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1. Introduction

In this note we briefly summarize the distributed computing research we
performed in the year 1985. In general terms, our emphasis was on studying
and implementing mechanisms for efficient and reliable computing and data
management. Our work can be roughly divided into nine categories: mutual
exclusion, dynamic vote reassignment, the implementation of a highly reliable
database system, the implementation of a high availability database system, a
survey of reliable distributed data management, the optimization of shadow
recovery mechanisms, load balancing, caching and prefetching in information
systems, and protocols for multiple-access packet-broadcast channels.

Due to space limitations, we concentrate on describing our own work and
we do not survey the work of other researchers in the field. For survey informa-
tion and references, we refer readers to some of our reports.

2. Mutual Exclusion

A number of distributed algorithms require that at most one connected
group of nodes be active at a time, and this is achieved by assigning each node
a number of votes. The group that has a majority of the total number of votes
knows that no other group can have a majority, and can thus be active. (It is
also possible that no group has a majority and is active.) Such a mechanism can
be used, for example, to manage a file that is replicated at various sites. Voting
ensures that at most one group can update the file at a time, avoiding potential
conflicts.

The way these votes are dispersed among the nodes can affect in a critical
fashion the reliability of the system. To illustrate what we mean, consider a
system with nodes a, b, ¢, and d. Suppose that we assign each node a single
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vote. This means that, for example, nodes a, b, and ¢ could operate as a group
(3 is a majority of 4), but @ and b by themselves could not.

Next, consider a different distribution where a gets two votes and the rest
of the nodes get one vote. Call this distribution @ and the previous one P. It
turns out that @ is superior to P because any group of nodes that can operate
under P can operate under @, but not vice-versa. For example, a and b can
form a group under @ (3 is a majority of 5) but not under P. Thus, if the sys-
tem splits into group {a,b} and group {c,d}, there will be one active group
under @ but no active group if P is used. So clearly, no system designer should
ever use distribution P, even though it seems a very ‘‘natural’ choice.

In the past we have studied vote assignments, developing a theory for their
enumeration and evaluation [Barb85]. More recently, we studied other problems
that are closely related. Specifically, notice that the formulation of the problem
given at the beginning of this section involves a single operation or mission (e.g.,
updating a file). In other cases, there is more than one type of competing mis-
sion. For example, one mission can be to commit a pending transaction, while
another mission might be to abort the same transaction. The rules for mutual
exclusion are different from the single mission case. A commit mission does not
want to exclude other commit missions from executing in other groups, and
similarly, aborts do not conflict with each other. However, commits and aborts
are mutually exclusive: we do not want to have a situation where some groups
decide to abort a transaction while other groups decide to commit it.

We have studied various types of multi-mission mutual exclusion scenarios
[Barb86a], again developing a theory for them. Modified voting mechanisms can
be used to enforce the new mutual exclusion rules [Skee82]. In the commit and
abort example, we can require that a group have A or more votes before it
aborts a transaction, and that it have C or more votes to commit. If A + C is
greater than the total number of votes, then mutual exclusion between aborters
and committers is guaranteed.

Just as in the single mission scenario, the vote assignment plays an impor-
tant role in system availability, i.e., in the likelihood that a transaction could
be committed or aborted. And as in the single mission case, there are non-
voting mechanisms that may be superior. For example, suppose we define the
sets

A = {{a,b},{c,d}}
= {{a,d},{b,c},{a,c},{b,d}}.

Our rules are that a group can abort a transaction if it or a superset appears in
A, and it can commit if the same holds for C. For example, if nodes {a,b,c}
form a group, then they can either abort or commit a transaction. Group
{a,b}, on the other hand, can only abort transactions.

Notice that sets A and C enforce the mutual exclusion rules we need for
commits and aborts, and yet, cannot be implemented by the voting technique
we outlined earlier. Hence, the set mechanism could be superior in some cases.
In [Barb86a] we have studied such sets, their properties, and techniques for



selecting good ones.

