=pn + g=(k + 1)N/2i -1,

pn +q odd
Consequently,
(p + kn/2i)n/2 + q/2 if (p,q) € (1)«
(p-1+kn/2)n/2 + (q+n)/2 if (p,q)€(2)k
Uilpn +q) =
(p+(k+1)n/20)n/2 + (g - 1)/2 if (p.g) €3k

(p-1+(k+1)n20n/2+(q-1+n)/2 if (p.q)¢€(4)
forO=k=2i-1.
The rest is now simple.
Q.E.D.
As a result, t(p,q) must satisfy a second condition:
(C2) =t(p,q) =t(p+1,q") if piseven and (q, g’ have the same parity)
The question now is whether there is such t that satisfies (C1) and (C2). The answer is
affirmative and is given in the next two theorems. We give first two definitions.
Definition 8: If E is a set of numbers and x is a number, E + x is defined to be the set
{y+xlye€E}
The next definition divides column 0 into 2 disjoint subsets of switches where t will

be defined.



9%

Definition 9: Let Fy = {0}, E1 = {1} and recursively F; = Fj_1 U (Ej.1+2i-1)and
Ei = Ei.qU(Fj.q+2i-1).
Theorem3: (DENF =@
(iEf UF =Ry
(iii) (vj= n/2 - 1)(2j is in one of the two sets E| and F| = 2j + 1isin the
other set)
(iv)(vi=0,1, ..., 1-1)(vk=2i - 1)(kn/2i=sp=(2k + 1)n/2i+1-1)(pisin one
, of the sets E|, F| = p + n/2i + 1 isin the other set)
Proof: By inductionon| = logn.
Basis: |=1,n=2,R, ={0,1}.
E1={1},F1={0}= EiNF = @andE UF = Rpproving (i) and (ii).
(iii): j=2n-1=j=0=2j =0
2j=0¢F1=2j+1=1¢E;.
(iv):i=0,1,...,1-1=i =0.Wehavek=0,0<p=<0,p =0.
p=0€F1=p+n/2i+1 = p+2/2 = p+1¢€Eq
Induction step: Suppose the theorem is true for all values up to
I-1 = log(n/2), and we now prove it for the value | = logn.
():ENF =(E-1UF-1+2-0))N(F.1U(E-1+2i-1)

Ei-1 N F.1=@ by the inductive hypothesis (I.H.)
=2(E-1+2i-)NF.-.1+2-N) =@
Ei.1N(E.1+2-1) = @ because the elements of Ej_ 1
are < 2l-1-1and theelementsof Ej_1 +2i-Tareall = 2I-1.
SameforFi_.1N(F.1+21-1) =@
Thus,EfNF = @.
(ii): El-1UF-.1 ={0,1,...,21-1} by (ILH.).
It is easy to see that

EEUFR =(E-qUF-1)U(E-1UFR.q)+21-1)
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={0,1,.. . 2-1-1}ufa-1,2:1, 2.1}
={0,1,...,2!-1} = Rp.

(iii): Fixj = n/2 - 1 and assume 2j ¢ E|.
El=E-1U(F-1+21-1)=32j€¢E-q10or2jeF.q+2l-1.

If2j € E|_1,then 2j+ 1 ¢ Fj. 1 by the (LLH.); hence, 2j + 1 ¢ Fj.
If2jeF.1 +21-1,then2j = k+2I-1forsomek ¢Fj..
kiseven.k/2 =j-21-2=n/2-1-n/4 = n/4-1 =21-1/2-1.
(k/2 =21-1/2-1and 2(k/2) = k€F|.1) =k +1€E|.1bythe
(1LH.).

2j+1 =(k+1)+2l-1¢Eq +2I-1cF=2j+1¢F,
Asimilar proof applies if 2j € F.

(iv): Fixi<l-1,k <2i-1,psuchthatkn/2i =p=< (2k + 1)n/2i+1-1,
and assume p € E| We want to prove thatp + n/2i+1¢F.
Sinse Ej = E|.1 U (F - 1+2/-1), we have two cases: p € E| . 1
orpeF.q+2-1.

