RELTABLE SCHEDULING IN A TMR DATABASE SYSTEM

Frank M. Pittelli
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

CS-TR-028-86

April, 1986



Reliable Scheduling in a TMR Database System

Frank M. Pittelly
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

ABSTRACT

A Triple Modular Redundant (TMR) system achieves high
reliability by replicating data and all processing at three indepen-
dent nodes. When TMR is used for database processing all non-
faulty computers must execute the same sequence of transactions,
and this is ensured by a collection of processes known as
“schedulers”. In this paper we study the implementation of
efficient schedulers through analysis of various enhancements such
as null transactions and message batching. The schedulers have
been implemented in an experimental TMR system and the
evaluation results are presented here.
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1. Introduction

With the advent of powerful, yet inexpensive, micro-computers it is becom-
ing practical to design reliable database systems using redundant processing
techniques. One such technique, known as Triple Modular Redundancy (TMR),
has long been used as the basis for reliable control systems (e.g., aircraft con-
trol). The basic idea is that every system task is executed concurrently by
three separate processors. The three outputs are given to a voter that selects
the result given by two out of three of the processors. The system can tolerate
the arbitrary failure of one of the processors, and still give correct results. We
emphasize the word “arbitrary” here: the failed node can act maliciously, errat-
ically, or not at all. The correct result will still be output by the voter. This
capability to mask out unpredictable failures is the major strength of the TMR
approach.

In this paper we concentrate on a TMR system for database processing.
There are a number of key differences with conventional “‘system control” types
of TMR. In particular, the inputs are not signals (e.g., voltages) from hardware
sensors; they are database transactions. Similarly, the outputs are not usually
control signals (which can be voted on by a simple and very reliable hardware
voter), but are possibly large subsets of the database. Furthermore, the order
in which the transactions are executed at the nodes is critical, so the non-faulty
(i.e., perfect) nodes should execute them in exactly the same sequence. Finally,
control applications tend to have a relatively small amount of state information
that must be remembered from one task to the next. In database processing,
however, the entire database is part of the system state and recovery of this
information after a failure is a challenging problem.

Inherently, TMR is expensive: three computers are doing the work of one.
However, it does provide extremely high protection against hardware through a
very simple approach. Specifically, within the TMR system, transaction pro-
cessing is done by each node in an almost conventional fashion. That is, each
node processes transactions without requesting remote locks and without send-
ing backup data to remote nodes. Such simplicity is paramount in reliable
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designs to reduce the likelihood of software bugs.

It could be argued that it is impractical to replicate an entire database on
three nodes. However, when we speak of “databases” we do not necessarily
refer to large ones. In many systems a small, but critical, portion of a larger
database must be maintained with high reliability. In such situations, the criti-
cal portion may be maintained by a TMR subsystem. (IBM’s Highly Available
System [Aghi83] protects certain system tables using a similar approach.)
Hence, we can view the TMR system as the manager of such a critical database
subsystem.

There are several options for TMR database processing. At one extreme
we could build a computer with TMR built into each internal circuit. That is,
there would be three copies of each chip (IC), and the outputs of these chips
would go through a hardware voter. The main advantage of this approach is
that the resulting computer would appear to the user as a conventional system.
Thus, a conventional database system could be implemented directly, yet
achieving high reliability.

In the middle ground, TMR processing can be used to provide highly-
reliable stable storage. In particular, every read operation executed by a given
processor could be done redundantly on three database copies, selecting the
majority value. Furthermore, a database copy would be updated only if at
least two out of three processors have requested the same update. Essentially,
such a system consists of a TMR processor connected to a TMR storage device.
This system’s main advantage is that it can be programmed in a conventional
style, while using off-the-shelf components. A complete discussion of this type
of system can be found in [Schl83].)

At the other extreme, we can have three conventional computers and dis-
tribute the transactions to be executed through software. In this case, an
agreement protocol (i.e., scheduling algorithm) is required to ensure that the
same set of transactions is executed in the same order. Once a processor knows
that it must execute a transaction, it executes it locally, using a relatively con-
ventional database system. The output of the entire transaction is sent to the
user, where the voting takes place. The major advantage of this strategy is the
minimal interaction between the processing elements. In particular, the proces-
sors exchange transaction information before and after its execution, but not
during its execution. Such a loosely-coupled asynchronous system may allow
greater efficiency than systems built with chip-level voting, or those which pro-
vide reliable I/O operations. (The tradeoffs related to the choice of TMR data-
base strategies are further discussed in [Garc86].)

The objective of this paper is to study transaction scheduling in the last
TMR database approach. With this strategy, the scheduler is one of the most
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critical components in the system, in that it acts as a throttle for the entire sys-
tem. If transactions can’t be distributed fast enough and with moderate over-
head, then the entire TMR system will have poor performance.

We start by presenting the scheduling problem in detail (Section 2) and the
basic solutions proposed in the literature (Sections 3 and 4). Then we study
three enhancements: premature scheduling, null transactions, and message
batching (Sections 5, 6, 7). In Section 8 we discuss an experimental evaluation
of all of the techniques. Our experiments were run on a network of SUN-2/120
running Berkeley UNIX version 4.2. The results then lead us to an improved
scheduling algorithm that dynamically changes its policy as the load on the sys-
tem varies.

Our motivation for the detailed study of scheduling algorithms is a full
TMR database system being constructed. Since our goal is to find a very good
scheduler for a real system, we emphasize in this paper “practical” issues and
solutions. Readers interested in the ‘“‘theory’” behind the implementations can
refer to the papers cited shortly. In particular, [Garc86] presents more formally
our failure models and correctness criteria. A description of the full TMR sys-
tem and some preliminary performance results (not using the optimal scheduler
we present here) can be found in [Pitt86].