3. Dynamic Vote Reassignment

Even though voting mechanisms may not be as “powerful’” as set oriented
ones, they do have an important advantage: they are very simple. In particu-
lar, not only can we select a good assignment at system initialization time, but
we can also dynamically change the assignment as failures and repairs occur.
This allows the system to adjust to the current topology, reducing the probabil-
ity of encountering a state where no group can perform a mission. We suspect
that such an adaptive strategy would be harder with a set oriented mechanism.

To illustrate, consider a system with four nodes a, b, ¢ and d that is exe-
cuting a single type of mutually exclusive mission. Say we have initially
assigned the following votes: v, = v, = v, =1 and v; = 2, where v; represents
the votes assigned to node ¢. Assume that a partition separates node d from
nodes a, b, and ¢. Nodes a, b, and ¢ can still collect a majority of votes, while
d cannot. However, if a second partition occurs, separating node ¢ from ¢ and
b, the system will be halted, i.e., no group will have a majority and no group
will be able to execute a mission. However, we can reduce the likelihood of
halting if we increase the votes of group {a,b,c} before the second partition
occurs. That is, after any failure, the majority group (if any) dynamically reas-
signs the votes in order to increase its voting power and increase the system’s
chances of surviving subsequent failures.

In our example, nodes a, b, and ¢ may opt for reconfiguring the votes dur-
ing the first partition. For instance, a new vote assignment could be v, = v, =
v, = 5. Node d is unaware of the change and remains with v, = 2 votes. (Asa
matter of fact, since d is not in a majority group, it cannot change its votes.) In
this way, the second partition will find nodes ¢ and & with 10 votes out of a
total of 17, forming a majority group that can continue to execute its mission.
After the second partition, the new majority group {a,b} could reassign itself
new votes of v, = 15 and v, = 5 in order to tolerate even a third partition.
When the partitions are repaired, the nodes that have proportionately less votes
(e.g., d) can attempt to increase their votes. Equivalently, nodes that have
increased their votes may decrease them to recapture the original assignment.

Notice that in our approach, nodes operate quite autonomously, without
requiring group consensus. Group consensus may select a better assignment but
requires tighter coordination among the nodes (e.g., a central coordinator may
have to be selected). On the other hand, autonomous vote changes are much
simpler and more flexible. Each node decides independently what its new vote
value should be. The node does not need complete or accurate information
about the state of the system. In a sense, the node makes an educated guess
about the best number of votes to have, with its primary goal being to claim for
itself all or part of the voting power of a node (or nodes) that have been
separated from it.

There are two problems to solve in implementing the ideas we have
sketched. The first involves the selection of a new vote value by a node that
has detected the disconnection of another node. We refer to the mechanism for
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such a selection as the policy. The policy takes into account the current state
of the system (who is up, who is down, who has how many votes), as determined
(perhaps not accurately) by the node making the change, and outputs the
desired votes for this node. There are a number of different rules that can be
used for the policy and these are surveyed in [Barb86b]. The efficiency of the
various policies is compared through a detailed simulation that evaluates the
probability of arriving at a halted state. The autonomous policies are also com-
pared to a group consensus strategy. We have found that the better auto-
nomous policies provide almost as much availability as the consensus method,
even though they make a less accurate reassignment relative to the new topol-
ogy. Since autonomous policies are simpler to implement, we are encouraged by
these results.

Once a node chooses a new vote value, it cannot vote with it right away.
The second problem is to ensure that the node is part of a majority and author-
ized to make the change. The mechanism to do this is called the protocol. The
basic idea is to collect acknowledgements from nodes with a majority of votes,
and in the process inform them of the change. In doing so, we must make sure
the protocol does not get confused between ‘‘old” and ‘“new’” votes. We have
studied one such protocol and have shown that it operates correctly [Barb86c].
The protocol is efficient and relatively simple.