Case1:pckE-q
peE.1=2p=<2l-1-1=2kn2i<2l-1-1asn = 2|
=>k2l-i<2l-1=3k <2i-1-1. Note that

n/2i = {nf2)j2i-1 = 21-1/2i-1_Thus, i21-1/2i-1=p =
(2k + 1)21-172G-1)+1 -1,
AndsinceK=2i-1-1andi-1=<1-2 =(-1)-1,wecan
apply the inductive hypothesis and have
p+(n/2)/2G-1)+1¢ F_q.

Therefore, p +n/2i+1 ¢ F .1, which impliesp + n/2i + 1 ¢ F|
because F|_.1CF).

Case2: PeF.q +2I-1

=>p =s+2-1forsomesinF.1.
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2-1=p=22l-1= 2k +1)n2i+1-1=3k = 2i-1,
Letk' = k-2i-1.
kn2i=p=(Q2k+1nR2i+1-1=
(k-2i-Mn/2i=s= (2(k-2i-1)+1)n/2i+1- 1 becausen = 2!
=2k'nf2i=s= 2k'+ )n/2i+1-1.
Since0 = k'= 2i-1-2i-1 = 2i-1-1, we arein asituation
similar to case 1 above, excepts ¢ F|. 1 instead of Ej. 1. Due to
the symmetry of the problem at hand (symmetry between
The E's and the F’s), the reasoning leadstos +n/2i+ 1€ E| 1.
P+n/2i+1 =s+n/2i+14+21-1¢E_1 + 2l-1CF
=p+n/2i+1¢F.
End of case 2.
Therefore, p +n/2i+ 1 ¢ F| in either case.
If p € Fj, asimilar proof shows thatp + n/2i+1¢ E|.

Q.ED.
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Theorem 4: If all the switches of column 0 that are in E| are set to identity (i.e., t(p,q)
= qforallpinEand 0 = g < n- 1), and all the switches that are in Fj set
tor where r(q) = n-1-q,(i.e., t(p,q) = r(q) forevery pinFj), then (C1)
and (C2) will be satisfied, and consequently all the permutations
required by bitonicsorting are h-compatible where h(pn +q) =
pn +t(p,q).

Proof: tis well-defined (no ambiguity) because E| N F| = @ after (i) of last
theorem. t is totally defined because E; U F| = Ry.
(C1) issatisfied: If kn/2i = p = (2k + 1)n/2i+1- 1 forsomei, k and p, then
p € Eland p +n/2i+ 1 ¢ F| or vice versa after (iv) of last thoerem. Assume
pcEandp+n/2i+1¢F.Then,t(p,q) = qandt(p+n/2i+1,q") =n-1-q'".
If t(p,q) = t(p +n/2i+1,q°),thenq = n-1-q"whichmakesg+q' = n-1.
Butifq,q'=n/2-1thenq+q'=<sn-2<n-1,andifq,q =n/2thenq+q’
=n >n- 1, making itimpossible thatq +q" = n-1.Thus, t(p,q) =
t(p +n/2i+1,q") if (p,q,q") € (C1).
(C2) is satisfied: If p is even, then either pisin E;and p + 1in Fj or vice versa
after (iii) of last theorem. Assume pisin Ejand p + 1in F.
t(p.q) = qandt(p+1,9') = r(q’) = n-1-q" =q"and r(q’) have different
parities = (if g and q' are of equal parity, then q and r(q’) have differents
parities and therefore cannot be equal).
Thus, t(p.q) = t(p + 1,q) if p is even and (q and q’ have same parity).

Q.E.D.



<25

VII. USE OF BITONIC SORTING COMPATIBILITY :

The compatibility of bitonic sorting offers two possibilities concerning
interconnection networks. First, a new network can be derived from B(n,2) by
replacing the first column by the fixed connection that is the configuration
discussed in theorem 4. This network is omega-like (actually it is hQ for some h), and
consequently self-routed, hardware cheaper, and with full communication power. It
can pass any permutation in logN(logN + 1) passes (for N = n2) by sorting the
destination tags of the permutation. This is so because the sorting of the tags can be
done on this network by logN(logN + 1) self-routed permutations, after last section.
Thus, this network is as time efficient as Stone’s shuffle-exchange (S-E) network [7].
Although hQ costs more hardware than (S-E) net, it has an advantage over (S-E) net
in that hQ passes many permutations by far fewer passes than (S-E) net does. For
instance, the permutations of H are in hQ (i.e., passed by one single pass) as shown
below. Moreover, Q(n,2) andQ-1(n,2)are passed in two passes by hQ. This is proven
below.