Finally, note that TMR techniques, including the ones presented in this
paper, can be easily generalized to NMR techniques. However, we will restrict
our discussion to triple redundancy, both because it is most likely in practice
and because our experimental results are for such a level of replication.

2. The Scheduling Problem

One of the most important requirements of the TMR database system is
that all perfect nodes (i.e., nodes that have not failed) must process the same
transactions in the same order. The system components which enforce this
operation are known as the transaction schedulers and their design and perfor-
mance are the focus of this paper. (A complete discussion of the system opera-
tion is provided in [Pitt86].)

The normal processing of transactions in the TMR system is shown in Fig-
ure 1. A database user submits a transaction request to one of the node
schedulers, which, in concert with the other schedulers, is responsible for distri-
buting it to all perfect nodes. In particular, the schedulers must guarantee the
following properties in the presence of node failures.

S1) If a user submits a transaction to a perfect node, then that transaction is
“eventually’’ scheduled by all perfect nodes. Furthermore, if a user sub-
mits a transaction to a faulty node, then either all or none of the perfect
nodes schedule that transaction.
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S2) All perfect nodes schedule transactions in the same order.

Note, we do not require that ‘““all’” transactions be scheduled. Specifically, a
transaction submitted to a faulty node may or may not be scheduled by the
perfect nodes. Also, we do not require transactions to be scheduled “simultane-
ously’” by all perfect nodes, only eventually. This allows some degree of asyn-
chrony within the TMR system.

The first property is a version of the Byzantine Generals Problem [Lamp82]
and has many proposed solutions [Dole82, Lync82, Peas80]. The second pro-
perty essentially requires that all “actions” on a replicated “state” be ‘‘syn-
chronized”. Two approaches have been proposed to guarantee such a property.
Lamport has described a ‘‘state machine approach’ that makes use of reliable
broadcasts and synchronized real clocks to cope with arbitrary node failures
[Lamp84]. To the same end, Schneider makes use of reliable broadcasts and
logical clocks, implemented via acknowledgement messages [Schn82]. Both
approaches are very general, and can be applied to many different distributed
applications. Consequently, the design of the TMR system will incorporate
ideas from both.

As will be discussed later, the following assumptions are required for the
design of the schedulers.

Al) Any message transmitted between any two perfect schedulers is received

and processed in less than Mdelay seconds. That is, there is a maximum
bound on the time to transmit a message. (This implicitly assumes that
messages are not lost between perfect nodes.) We do not, however, assume

that all messages are processed in the order sent.

A2) All perfect schedulers have synchronized clocks that differ by at most Cirs
units. (Many different algorithms have been proposed to provide synchron-

ized clocks [Lund84, Lamp85, Halp84].)

A3) All messages are authenticated. That is, all messages are signed by the
sender in such a way that the receiver can determine unequivocally who
sent it and what it contained. (In practice, the signature is an encryption
of the entire message itself using a public-key encryption scheme [Diff76].)

3. Reliable Broadcast Algorithm

The basis for all of the scheduling algorithms in this paper is a reliable
broadcast algorithm. Unlike those proposed in other papers, this reliable broad-
cast algorithm is designed without the use of ‘“message’” rounds. That is, any
scheduler can initiate a reliable broadecast at any time and many different reli-
able broadcasts can proceed simultaneously. A pseudo-code description of the
algorithm is presented in Appendix 1, while Figure 2 shows the exchange of mes-
sages for a single broadcast. At this time, we briefly describe the operation of
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the algorithm, followed by a discussion of its properties.

The algorithm makes use of two transaction sets at each node, the pending
set and the final set. The goal of the reliable broadcast is to maintain the same
“final set” of transactions on all perfect nodes (property S1). That is, after any
number of simultaneous broadcasts have completed, (during which the pending
sets will usually be different) all perfect nodes must have the same final set of
transactions. (It remains for the scheduling algorithm to extract transactions
from this set “in the same order” on every perfect node.)

As shown in Appendix 1, when a node receives a transaction from the user,
it computes an expiration time for it equal to the current time plus a constant,
Sdelay' The plan is that by the expiration time, the transaction will be in the
final set on all perfect nodes. The expiration time and a unique signature form
a timestamp for the transaction. The transaction and its timestamp are broad-
cast to the other nodes in a ‘“request’”” message. Furthermore, the sender would
immediately add the transaction to its own final set, completing its role in the
algorithm.

After verifying the timestamp of a request message (see Appendix 1), the
other nodes store the entire message in their pending sets. (Essentially, the
transaction will remain in each pending set until it is determined to be correct,
as we will see shortly.) Additionally, the recipient appends its own signature to
the message and sends this “‘confirmation” to the remaining node (see Figure 2).
Similar processing is performed when a confirmation is received, except that no
further messages are transmitted.

The final processing of requests and confirmations is triggered by internal
events on each node. In particular, if corresponding request and confirmation
messages exist in a node’s pending set (i.e., their expiration times and contents
are identical), then the transaction is added to that node’s final set. Con-
versely, if the messages are different, then they are both ignored. Finally, if any
message in the pending set has an expired timestamp (i.e. it’s expiration time is
less than the local clock time), then it is immediately added to the final set.

The correctness of the broadcast algorithm relies heavily on Assumptions
A1-A3 and on the appropriate choice of S, In particular, S
least 2Mdelay
must be far enough into the future so as to guarantee that there is enough time
for all request and confirmation messages to be exchanged. Given this, and
unforgeable signatures, it can be shown that the algorithm given in Appendix 1
satisfies Property S1, despite an arbitrary failure of a single scheduler (see

Appendix 2).