4. A Highly Reliable Database System

One of the goals of our research is to understand reliable data manage-
ment, so a natural question to ask is: how reliable can we ever hope to build a
data management system, and at what cost? In an attempt to answer this
question, we have embarked on the actual implementation of an ultra high reli-
ability system.

The key to our system is a failure model that captures the worst possible
behavior by a computer. In this model we have a collection of 2n 4+ 1 comput-
ers, and we assume that at most n of them fail. We make no assumptions
about how a computer fails, and in this sense, the model is the most general
possible. We call a failed node insane since it can send any message out,
including misleading ones, it can refuse to send required messages, and it can
even collaborate with other insane nodes in an attempt to subvert the entire
system. We assume that an insane failure is eventually detected and repaired.

If we wish to reliably perform a task in this environment we must execute
the task on all 2n + 1 computers and look at all outputs. The output that
n + 1 or more nodes agree on must be the correct one. This approach is well
known and is called N-modular redundancy (NMR). It has been used success-
fully at the hardware level for many years. In our system, however, we are
using NMR at a different level, the database level.

There are a number of advantages to operating at this level. The com-
munication overhead can be greatly reduced. Instead of exchanging and com-
paring the result of, say, every addition or memory reference, the system
operates at a much higher level, mainly comparing the outputs of user transac-
tions. Since remote sites in essence have backup copies of the database,
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processing at each site may be streamlined, eliminating local logging and dump-
ing, for example. Actually, the database processing at each site is quite simple.
Note that nodes execute each transaction independently from the rest of the
system. Locks do not have to be requested from other nodes, and there can be
no global deadlocks. In addition, our system is built with off-the-shelf equip-
ment, as opposed to the specialized hardware usually required by NMR.

So in light of these advantages, and of the extra reliability provided, the
cost of database NMR may not be as high as one may initially imagine. It will
never be cheap, but it may be a desirable alternative for critical applications

where human lives or money is at stake, or where users are simply tired of deal-

ing with “temperamental’”’ computers that lose or destroy their data.

Database NMR has not been implemented before (as far as we know), and
there are a number of challenging problems to be solved. Typically, each node
of a NMR system contains very little “state’” information, so recovery after a
failure is simple. However, in our case the ‘‘state’’ is the entire database.
Bringing it up to date after a failure has been detected involves copying a
snapshot of the database from remote nodes, followed by execution of any tran-
sactions missed during the snapshot copy operation. Since we cannot allow a
failed node to halt the entire system, the recovery has to be performed without
stopping the nodes that have not failed. It may also be possible to identify the
portions of the database that were corrupted during the failure, in order to
avoid copying the entire database.

There is also the problem of distributing incoming transactions to the
nodes for execution. For the NMR scheme to work, not only do all nodes have
to execute exactly the same transactions, but they have to execute them in the
same order. This can be achieved with a so-called Byzantine Agreement proto-
col [Garc84]. Even though these algorithms have been studied extensively in
the literature, they have seldom been implemented (in addition to own own
implementation, we know of only one other one, at IBM Almaden Research
Laboratories).

"Our highly reliable database system has been implemented on a network of
SUN and VAX workstations and is currently undergoing extensive evaluation.
The structure of the system, as well as some preliminary results are presented
in [Pitt85]. Specifically, a 3 node, fully redundant system is compared against a
2 and 1 node system. The smaller systems have reduced hardware and over-
head, but of course, provide less protection against failures. Thus, our com-
parison gives us a chance to evaluate the cost of various degrees of reliability.

In another report [Pitt86] we study the tradeoffs involved in scheduling
transactions. In particular, several options like batching together transactions
and using null transactions to speed up agreement are studied and evaluated in
detail.