Lemma 9: H c hQ(n,2).
Proof: Forevery h'in H, h’ = hfef(h-1h") and h-1h’ ¢ H because H is a subgroup.
Q.E.D.
Claim1: @(n,2) is simulated on hQ(n,2) in two passes.
Proof: We have to prove that any permutation g in (n,2) can be written as
g = g192 forsome g1, g2 in hQ(n,2).
Fixgin Q(n,2). Then g = fhfha for some h1, hyin H because @ = fHfH.
g = h-1(hfhqfh3). Let g1 = hthiftha which isin hQ(n,2),
andgz = h-1 ¢ Hc hQ(n,2).
Hence g = g1g92 where both g and gz are in hQ(n,2).
To pass g, hQ(n,2) passes g1 then g».
Q.E.D.
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Claim 2: @-1(n,2) is simulated on hQ(n,2) in two passes.
Proof: Q-1(n,2) = HfHf. Fixgin Q1. Then g = hofh;f.
=g = (hgh-1)(hfhife). Let g1 = hgh-1and g2 = hfhfe.
Clearly, g2 isin hQ(n,2) and g1 € H c hQ(n,2), yielding thatg = g1g2 where
both g1 and gz arein hQ(n,2).
Q.E.D.

The second possibility that bitonic sorting compatibility offers is to keep all
the three columns of B(n,2). B(n,2) enjoys all the properties of hQ(n,2) (except that
B(n,2) costs more hardware). Moreover, B(n,2) simulates Q in one pass with self-
routedness, allows compatible families to be self-routed, and for the incompatible
families, B(n,2) can be controlled in O(logN(logN + 1)) time using bitonic sorting to

sort the destination tags.

VIIL. SIMULATION OF FIXED (IN)'s ON B(N,2):

In this section, it will be proven that many of the standard fixed
interconnection networks can be simulated on B(n,2) by compatible families of
permutations. Furthermore, the simulation is optimal. We start first by defining

precisely what we mean by optimal simulation.

Let T be a fixed interconnection network. A communication step (CS) of Tisa

data routing process in which one or more pe’s send data to their immediate
neighbors only (the immediate neighbors of a pe are the pe’s to which it has direct

links). A full communication step (FCS) of T is a (CS) of T where every link is used

exactly once (each pe sends data to all its immediate neighbors). A communication

process is carried out by a number of communication steps. An elementery

communication step (ECS) is a (CS) in which each pe sends and/or receives at most

one data items. It is clear that a (CS) can be carried out by a sequence of (ECS)’s
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although this is not the most efficient way of communication in T. Therefore, any
communication process in T can be done by a sequence of (ECS)’s.

From here on, it is assumed that the numberof pe’sinTisN = n2(i.e., the
same number of those of B(N,2)).

An (ECS) can be done (or simulated) on B(n,2) by means of one permutation
m in the most natural way, that is, n(i) = j if pej sends a data item to pe;j in that
(ECS). Note that nm does not have to be totally defined. Hence, any (CS) of T can be
done (or simulated) on B(n,2) in a number of permutations equal to the number of

its (ECS)’s. We are now in a position to define optimal simulation of T on B(n,2).

Definition 10: The optimal simulation of a fixed (IN) T on B(n,2) is the determination
of a minimum set of permutations needed to simulate a full commu-

nication step of T on B(n,2).

This last definition can be cast even more formally as follows: A set S of
permutations simulates T if for every link (pej,pej) of T, there is at least one

permutation min S such that (i) = j. A minimum such set optimally simulates T.