Finally, the performance of the reliable broadcast algorithm must be res-
tricted or “‘throttled” to prevent a crippling situation that can be caused by a

elag” dulik must be at

+ 2%7;- That is, the expiration time for a given transaction
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faulty node. In particular, consider a faulty node that initiates a continuous
stream of reliable broadcasts. Since the algorithm requires the other nodes to
process two messages for every broadcast initiated, the faulty node can easily
overwhelm them and they won’t have time to initiate their own broadcasts.
Essentially, in this situation, a single faulty node has crippled the system by
causing it to perform too much work. (Note, the broadcasts initiated by the
faulty node may have nothing to do with the system tasks being executed.)
Since we can never prevent such faulty behavior, the best we can do is to res-
trict all nodes to some pre-defined limit. That is, nodes will not be allowed to
initiate more than a certain number of reliable broadcasts in a fixed amount of

time. In this way, perfect nodes will always be able to initiate their own broad-
casts.

In the experimental system, the restriction is implemented by forcing each
node to assign expiration times separated by at least 50 ms. If any node
receives two request messages from the same origin that have expiration times
too close together, then the second is ignored. This limits the overall system to
a throughput of 60 reliable broadcasts per second, which, as will be shown in
Section 8, is greater than the average performance of the schedulers in normal
operation. It does, however, restrict a faulty node that could otherwise initiate
broadcasts every 20 ms.

4. Basic Scheduling Algorithm

Given that the reliable broadcast algorithm guarantees property S1 it
remains to design an algorithm that provides property S2. That is, we must
insure that all perfect nodes extract transactions for execution from their final
transaction sets in the same order. We call this extraction procedure “transac-
tion scheduling”.

A simple method for transaction scheduling, given reliable broadcasts, has
been proposed by Lamport [Lamp84]. Appendix 3 presents a pseudo-code
description of such an algorithm implemented in an asynchronous fashion.
That is, each node performs actions triggered by the receipt of messages and
internal events. In particular, when a node receives a transaction request from
the user, it initiates a reliable broadcast of the transaction. Furthermore, each
node extracts or ‘“‘schedules for execution’ those transactions in the final set
that have an expired timestamp. (Remember, the reliable broadcast algorithm
guarantees that a transaction is added to the final set ‘“no later” than its
expiration time; it may be added earlier.) It is important to note that the
pseudo-code algorithm states that a transaction is scheduled “‘immediately”
when its timestamp expires. In a real implementation, processing delays may
cause the final set to contain more than one such transaction. Accordingly, the
real algorithm must extract the transactions using a total ordering based on
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their expiration times and the ID of the node which initiated them to guarantee
property S2.

Although the basic scheduling algorithm is straight-forward, it possesses a
number of useful properties. First, transactions are scheduled strictly by their
expiration times, which are based on real clocks. Consequently, users can be
allowed to ‘“‘select’” an appropriate expiration time. In this way, the user can
initiate transactions to be scheduled at specific times (i.e. during overnight slack
periods.) A similar benefit is gained by the system during reliable broadeast
processing. Specifically, if a scheduler knows that a given transaction won’t be
scheduled in the immediate future, it may decide to postpone request and/or
confirmation messages, thereby allowing higher priority transactions to proceed.
Finally, since transaction distribution and scheduling can be effectively
separated, the system can be designed to distribute all transactions during one
phase, followed by all scheduling and execution. For example, consider a data-
base that is completely replicated on three ships. The tactical situation may
restrict ship-to-ship communication to specific time periods. During these
periods, the distribution of transactions can be performed. In between these
periods, all ships can execute the accumulated transaction set knowing that the
same results will be achieved.

5. Premature Scheduling

The basic scheduling algorithm made use of a fixed scheduling delay. That
is, each transaction was assigned an expiration time which was at least
Sdeta.y = 2Mdelay + QOdw seconds in the future. Unfortunately, since Mdelay is
the ‘““maximum’ message delay, most request and confirmation messages are
processed well before deay seconds have elapsed. (In our implementation the
maximum message delay is 500 ms, while the average time to transmit a mes-
sage 1s approximately 11 ms. This large difference is usually caused by the
operating system, not the network hardware.) Also, depending on the imple-
mentation used, Od'.ff may or may not accurately represent the average
difference between node clocks. (Recall, Cyip; is the maximum difference
allowed.) Consequently, it may be advantageous to ‘‘prematurely’” schedule
transactions to reduce the average scheduling time. That is, if all nodes are
perfect and all messages are transmitted correctly, then a given transaction
may be scheduled before its expiration time.

The basic scheduling algorithm can be modified to allow premature
scheduling through the use of sequence numbers (see Appendix 4). First, each
scheduler adds a sequence number to the timestamp of every request message
that it initiates. In normal processing (no-failure periods), the sequence number
is monotonically increasing for each scheduler. Additionally, each scheduler
must keep track of the sequence numbers used by every scheduler. A given
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transaction, T, with sequence number, N, may be prematurely scheduled if all
of the following conditions hold.

1) T, bears the earliest expiration time of all transactions in the transaction
set.

2) N is the “next” sequence number expected from the scheduler that submit-
ted it. That is, all transactions, numbers 0 through N—1, from T,’s origi-
nator have been scheduled.

3) For every scheduler, the transaction set contains the “next” transaction
from that scheduler.

The following example illustrates the reasons for these conditions.