5. A High Availability Database System

There are two important aspects to reliability: correctness and availability.
The objective of the project described in the previous section is mainly
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correctness of the database operations, even if there is a cost in terms of availa-
bility. For instance, if one computer (or even a group of n computers) is cut-off
from the rest of the system, it will be unable to process transactions becapse
this could compromise the correctness of the results and of the database. On
the other hand, if availability were the main objective, then it may be desirable
to continue processing at the isolated node. After all, it does have a copy of the
database and is capable of processing transactions. Of course, we probably do
not want to compromise correctness ‘‘too much,” i.e., we may only be willing to
tolerate certain types of inconsistencies between the isolated copy and the rest
of the system.

There appears to be a spectrum of alternatives for reliability. At one end
are systems that stress correctness (like the one we discussed in Section 4), and
at the other end we have both implemented a simple system for very high avai-
lability and commenced the design of an improved system. Such systems could
be used in applications where data availability is paramount and halting tran-
sactions at some nodes may not be acceptable. Typically, in these applications
either network partitions are relatively common or they occur at critical
moments when access to data is imperative.

The hardest problem in a high availability system is coping with the data
inconsistencies that arise when nodes that cannot communicate properly con-
tinue to execute transactions. Drawing the line between the desired availability
and the undesired inconsistencies is usually hard.

A number of solutions to the problem have been suggested [Davi86|. The
approach is generally to allow transactions to execute anywhere in the system
at any time. When inconsistencies are detected, then either conflicting transac-
tions are backed out (e.g., if two meetings were scheduled at the same time, one
is canceled and the organizer is notified), compensating transactions are run
(e.g., if a customer overdrafts account, temporarily close it and send dunning
letter), or differing values can be integrated in an ad-hoc fashion (e.g., if one
system reports a ship to be at position X and another at position Y, then
install the latest value in all copies).

We have implemented a simple system (on a network of SUN and VAX
computers) that allows execution of transactions at all times and then
integrates inconsistencies using simple rules provided by the database adminis-
trator. The approach we used is called datapatch and has been described in an
earlier report [Gare83]. The system we built is described in detail in [Stoe85].

Although such a solution can be useful in some applications, we have
discovered two important drawbacks. First, solutions like datapatch and others
do not generalize easily. As the application becomes more complicated, it
becomes more difficult to handle inconsistencies. Second, it is difficult to deter-
mine what general properties the system guarantees. Conventional concurrency
control mechanisms guarantee serializability; what do the new mechanisms
guarantee instead?

In the design of a new high availability system we have tried to avoid these
problems by making two simple but important observations:
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(a) Not all users of (or transactions in) the system have the same availability
requirements. A bank customer may want to be able to deposit and with-
draw funds at any branch any time, but there is no reason why interest
payments have to be executed at any branch at any time.

(b) For high availability, proper design of the application data structures and
transactions is crucial. If the application is not structured properly, then
the detection and integration of inconsistencies can become difficult. Thus,
not only do we aim to build a system, but we also want to develop a
methodology for designing the application.

The basic idea in our approach is quite simple. The database is divided
into fragments, each one having an agent that controls the execution of transac-
tions affecting it. Fragments can be replicated at various nodes. An agent is
like a central concurrency control mechanism for the fragment, authorizing all
updates to the fragment. However, there are two important differences. First,
an agent may be associated with a physical person or object and can move from
node to node, including nodes that temporarily cannot communicate (electroni-
cally). This way, a user that requires access to a fragment can be made its
agent, therefore getting access whenever he needs it. Second, if a transaction
needs to read fragments it does not modify, it can read them at any copy.
Because of communications failures, such copies can be out of date. Hence, the
agents do not guarantee serializability. However, agents do provide control
that is crucial in resolving conflicts. Specifically, if we ever encounter two ver-
sions for the same data item, it is easy to resolve the conflict: the one its agent
produced later is the correct one.

In an airline reservation example, each customer can have his or her own
fragment representing the requests for reservations that have been made. Since
the customer is the agent, he can modify his request no matter what node he is
communicating with. At a central site, requests for reservations are read and
generate real reservations, stored at a different fragment. The agent for this
fragment is at the central site. For each flight there is a fragment representing
the seat assignments for it. The agent for these fagments is located at the air-
port where the flight originates. There transactions read the request and reser-
vations fragments and decide who actually gets on the plane. Priority is given
to customers with reservations, but if there is space, then customers that
requested a reservation but have not gotten one (maybe because the central site
is down), are considered.