T can be modeled by a directed graph G where the nodes are the pe’s and the
arcs are the directed links between the pe’s. Let the nodes be numbered 0,1, ..., N-1.
Let indj and outd; be the indegree and outdegree of node i, respectively.
Letind = max{ind;li = 0,1, ... ,N-1}, outd = {outd;li = 0,1,...,N-1} and
d = max(ind,outd). By the definition of a (FCS), pe; sends outd; items and receives
ind; items in a (FCS). d is the maximum number of items sent or received by any one
pe; therefore, d is a lower bound on number of permutations needed to simulate a
(FCS) because a pe can send and/or receive no more than one data item through one
permutation.

Consequently, if a set of permutations simulates a (FCS) and is of orderd,
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itis necessarily a minimum set.

Note that many (IN)’s are presented as undirected graphs where each link
represents either (1) a bidirectional link or (2) two opposite links. If a set of
permutations simulates T as conceived in (2), it simulates T as conceived in (1). Thus,
we adopt (2), that is, an undirected edge represents two distinct links of opposite
directions between two pe’s. In the rest of the report, if we have an undirected
graph G, we mean by directed graph G the graph as conceived in (2).

In the following, hypercubes, four-neighbor nets, six-neighbor nets and

eight-neighbor nets will be simulated on B(n,2) in an optimal way.

Definition 11: M1, M2, ..., Mg are said to be a perfect matching partition of a graph
G = (V,E) if each M is a perfect matching of G (i.e., M; C E and each
node of Vis incident upon exactly one edge of M;) and M1, M», ...,
My are a partition of E (i.,e., MfuMaU... UMk = Eand M n M =@

vi=zj).

Note that if G has a perfect matching partition Mq, M2, ..., My, then Giis

regular and the degree of each node isk.

Lemma 8: If a graph G, modelling an (IN) T, has a perfect matching partition M1, M,
..., Mg, then T is optimally simulated on B(n,2) with k permutations 1,
my, ..., k. Moreover each nj is solely derived from M;. We denote nj by
n(M;).

Proof: Define mj to be: mj(j) = kiff (j,k) isin M;. Note thatif oj(j) = k, then

ni(k) = j. Since M is a perfect matching, moj is a permutation. For every link
(j.k) in T (i.e., for every directed edge (j,k)), there exists i such that (j,k) is
in M because M1 U M3 U ... UMy = E. Thus, there exists mmj such that

mi(j) = k. Hence, iy, iz, ..., m simulate T (after the remark following
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definition 10). The simulation is optimal because k is the indegree and the
outdegree of each node of directed G and therefore k is a lower bound
on the order of simulating sets of permutations.

Q.E.D.

(a) Simulation of Hypercubes:

Assume N = n2 = 22k, where n = 2k. The hypercube has N pe’s. Each pe is
identified by a 2k-bit binary number x2i-1 ...x1xg9. Two pe’s are connected (by two
links of opposite directions) if their id’s differ in only one bit. The directed
hypercube is regular, each ind; and outd; is equal to 2k.

Let M = {(x,x +2i-1) I X = X2k-1 ... Xi{Xj-1Xj-2 ... X1Xg and xj.1 = 0} fori = 1,2, ..., 2k.
More informally, (x,y) isin M; iff x and y differ only in the i-th bit (from the left). It is
straightfotward to verify that each M; is a perfect matching and that M4, Mo, ...,
Myk form a perfect matchimg partition of the undirected hypercube. After lemma 8,
n(My), ..., m(Mzk) simulate the hypercube optimally. What remains is to find each
n(M;) and prove thatthe n'sare in Q.
CASET i=k.
We claim that o(M;) isin H.
Proof: Let (x,y) be an element of M;. n{M;) maps x to y (and viceversa).
x =pn+qandy = p'n+q’ forsome p,q,p’.q". q contributes the first k bits
of x, and p its second k bits. Same forq’, p’, y.
x and y differ only in thei-thbitandi=k=p = p’
Thus, o(M;) is in H and consequently n(M;) isin Q(n,2), that is, can be
passed through B(n,2) with column 0 set to identity.
CASE 2: k< i = 2k.
i = k+sforsomes <k.
Let (x,y) beasCASE1.x = pn+gandy = p'n+q’.
x and y differ only in the i-th bitand i > k = (q=q’) and (p and p’ differonly
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in the s-th bit)

We thus have that n(M;) maps pn + q to p'n + q preserving q and having p’
function of p only (as opposed to p and q). The fact that o(M;) isin @
follows from the following lemma.