Figure 3 shows the transaction set and sequence number table maintained
by scheduler S,. Since T'| is the earliest transaction, it satisfies condition 1.
Also, S, can determine that T, is the next transaction from S, using the
sequence number table. That is, there are no earlier transactions from S,
which have not been scheduled by S, (condition 2). (If such a transaction does
arrive it is simply ignored because S, is incorrectly generating duplicate
sequence numbers.) Similarly, S, knows that it has no outstanding transac-
tions. However, at this point, S, can’t prematurely schedule T,, because the
“next” transaction from S5 hasn’t been scheduled and it may have an expira-
tion time earlier than time 1300. If it does arrive and has an expiration time
greater than time 1300, condition 3 is satisfied and 7', can be scheduled. (In
Schneider’s terminology, T, is “‘fully-acknowledged” by all schedulers [Schn82].)
Similar, but not identical, processing will occur at the other nodes if no failures
occur. Keep in mind, if S,’s clock reaches time 1300 before the next transaction
from S, is received, then T, would be scheduled automatically.

A faulty scheduler can always prevent premature scheduling simply by
skipping sequence numbers. In such a case, no transaction can be prematurely
scheduled because the ‘“‘next’” transaction from the faulty scheduler is never
seen by any scheduler. (Unfortunately, there is no way to prevent such
behavior.) However, we also state, without proof, that a faulty scheduler can
not cause inconsistent schedules by using sequence numbers maliciously. This is
because, in the worst case, each perfect scheduler will schedule a given transac-
tion when its timestamp expires. For example, suppose that S, is faulty and
relays a correct confirmation for T, to Sy, but sends no confirmation for T, to
S;- In this case, S, will prematurely schedule 7', but S, will wait until T',’s
expiration time. During this time, the two perfect schedulers (S, and S,) will
have different schedules, but “eventually” they will be the same, and that
fulfills the scheduling requirements.



6. Null Transactions

The key idea behind premature scheduling is that a transaction can be
scheduled when the next transaction from every scheduler is in the local final
transaction set. However, during slack periods, a given scheduler may not have
any transactions to submit. In such cases, a steady supply of transactions from
that scheduler can be accomplished through the use of “null” transactions
[Lamp84, Schn82].

Null transactions are processed like normal transactions with the exception
that they are never scheduled. That is, null transactions remain in the transac-
tion set until they are fully-acknowledged, at which time they are discarded.
We illustrate the use of null transactions through an example.

Consider the situation, as seen by S,, shown in Figure 4a. Without addi-
tional information, S, would have to wait until time 1300 before scheduling T,
The use of null transactions eliminates this waiting period. In particular, .
and S, initiate null transactions that have expiration times greater than T ’s.
Once these transactions are added to S,’s transaction set (Figure 4b) S, can
prematurely schedule T,. (Note, S, generated a null transaction to help the
other schedulers.)

Null transactions are effective only if a given scheduler can determine
“when’ to generate them. At one extreme, a null transaction could be sent for
every transaction added to the transaction set. In general, however, null tran-
sactions should be generated only when they are necessary. At this point, we
present three conditions that should hold before a given scheduler, S;, initiates
a null transaction. Let T} be the last transaction initiated by S;, at time s(T}),
with an expiration time, e(T)).

1) The final transaction set at S; contains at least one transaction T,, with
expiration time e(7,), such that e(T;) < e(T,).

2) local_time > s(T)) + N, where Ny,
0N, <S8

3) Time e(T,) is mnot too far into the future. In particular,
e(T,) < local_time + S

is a fixed delay period such that

elay’

elay delay*

delay *
Now we discuss the reasons for these conditions. Keep in mind, S; submits null
transactions to help the ““other” nodes schedule transactions prematurely.

The first condition guarantees there is at least one ‘“worthy” transaction,
T,, that can benefit from a null transaction. That is, T, has an expiration

time greater than the last transaction submitted by S;. In Figure 4a, T, is

1
such a worthy transaction, from the point of view of node 2, assuming the last

transaction from S, has an expiration timestamp e(7}) <1300. Note, any
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transaction that has an expiration time less than e(7}) doesn't require a null
transaction because T itself can be used to prematurely schedule it.

The second condition avoids the generation of excessive nulls. If N,,., . is
set to 0, a null transaction will be generated as soon as a worthy transaction T,
exists. This may be the best thing to do from T,’s point of view, but too many
nulls may be counter-productive. Therefore, a node doesn’t send a null transac-
tion if it has recently (within NN, seconds) sent another transaction (real or
null). The hope is that another real transaction will arrive at S; soon, making
the null unnecessary. Selecting a good value for Ndday is a challenging problem:
setting it too low may cause excessive message traffic, while setting it too high
makes us revert to the premature scheduling algorithm without nulls. The
impact of Ndelay is discussed further in Section 8.3.

The third condition exists to prevent the premature scheduling of a tran-
saction that has an expiration time which is relatively far into the future. For
exaﬁlple, consider the following situation, assuming that Sdelay is equal to 10.
Suppose node 1 submits a transaction, T,, at time 1200 with an expiration time
of 1300. That is, T,’s expiration time is much greater than its start time plus
Sdetay' If condition 3 didn’t exist, node 2 may, at time 1205, submit a null tran-
saction, NV, with an expiration time of 1301. Furthermore, suppose a real tran-
saction, T,, was submitted by node 2 at time 1210. For correctness T, would
have to be assigned an expiration time greater than 1301, say 1302.