The coupling between fragments is not tight, and this is what gives the
higher availability. We can think of each fragment as a separate database.
Transactions can read other databases, but that data is viewed simply as input
data to the transaction. Within each fragment, however, serializability is
guaranteed. Hence, we call this fregment-unse serializability.

Fragments and agents are very simple ideas, but we believe they provide
the right mix of control and flexibility for high availability applications. Furth-
ermore, they provide a spectrum of interesting solutions. With a few additional
restrictions, fragment-wise serializability can become full serializability, without
sacrificing availability entirely. In the other direction, we can relax the rules
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for agent migration and obtain a property weaker than fragment-wise serializa-
bility.

We are currently studying and designing a system based on the notions of
fragments and agents. A preliminary discussion can be found in [Koga86|.

6. Survey of Reliable Distributed Database Management

We have been invited to contribute a survey paper to a upcoming special
issue of the IEEE Proceedings on Distributed Databases. We decided this was a
good opportunity to summarize and understand current developments in one of
our areas of interest: reliable data management.

Our survey [Garc86b| assumes little prior knowledge. We start by review-
ing some of the basic concepts of centralized data management such as con-
sistency, serializability, and logging. We also outline the most common failure
models for distributed systems. Throughout the paper, we assume that network
partitions do not occur. (An earlier paper of ours surveyed protocols for parti-
tioned systems [Davi86].)

The key to reliability is the replication of resources. Hence, the rest of the
survey is divided into three areas, according to what is replicated. The simplest
case occurs when no data is replicated. Although data availability is low is this
case, the system must still ensure that transactions are executed correctly, i.e.,
as atomic actions. Therefore, we study how the transaction processing stra-
tegies of a centralized system can be extended to a distributed one and made
robust.

The next case is data replication. The basic protocols of the previous case
can be used for replicated data, but they do not exploit the potential for high
availability. (For example, a transaction may still have to lock at all copies
before updating. If one copy is down, the transaction must halt.) So, in this
section we study how higher availability can be achieved without sacrificing
serializability. Incidentally, in another invited paper [Garc86a] we discuss the
general tradeoffs involved in data replication. We also present some strategies
that may make replication less costly in the future.

Finally, we consider full data and transaction replication. This yields sys-
tems like our own NMR Highly Reliable Database System (Section 4). In this
last section we study the principles behind such systems.

7. Optimizing Shadow Recovery |

Many of the distributed mechanisms we are interested in require a reliable
database store at one or more of the nodes. Thus, in conjunction of our other
efforts we have been studying strategies for building efficient and reliable single
node data storage facilities.

Earlier we constructed an experimental testbed system for implementing
and evaluating various storage mechanisms [Kent84]. Out of these studies came
a new idea for significantly improving the performance of one of the most com-
mon mechanisms: shadow recovery. This idea is presented in detail in
[Kent85a], where we also evaluate it analytically.
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In a conventional shadow mechanism, the database (or any file) is broken
into disk pages. The page table contains pointers to all these pages, and all
database accesses are through the page table. When a transaction wishes to
modify one or more pages, it does not change the existing copies. Instead, it
creates new versions that are private to the transaction. When the transaction
completes, it atomically updates the page table so that it points to the pages
just created.

Shadows are a useful mechanism, and as a matter of fact, our experiments
showed that shadows outperformed logging (another popular strategy) in cases
where transactions updated large numbers of contiguous pages. However, in
many other cases logging performed better. We observed that the principal rea-
son why shadows were not performing as well was excessive page table 10.
That is, the page table is usually too large to fit in main memory. Thus, to
access a database page we may have to read into memory parts of the page
table (requiring one or more disk block reads).