Lemma 9: If a permutation m maps pn + q to p'n + q preserving q and having p’
dependent upon p only, then nis admissible by B(n,2) with column 0 set
to identity.

Proof: Take hg = hp = eand hqsuch thathi(gn +p) = gn + p’ where p’issuch
thatn(pn + q) = p'n + g. Clearly, hq is well defined and in H.
Itis easy to verify that m = hgfh1fh;. Thus, o is admissible by B(n,2) with
column 0 set to identity.
Q.E.D.

Consequently, n{M1), ..., i(M3k) are all admissible by Q(n,2).

(b) Simulation of Four-Neighbor Nets:

These nets have N = n2 pe's. We assume that n is even. Each pe is connected
to its four neighbors (left, right, north, south). Assume that the pe’s are numbered
by row from left to right, top to bottom, from 0 to N- 1. The pn + g-th pe isin the p-
th row and g-th column forO <p,g=n-1.

After a little inspection, it can be seen that pn + qisconnected to pn +q + 1,
pn+q-1,(p+1)n+gand (p-Nn+qif1 <p,q =n - 2. Also, pn is connected to
pn+n-1forO<p<=n-1;andqisconnectedto(n-1)n+qfor0 =q =n-1(those
are the wrap around connections). For the N = 16 case, see fig. 7.

LetM1 = {(pn+2j,pn+2j+1)I0<p=n-1,0=<j<n/2-1}
M2 ={(pn+2j+1,pn+2j+2),(pn,pn+n-1)10<p=n-1,0<j=<n/2-2}
M3 ={(2jn+q,(2j+1)n+q)I0=g=n-1,0=j=n/2-1}
M2 = {(2j+ )n+q,(2j+2)n+q),(q,(n-Nn+q)I0=p=n-1,0<j=n/2-2}
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It is a trivial matter to see that M1, M2, M3, Mg form a perfect matching partition of
the net. The corresponding permutations will be found and proven to be in Q(n,2)

after giving the definition of some switch states.

Definition 12: 1) An nxn switch (for even n) is in state x (exchange) if input portiis
connected to output porti+ 1 and input porti + 1to output porti
forievenandO<i<sn-1.

2) Itisin state mx (modified exchange) if input 0 is connected to
outputn-1,inputn-1tooutput0,inputito outputi+1andinput
i+1tooutputiforioddand1 =i=n-2.

3) Itisin state i-c, where i isa number, if input j is connected to output

(j+i)modnfor0 =j=n-1.Thisisthei-th cyclicshift.

The four permutations corresponding to M1, M2, M3 and M4 can now be
stated in terms of switch configuration:
perm 1: column 0 and 1 set to e, the switches of column 2 all set to x.
perm 2: column 0 and 1 set to e, the switches of column 2 all set to mx.
perm 3: column 0 and 2 set to e, the switches of column 1 all set to x.
perm 4: column 0 and 2 set to e, the switches of column 1 all set to mx.
Clearly, the four permutations are in Q(n,2). Needless to say that the simulation is
optimal since the netis regular and of degree four.

(c) Simulation of Eight-Neighbor Nets:

The lower bound on the number of permutations is eight because these nets
have nodes of degree eight (see fig.9).

We can follow the same line of resoning asin (a) and (b). So we will state the
results without going through the same depth of detail.

These nets are optimally simulated by the following eight permutations:
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perm1, perm2, perm3 and perm4 are the same as in (b).

perm 5: column 0 set to e, the switches of column 1 and 2 all set to x.

perm 6: column 0 set to e, the switches of column 1 and 2 all set to mx.

perm 7: column 0 set to e, the switches of column 1 all set to x, of column 2 to mx.
perm 8: column 0 set to e, the switches of column 1 all set to mx, of column 2 to x.

(d) Simulation of Six-Neighbor Nets:

The lower bound on the number of permutations is six because these nets
have nodes of degree six (see fig. 8).