If all nodes were functioning properly such a situation wouldn’t be a prob-
lem. In particular, all nodes would submit transactions (null or real) which
would allow T, to be prematurely scheduled, well before time 1302. (Essen-
tially, all nodes would simply advance their clocks up to 1302.) On the other
hand, suppose a node were faulty and refused to submit any further transaec-
tions, thereby preventing the premature scheduling of T,. That is, T, would
not be scheduled until its expiration time, at time 1302. Essentially, a faulty
node, through malicious behavior, has caused a large increase in T,’s response
time.

Condition three prevents such a situation by specifying a ‘“minimum
scheduling time” for every transaction. In particular, a null transact;ion will be
generated for T, when the local time is greater than e(7T,) — S,,, . Any time
before then, scheduler S; can submit a transaction with an expiration time less
than e(7,), which will be scheduled “before” T,. In this way, a faulty node
can only increase the response time of other transactions by at most deay, and

* Note, if the schedulers always choose e(Tz) = S(Tx) + S
scheduling time is equal to s( T, ).

delay’ then the minimum
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this is no worse than the basic algorithm.

Notice that even with these conditions it is possible that a null transaction
from S; is not helpful. In particular, if the null transaction is added to the final
transaction set before time e(7,), then it may be possible to schedule T, early
(given the next transaction from the other nodes exist.) However, if the reli-
able broadcast of the null transaction takes too long, it may arrive after e(Tz),
in which case the null transaction will be wasted. (Recall that, at the latest,
T, is scheduled when its timestamp expires at time e(7',).) Hence, nulls should
not be sent when they are “‘expected” to arrive after e(7,). In Section 8.3 we
discuss how this additional rule, which depends on the run-time performance of
the reliable broadcast algorithm, can be implemented.

7. Batching Transactions

The scheduling algorithms presented so far produce many messages for
each transaction. In particular, in a three node system four messages are gen-
erated for each transaction (real or null) submitted by a scheduler (Figure 2.)
A decrease in message processing may be achieved by scheduling transactions in
“batches’. That is, each scheduler collects a number of transactions before
submitting them to the other schedulers, where the entire batch is scheduled at
one time. Of course, this strategy has both advantages and disadvantages.

On one hand, transaction batching decreases the total number of messages
generated. For example, if three transactions are batched together, then eight
messages are saved during the scheduling process. Of course, this decrease in
the number of messages also decreases the amount of message ‘“‘processing’’ per-
formed by the schedulers. (Message processing includes the transmission time
and the CPU time used by the sender and receiver.) Figure 5 shows the aver-
age processing time for messages of varying sizes in our system. We can see
that the system-imposed overhead for each message (i.e., the y-intercept) is
about 8.6 ms. Therefore, by batching IV transactions together we may be able
to save 4X8.6X(N—1) ms of processing time, thereby increasing system
throughput.

On the other hand, the schedulers must know ‘“‘when’” to submit the
current batch of transactions. For example, with two transactions waiting in
the batch it may be 2 ms or 2 days before a third arrives. Consequently, the
scheduler should only hold a batch until it has been waiting a certain period of
time or until it has been filled (i.e., the largest possible message size has been
reached). Furthermore, batching may increase the average scheduling time
because transactions are sometimes ‘“‘waiting’’ for a batch to be released.
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8. Experimental System

In order to analyze the various tradeoffs associated with the scheduling
algorithms, an experimental system has been implemented which isolates the
schedulers from the rest of the TMR database system (Figure 6). In particular,
multiple users are replaced by a single monitor that submits concurrent transac-
tions to and receives transactions from the schedulers. Such isolation allows
greater control over testing itself, yet examines all processing associated with
transaction scheduling. In some cases, as will be discussed later, an artificial
processing load is imposed on the system to better understand the impact of
other processes (e.g. transaction manager) on the schedulers.

Individual processes in the experimental system are executed on separate
SUN-2/120 workstations, running Unix 4.2. Communication between processes
is implemented by a 10 Mbit per second Ethernef;, using the standard interpro-
cess communication (datagram) facilities in Unix. In general, all tests were run
in the following manner.

At any given time, the monitor allows a fixed number of transactions, M,
within the system, and we call M the “level of multiprogramming”. A given
transaction is submitted to one of the schedulers, who is responsible for distri-
buting it to the other schedulers. When that transaction is scheduled, by each
particular scheduler, it is returned to the monitor. After receiving two of the
three responses, the monitor records the elapse time since the transaction’s sub-
mission as its “‘response time’’. When all three responses have been received,
the monitor resubmits the transaction to the system. Throughout the test, the
monitor submits transactions to the schedulers in such a way as to maintain a
uniform load. For example, if there are fifteen transactions in the system, each
scheduler will be responsible for initiating five of them.

In addition to the average transaction response time, the throughput of the
system, in terms of transactions per second, is determined for every test by
dividing the total number of transactions executed by the elapse time of the
entire test. The throughputs of many similar tests are combined to yield an
average system throughput, with a confidence interval of five percent. For clar-
ity, the data points in all of the graphs presented in this paper represent the
central values of the confidence intervals.

Since the experimental performance of the schedulers is independent of
transaction processing, we represent a transaction simply as a message of a

* We realize that the ethernet is a single point of failure in our experimental system, but we

are using it for a practical reason: we have no other. However, our design does not
require the “broadcast” capability of the ethernet. Any direct connection between the
processing nodes will suffice. Furthermore, we believe that a different network will not
change our performance results significantly.



~ 18

given size (64 bytes). Experiments conducted with the complete TMR database
system show that an increase in transaction size affects the rest of the system
much more than it affects the schedulers. Therefore, we will not address that
issue in this paper.