Our new shadow recovery technique effectively ‘‘shrinks’ the size of the
page table, while keeping the size of the database fixed. Unlike other schemes,
this is achieved without compromising disk space utilization. Moreover, our
mechanism can be customized for a desired disk utilization and application.
We believe that this mechanism, with its added flexibility and improved perfor-
mance, extends the range of applications where shadowing is the prefered alter-
native for crash recovery.

Very briefly, the basic idea of our mechanism is to have two page tables,
the primary and the secondary one. The primary one is small enough so that
most of it fits in memory. Since the number of mapping bits per database page
is limited in the primary table, each logical database page can be mapped to
only a small subset of locations on disk. If the disk is not too full, then chances
are that the database page will indeed be in one of these locations. In this
case, the page can be retrieved directly, without extra IO cost.

If the mapping from logical database page to physical location cannot be
done with the primary table, then the secondary one must be accessed. It is
similar to a conventional page table, and there will be an IO cost associated
with accessing it. However, if the system is designed properly, this should not
occur often. Thus, the primary table acts like a filter, performing a majority of
the mappings very cheaply.

To support our claims, we have developed a probabilistic model to study
the location of logical database pages on disk and the requests made by tran-
sactions [Kent85a]. Our results indicate that the IO overhead can be
significantly reduced, while keeping memory size and disk utilization at reason-
able levels.

8. Load Balancing

Many of the currently existing computing environments consist of a hetero-
geneous collection of of workstations and mainframes connected by a high
bandwidth local area network (LAN). One of the main benefits of working in
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such an environment is being able to share scarce resources with other users of
the network; but one resource that is often not shared is the processing capacity
of the network nodes. In many systems, the scheduling of user jobs is individu-
ally carried out by each processor, and the computations of the users logged on
at any one machine are performed locally. The decentralization of CPU
management, coupled with large differences in the numbers (and types) of users
connected to each of the nodes in the network, often can lead to situations
where there are great disparities in load among the machines on the network.
For example, at our local computer center, as the due date for a class assign-
ment approaches, the processor assigned to the students in that class becomes
heavily loaded, while other machines are underutilized. Although users can
determine by themselves that an imbalance exists, and remotely log onto
another computer, we feel that, in order to prevent a chaotic situation and to
aid naive users, it is best to develop strategies that can solve the load balancing
problem in an automatic way, much in the way that users now depend on vir-
tual memory techniques to manage their memory space. We are currently
exploring the implementation of such load balancing strategies for LAN environ-
ments.

Our initial work consisted of designing and implementing a prototype load
balancing mechanism [Alon86]. Our measurements show that, even under con-
ditions of relatively small load imbalance, sizable performance gains can be
achieved. For example, we have observed improvements of as much as 70 per-
cent in the turnaround time of a simple compilation task. The overhead
involved in running our system is fairly small (for both users and non-users of
our mechanism), and our implementation involved no changes to the underlying
system software. Furthermore, our performance improvements were obtained
with a naive load metric (load was defined as the average number of jobs in the
ready queue) and with a simple-minded decision policy (always send jobs to the
least loaded machine).

Our prototype currently runs in a laboratory facility composed of 7 Sun
workstations of various types and configurations. All the processors are con-
nected by a stand-alone 10 Mbit/s Ethernet. The operating system for the
workstations is Sun UNIX 4.2 Release 2.0, which supports NFS, a network file
system.

The software that we have developed for our prototype implementation
consists primarily of a shell that executes commands either locally or at a
remote site (the site selection depends on the load balancing strategy being
used); this shell is aided in its task by ancillary daemons which communicate
load information across machines and facilitate remote execution of processes.
If the command is to be run locally, the shell interprets it in the usual way.
However, if a remote host is chosen (and the connection to that host is success-
ful), the system transfers the command line (as well as other relevant informa-
tion) to the remote site. At this point, the shell again has to coordinate with
the remote daemons, in order to to ensure that I/O flows between the command
process and the user, and to clean up after the command terminates. It should
be noted that all the operations just described are transparent to the user; from
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the perspective of a user employing our shell, most commands will proceed to
execute as if they were being executed by one of the standard UNIX shells. In
particular, commands can be combined by the use of pipes, have their input
and output redirected, and access environment variables.