The following six permutations provide the optimal simulation:
perm1, perm2, perm3 and perm4 are the same as in (b).
For perm 5 and perm 6, we have to divide the third column into four subsets of
switches: Eg, E1, E2 and E3 where E; is the set of switches whose indices are
congruent to i mod 4 (recall that there are n switches in a column, numbered 0,1, ...,
n - 1 from top to bottom).
perm 5: column 0 set to e, the switches of column 1 all set to x, the switches of Eg

and E; of column 2 set to 3-¢, the switches of E1 and E3set to 1-c.

perm 6: column 0 set to e, the switches of column 1 all set to mx, the switches of Eg

and Eq of column 2 set to 3-¢, the switches of E; and Ezset to 1-c.

All the six permutations are admissible by Q(n,2).

(e) Simulation of Shuffle-Exchange Nets:

After section V on FFT, the shuffle-exchange net is simulated by two
permutations : S and E. S is not admissible by @(n,2). However, S and E are h-

compatible for some h (see section V).
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IX. GENERALIZATIONS AND OPEN QUESTIONS:

Of interest is whether we can generalize the results of this report concerning
B(n,2) to B(n,k) for k>2. some of the definitions have to be generalized.

Generalization of Compatibility: Let hg, hy, ... hk.2 be in H. A permutation mis said

(ho, h1, ... hk-2)-compatible if the network resulting from setting column 0, column
1, ..., column k-2 of B(n,k) to hg, h1, ... hx-2, respectively, passes n without conflict. n
is then said to be compatible in the general sense.
The simulation of the fixed (IN)’s of section VIII gives rise to families of permutations
in 2(n,2). If n2 = rk (k even), then Q(n,2) c Q(r,k). Therefore, these families are
compatible in the general sense.
The following questions remain open and subject to further pursuit:
1) Are FFT and bitonic sorting compatible in the general sense ?
2) Is there an efficient algorithm to decide compatibility in the original sense ? In
the general sense ?
It is also of interest to study other interesting classes of problems and see if

they produce compatible families of permutations ?

X. CONCLUSION:

We have established an approach to controlling Benes networks for the
N = n2 case, and showed that this approach is more versatile than other previous
approaches. We have also shown how to attack families of permutations (generated
by classes of problems) to see if they are compatible, using the characterization
theorem. FFT and bitonic sorting were proven to produce compatible families,
yielding the way to very efficient communication for these two problems. Standard
fixed interconnection networks were simulated on our scheme in an optimal way.
There are ather classes of problems that yield to our scheme, too. Such are matrix

computations (matrix multiplication, linear transformation, LU decomposition),
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semi-group computation(addition and multiplication of N numbers, maximum and
minimum of N values), recurrent equations of order = 1, etc. ... Actually, most of
these problems yield families of permutations that are admissible by omega
networks and therefore by our scheme, for omega nets are a special case. It is of
interest to inspect other classes of problems and see whether they produce families
of permutations that can join the “club” of compatible families.

It remains to say a few words about the implementation of the scheme. The
implementation can be integrated into the instruction set of the system. For each
known h-compatible family, we store the configuration h in memory. A new
instruction is added to the instruction set. This instruction takes an operand that
points to the location of h. The execution of this instruction consists of setting
column 0 to h. If we assume that the system has already an instruction LOAD-PERM
that takes a permutation (or a pointer to it) as an operand and sets the network to
it, then we can add a bit ¢ to this instruction. If c is set to 0, the same execution takes
place; and if c is set to 1, then the net is self-routed using the destination tags (as
explained in fact 2 of section I1).

This is one of the possible implementations. It shows the ease, elegance and
efficiency of the scheme. Another way of using the scheme is to use the bitonic
sorting algorithm to sort the destination tags, yielding an O(log2N) control
algorithm of B(n,2) , which is as efficient as Stone’s S-E net control algorithm, while

keepimg the generality and versatility of B(n,2) for compatible families.
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A 16x16 Benes network. The building block is a 4x4 switch.
Fig.6
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Four-neighbor net of 16 pe’s
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fig.8
Six-neighbor net of 16 pe’s
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Eight-neighbor net of 16 pe’s