Finally, throughout the following discussions we make reference to a
variety of empirical observations. In fact, these observations are based on other
experiments aimed at gaining a better understanding of the system’s overall
performance. Unfortunately, we can’t present all of these results formally.
Similarly, many of the experimental parameters have been varied beyond the
values presented in the graphs. For simplicity, we have selected the results and
ranges that demonstrate our observations most clearly.

8.1. Comparison of Algorithms

Figure 7 shows the average response time and throughput for the basic,
premature and null scheduling algorithms. (Remember, the “null” scheduling
algorithm also makes use of premature scheduling.) The results shown are for a
fixed-size transaction message (64 bytes), with varying levels of multiprogram-
ming. Also, in our system, Sdelay is equal to 1000 ms (see Section 4), while

Ndelay has been chosen to be 200 ms.

For the most part, we see that the response of the basic algorithm is
independent of the multiprogramming and that its throughput is directly
related to it. In general, the basic algorithm has predictable parameters;

response time slightly greater than S and throughput slightly less than M.
delay

Figure 7 also shows that the premature and null scheduling algorithms per-
form approximately the same, except during low levels of multiprogramming. In
particular, both algorithms become saturated when M > 12, with the null algo-
rithm having a slightly greater throughput. This is probably due to the “gaps”
in transaction processing caused by queuing delays throughout the communica-
tion network. During these gaps, null transactions provide faster response time,
thereby increasing throughput in the closed system. Bear in mind, however, the
increase is less than the statistical confidence interval (5 percent). Finally,
when M < 3, the premature algorithm mimics the basic algorithm because
there is never a complete set of ‘‘next’” transactions for each node. On the
other hand, the null algorithm proceeds at a rate determined strictly by the
choice of Ndelay.

8.2. Network Load

Some important differences between the scheduling algorithms are the
number of messages generated and their dependence on the system load. To
investigate these differences, we make use of an artificial network load
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consisting of a set of processes that broadcast a message over the network every
25 ms. (Such a network load was chosen to simulate the amount of additional
processing which is typically present in the complete TMR database system.)
Figure 8 shows the system performance of all three algorithms while the net-
work is loaded. Comparing it with Figure 7, we make a number of observa-
tions.

For the most part, the basic algorithm is unaffected by the load. In fact,
the average response time rose only 17 percent, while the throughput dropped 3
percent. This is mainly because the basic algorithm spends most of it’s time
“waiting” to schedule transactions. A delay in transaction distribution is easily
handled within the S dsiny time period. Once again, the basic algorithm’s simple
design yields predictable performance.

On the other hand, the performance of the premature and null algorithms
has been reduced significantly and both become saturated when M > 9, instead
of when M > 12. In particular, the premature and null algorithms perform,
respectively, 33 and 40 percent worse than the no-load situation (Figure 7).
Figure 8 also shows that the null algorithm performs 10 percent worse than the
premature algorithm when the network is loaded. To understand this situation,
we examine the percentage of nulls generated by the schedulers with and
without a network load, as shown in Figure 9. We see that the network load
causes a greater number of nulls. Specifically, the network load, and its
corresponding load on the node processors themselves, causes each scheduler to
execute at a slower rate. Therefore, there is a greater chance for a scheduler to
go N, elay TS without submitting a real transaction, thereby causing the genera-
tion of a null transaction. Also, the higher load makes it more likely for a null
to be delayed, arriving after the expiration of the transaction it was intended to
help. The extra work caused by these nulls results in a decreased throughput of
real transactions. In this case, null transactions hinder the system because
Ndetay is too small.

8.3. Impact of Null Delay

As seen in the last test the performance of the null algorithm depends on
the value of Ndetay’ relative to the load on the system. Figure 10 shows thls
relationship by plotting curves for N o equal to 100, 200, 300, and 400 ms.
The response and throughput graphs support the same conclusion; at low levels
of multiprogramming (M < 3), a small value for Njeiqy should be used. This
generates a large percentage of null transactions (Figure 10c), but this extra

of Note, values of N delay greater than 400 ms yield results that are statistically equivalent
to the premature algorithm, therefore they have not been shown.
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processing is easily absorbed by the lightly-loaded schedulers. Conversely, at
high levels of multiprogramming (M > 6) a large value for Nyeiqy is most
effective, thereby reducing the percentage of nulls generated. In fact, when
Ndetay equals 400, the null algorithm performs as well as the premature algo-
rithm, yet provides better performance at low multiprogramming levels.

The results of this test suggest that a ‘“hybrid” algorithm would be useful.
That is, a small value of Ndelay could be used while the system is lightly-loaded,
and the generation of null messages can be stopped (by using a large N

delay)
when the system is heavily-loaded. Specifically, the choice of an appropriate

Ndelay can be based on the average time between transactions submitted by the
user, T . ., and the average time to schedule a transaction, S Therefore,

resp’
at this time, we examine two different hybrid algorithms. OneIJ uses a fixed
“cutoff’” based on analysis of the overall system, while the other attempts to
determine the best cutoff using run-time parameters. In both cases, Smp and
T, . .ivam are calculated by each scheduler based on the last ten transactions pro-
cessed. (Once again, the number ten was chosen based on preliminary tests
which showed that anything smaller caused erratic operation and anything

larger prevented the schedulers from responding quickly to changes in the work
load.)