Our current work involves a systematic study of different load balancing
strategies, which involves exploring the performance of various combinations of
load metrics and decision policies. The selection of a load metric requires a
. careful definition of what is meant by the load of a processor. It seems clear
that load should be defined, at least partially, in terms of a set of performance
indices (such as CPU utilization or mean number of I/O requests), but it is less
clear that two different processes should use the same definition of load; for
example, an 1/O intensive job will probably perceive load in a different way
than a CPU-bound job. And since load metric information must be broadcast,
the rate at which such broadcasts are made also needs to be studied. In select-
ing a decision policy, questions such as the stability of distributed decision poli-
cies, the behavior of the algorithms under old or incomplete load information,
the cost of making the decision, and so on, are of crucial interest. Lastly, we
are also interested in determining the impact of system topology and network
bandwidth on the different load balancing strategies.

9. Caching and Prefetching in Information Systems

During the last few years, a number of companies have begun to offer a
variety of public information services. These services typically consists of pro-
viding access to a large database containing information useful to a sizable
number of clients, who pay for the ability of using the database. The database
designers usually assume that users will employ a terminal and a modem in
order to access the service through the phone network. However, with the
increase in the numbers of personal computers owned by the general public,
many clients now contact the database by using a workstation; yet, most infor-
mation systems still assume the same terminal-based model of user access,
neglecting to utilize the added functionality that a computer offers over a termi-
nal.

Our work in this area consists of exploring how best to utilize those added
capabilities, in order to integrate more closely the user’s computer (typically a
personal computer with limited storage capacity) and the information services’
computational resources (usually a large mainframe with a large secondary
storage). In particular, we are investigating the performance improvements pos-
sible by using the storage and processing capabilities of the user workstations in
order to cache at the workstations the information services data, prefetch infor-
mation on behalf of the user, and perhaps even migrate some of the computa-
tional tasks from the mainframe to the workstations.

Initially, we are examining the issues described above by means of a simu-
lation study, although, eventually, we expect to use the results of the simula-
tions to guide an implementation of an information system (using the facilities
of the workstation laboratory described in the previous section). Currently, our
model consists of a single central computer containing the entire data bank,
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connected through a network to a set of personal computers. With this model
we are now studying the reference patterns that make caching pay off, the pro-
cessing and storage capacities that are required from the user machines, %nd
the impact of the communication channels on the performance of the system.

The next step in our work will be to study the tradeoffs involved in pre-
fetching data, i.e., in retrieving data before a user even requests it. We expect
that personal work profiles will be developed for each database client. These
profiles can be determined either by user selection (i.e., the user will provide
information as to his normal activities and areas of interest), or compiled based
on the user’s access patterns. Based on these profiles, the user’s machine can
request data from the central database before that data is referenced. As in
the caching study, we will attempt to identify the conditions that make pre-
fetching profitable (both with and without caching). Our results may also sug-
gest desirable user interfaces that give to the system the information that is
most useful for caching and prefetching.

We will also modify our models to allow user workstations to connect to
the database through another computer. The motivation for this is that some
installations will wish to consolidate the requests from their multiple worksta-
tions, and access the database through a single (probably high speed) line.
Thus, clusters of user workstations will be connected to medium size computers
(the cluster controllers), which will in turn communicate with the database.
The controller nodes may cache (and prefetch) data for their installations, and
coordinate main database requests. There are many issues to be explored in
this situation. For example, the data to be cached may be determined by each
workstation’s requests (workstation-driven caching) or by the cluster’s data
demands (cluster-driven caching). Furthermore, the data may be cached in
either the workstations (individual caching) or in the controller (group caching).
Similarly, prefetching may occur based on the access patterns of a single works-
tation or on the combined needs of the cluster, and the prefetched information
may reside in either the workstations or in the controller. We also need to
develop mechanisms that will enable the cluster to reach a consensus on what
data will be cached or prefetched. These mechanisms may be centralized (i.e.,
the controller decides) or distributed (i.e., the cluster members vote). Another
issue to be explored arises from the fact that the cluster controller will ask for
more data than will the workstations connected directly to the database (i.e.,
the personal computers). Thus, issues of communication channel allocation and
fairness of the access scheme are relevant.