Analysis of Figure 10b clearly shows that the schedulers should stop using
nulls when the multiprogramming level is greater than 4. This cutoff point
corresponds to a throughput of 15 or, equivalently, an average time period of
200 ms between transactions received by a given scheduler. (Recall that there
are three nodes, so a system throughput of 15 corresponds to a throughput of 5
transactions per second at each site.) Consequently, when the inter-arrival time
drops below 200 ms, a scheduler knows that the system is sufficiently loaded
and can stop using null transactions. The performance of the fixed-cutoff
hybrid is shown in Figure 11, compared to the premature and null algorithms,
with a network load. As hoped, the hybrid mimies the null algorithm at low
levels of multiprogramming and the premature algorithm at high levels. Furth-
ermore, we see a drop in the average response time between levels 3 and 5.
Presumably, this is because the hybrid only uses nulls when they are most
effective (i.e. during temporary slack periods caused by queuing delays). This
helps to reduce the average response time, while not degrading throughput
noticeably. ‘

Given that a fixed-cutoff of 200 ms works well, we might ask if there is

anything magic about that number? The answer is, no. By examining the Smp

versus T Figure 12) we see that the curves cross at 200 ms. That is, when

arrival (
the average time between transactions is greater than the time it takes to

schedule a transaction it is beneficial to use null transactions, because that null
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will be processed before the next user transaction arrives. Conversely, when the
time between transactions is less than Sresp nulls are a hindrance; the system
will still be processing them when a real transaction arrives and requires pro-
cessing. Our second hybrid determines the crossover point dynamically and

uses null transactions accordingly.

A comparison of the fixed-cutoff and crossover hybrids is shown in Figure
13. In general, both hybrids perform the same over most multiprogramming lev-
els. However, in the range 3 to 6 we see different behaviors. Both curves have
a point at which the response time remains relatively constant, but the cross-
over hybrid is the higher of the two. During this transitional period, both algo-
rithms switch between nulls and no-nulls trying to adjust to the work load.
Although the values are within 7 percent, they appear to indicate that the
fixed-cutoff hybrid is better able to cope with the transitional period. This is
probably because the crossover hybrid makes use of two approximate measures
(Sm;p and T, . ) instead of just one, as in the fixed-cutoff hybrid.

8.4. Message Batching

As stated earlier, the reliable broadcast algorithm generates 4 messages for
every transaction (real or null) submitted. By batching 2 or more transactions
together the system should achieve a greater throughput, because large mes-
sages require proportionately less work than small ones. Figure 14 shows the
effects of transaction batching on the crossover hybrid algorithm (‘“b1”
represents no batching, while *b2” and “b3” represent batches of size 2 and 3,
respectively.) In this case, a network load was imposed and the “batch delay”,
Bjyjay» Was set to S, /2. That is, a batch was held until it was filled, or

until the first transaction placed in the batch had waited Bdetay ms.

As expected, when M < 9 batching degrades the response time and the
throughput of the system. In particular, batches usually wait a full Bdemy ms
before being distributed. This delay directly increases the average response
time and, consequently, decreases the throughput of the closed system. On the
other hand, at high levels of multiprogramming batching provides significant
advantages. First, the amount of processing saved by batched transactions
increases the point at which the system becomes saturated. However, this also
means that the system must have more work to execute in order to perform
more efficiently. For example, a batch size of 1 is saturated when M equals 12,
but it still has a greater throughput then a batch size of 3, which has no
apparent saturation point.

In general, the greater the batch size the greater the need for a high mul-
tiprogramming level, but the greater the attainable throughput. In fact, the
throughput for batch sizes 2 and 3 are within 11 and 6 percent, respectively, of
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the single batch case ‘“‘without” a network load. That is, batching has
effectively suppressed the degradation caused by the network load. We also see
from the plots that a batch size of 2 is, in general, better than a batch size of 3.
Specifically, a batch of 2 out-performs a batch of 3 over a greater range of mul-
tiprogramming levels (M < 18) and performs only slightly worse at the extremes
(M > 18). In other words, the maximum benefit of transaction batching is
achieved with small batch sizes.

Finally, Figure 14a shows an interesting effect of batching. We see that
when M > 12, larger batches yield reduced response times, even though tran-
sactions are being delayed while batches are being filled. Essentially, the delay
due to batching is overwhelmed by the total amount of processing which is
saved. Since the schedulers are doing less work, they can provide faster
response to each batch.

As with Nde!ay, a hybrid algorithm can be designed to change the batch
size dynamically. Empirically, we found the following rule to be most effective
for switching batch sizes. If Syesp 18 greater than (batch_size + 1)XT, . ., then
the batch size should be incremented, and if it is less than
(batch_size — 0.5)XT, . ., then the batch size should be decremented. Essen-
tially, if the transaction arrival rate exceeds the rate at which transactions can
be scheduled, then a larger batch size is warranted. Conversely, if transactions

aren’t arriving ‘“fast enough” to fill up batches quickly, then a smaller batch
size is needed.

Figure 15 shows a comparison of the batch hybrid described above and the
crossover hybrid with fixed batch sizes (labels bl, b2 and b3). As hoped, the
batch hybrid achieves a lower bound for response time and an upper bound for
throughput, over the entire range of multiprogramming. This final scheduling
algorithm makes use of premature scheduling, null transactions and variable-
size batches to achieve high performance.

9. Conclusions

We have studied transaction scheduling in a TMR database system. We
discovered that premature scheduling, null transactions, and message batching
can significantly improve performance in certain cases. Thus, the best overall
approach appears to be an adaptive algorithm that can change its scheduling
policy as the system load varies. Also, we examined two ‘‘safeguards” which
had to be used to prevent faulty nodes from adversely affecting the system’s
performance. In particular, each scheduler had to be limited to a maximum
number of reliable broadcasts per unit of time. Similarly, null transactions were
generated only for those transactions that weren’t too far into the future. In
general, these restrictions guaranteed that the system performed at a level no
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worse than that of the basic scheduling algorithm, despite a single faulty node.