Finally, our models will be extended to allow updates to the database
information. Although in the type of information systems we are studying
updates will only originate at the central mainframe, these central updates
could potentially result in cached and prefetched data invalidations throughout
the entire network. It is clear that there is a tradeoff between the benefits of
increased amounts of data caching (and prefetching) and the cost of invalidat-
ing that data, and those costs depend very strongly on the frequency and extent
of the updates. We may consider different strategies for different kinds of data,
since certain information seldom changes (i.e., movie reviews), other data can be
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slightly out of date without causing problems (i.e., phone numbers), and some
data changes so quickly (i.e., the latest stock prices) that it may never pay to
cache it.

10. Protocols for Multiple-Access of Packet-Broadcast Channels.

This component of our research project focuses on the study of distributed
algorithms for scheduling transmissions by a group of users who share a com-
mon communication channel. In the hierarchical layer structure of the commun-
ication network, this is the part of our project which is closest to the study of
the physical layer of the multipoint-to-point communication link. Recent
advances accomplished by our research group include: a) a random-access algo-
rithm which achieves the highest possible efficiency in its class [Karo85c], b) the
development of a powerful method to analyze the throughput of collisison reso-
lution algorithms [Verd85], and c¢) a distributed algorithm for allocation of chan-
nel resources among users having nonuniform requirements [Karo85a,85b].

We have discovered that substantial improvements over current protocols
can be obtained by taking into account round-trip delay information. The
effective use of this information, which is available in the vast majority of prac-
tical applications allows the design of random access algorithms whose efficiency
(measured as the percentage of time the channel is successfully used) can be as
high as 67%. This figure should be compared to the efficiency of state-of-the-art
random-access algorithms which do not use round-trip delay information. The
maximum efficiency achieved to date by this class of algorithms is 48%. The
analysis of the collision-resolution algorithm which achieves the best known
efficiency in its original form required the use of sophisticated and time-
consuming procedures for sequential optimization of Markov decision processes.
We have developed a new method which reduces the computation of the
efficiency and optimum parameters of the algorithm to a simple optimization
problem. In the last part of our project we have obtained one of the first multi-
ple access protocols that provides fair channel access for a heterogeneous user
population. This protocol has many additional nice features, e.g., it is adaptive
to a time-varying mixture of traffic types; a priori knowledge of the number of
users, arrival processes and message lengths is not required, and it supports a
mixture of bursty and stream-type traffic. Because of these features, this new
protocol is ideal in integrated voice/data networks, which are becoming increas-
ingly important in the telecommunications industry.

11. Completed Thesis

Over the past year, four Ph.D. thesis were completed as part of our pro-
ject. Daniel Barbara’s thesis [Barb85] contains most of his work on vote assign-
ments, including the material of Section 1 and earlier work. Ricardo Cordon
completed his work on the use of semantic knowledge to improve transaction
processing [Cord85]. His work was summarized in an eralier progress report
[Alon85]. Jack Kent’s [Kent85b] thesis contains the results of his experimental
evaluation of single site crash recovery mechanisms, as well as the material
summarized in Section 7. Mark Karol in his thesis [Karo85d] developed
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multiaccess protocols for a heterogeneous user population. He also utilized
knowledge of round-trip delays to develop a very efficient collision resolution
algorithm (summarized in Section 10).
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