The scheduler is one of the most important components of a TMR system,
but there are a number of other components that must be studied in the future.
In particular, failure detection and recovery can also have significant impact on
performance. For example, failure recovery may require that part or all of the
system state be maintained in stable storage, and this may degrade system per-
formance during normal operation. Furthermore, our analysis of the schedulers
focused on performance during no-failure periods. While these should be the
most common periods, it is also important to study and improve scheduling dur-
ing failures and their subsequent recoveries. Hence, a substantial amount of
work remains to be done.
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Appendix 1. Reliable Broadcast Algorithm
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Broadcasting Node:
request.sig = my_unique_signature;
request.time = my_local_time + deay;
request.trans = msg.trans;

send_to_schedulers (request);
add_to_final_set (request.trans);

on receipt of request message:

if not_in_pending_set (request)

and legal_signature (request.sig)

and my_local_time <= request.time - S telay /2

then
store_in_pending_set (request);
confirm = request;
confirm.sig = confirm.sig + my_unique_signature;
send_to_schedulers (confirm);

on receipt of confirmation message:
if not_in_pending_set (confirm)
and legal_signature (confirm.sig)
and my_local_time <= confirm.time
then

store_in_pending_set (confirm);

when corresponding request and confirmation messages
exist in pending set:

if (request.trans == confirm.trans)

then add_to_final_set (request.trans);

else ignore both;

when a timestamp expires:
add_to_final_set (msg.trans);

Appendix 2. Correctness of Reliable Broadcast Algorithm

In this appendix, we show that Sdelay =2Mdemy - QOdl.ff is sufficient to

guarantee that the reliable broadcast algorithm given in Appendix 1 satisfies
property S1. Throughout our discussion we will consider a single transaction
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submitted to a given scheduler, which we will call the ‘“‘general’”’, G. The other
schedulers will be called “lieutenants”, L, and L,.

To show that Sde!ay = 2Mrdetay

perfect schedulers maintain the same transaction set we examine the three
situations which can arise.

+ gcdiff is sufficient to guarantee that all

1) All schedulers are perfect.
2) A single lieutenant is insane.
3) The general is insane.

We now discuss each situation separately.

All Perfect Schedulers

Suppose that during the reliable broadcast algorithm no schedulers fail and
that the general broadcasts a request message, with an expiration time T,, to
both lieutenants. Furthermore, suppose that the general sends the requests on
or before time T', — 2Mdew - chz'ff’ as determined by his clock. Without loss
of generality, consider the processing performed by L,. By assumption Al, it

may take at most M ms for the general’s request to arrive. Accordingly,

delay
the request will be received by L, at time Ry ,  Wwhere
R, < 7 — M, —2Cy;;, as determined by the generals clock. Now we

must determine 7 ,, the time the request is received based on L’s clock; to
determine how L, will process the request. By assumption A2, L’s clock may
be de ms faster or slower than the general’s. Therefore, we know that
R, < Rg + Cd:'ff =T, — Mdeiay — Od:‘ff' Consequently, L, will accept the
request message and will send a confirmation to L,. (A similar argument holds
for the request sent to L,.) Now, consider the confirmation message, sent by Ly
to L,. Once again, by assumption Al, it will be received by L, at time
Cr, 5 7 4 —de, as determined by L,’s clock. Using assumption A2, C;,
corresponds to C;, < T,, based on L,’s clock. Consequently, L, will accept the
confirmation and will compare it to the general’s request. Since all schedulers
are perfect, both messages will contain the same transaction, which will be
added to L,’s transaction set. A similar result holds for L.

A Single Insane Lieutenant

The easiest failure to deal with is that of an insane lieutenant. Since mes-
sages contain unforgeable signatures (Assumption A3), an insane lieutenant is
unable to introduce misleading messages. Specifically, the perfect lieutenant
will receive the general’s request before time T, — Mdmy = Cuirs (on its local
clock) because of assumption Al and A2. Additionally, the perfect lieutenant

may or may not receive a confirmation from the insane lieutenant. If one is
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received, it must contain the general’s unforgeable signature and, therefore,
must be identical to the request message, because the general is perfect. In
such a case the transaction will be added to the transaction set of the perfect
lieutenant. Furthermore, if no confirmation from the insane lieutenant is
received, then the transaction will be added to the transaction set when its
timestamp expires.

An Insane General

An insane general may disrupt processing in many ways. First of all, the
insane general may simply ignore all user requests for transaction scheduling.
Such a failure trivially satisfies property S1 because no transactions are
scheduled on any node.

Now, suppose the general sends a request to L, and nothing to L,.
Clearly, if the general’s request is not received by L, before time
T = Muisy — Cpy (on L, ’s clock) then it will be ignored and property Sl
holds trivially. If, on the other hand, L, receives the request on time, then the
confirmation will be sent before T Mdelay — Cd:'ff on L,’s clock. Therefore,
by assumption Al, the confirmation will be received by L, at time T, — Od:‘ff
on “L’s"” clock. However, by assumption A2, L,’s and L,’s clocks differ by at
most Odz'ff units. Therefore, the confirmation message is received before T, on
L,’s clock and is accepted. Consequently, the transaction will be scheduled by
both L, and L, when its timestamp expires, because neither lieutenant will
receive corresponding request and confirmation messages.

An insane general may also send different request messages, bearing the
same expiration time, to each lieutenant. As in the previous cases, if a lieu-
tenant accepts one of the request messages, then the other will accept a
corresponding confirmation message. Consequently, both lieutenants will see
conflicting transactions bearing the same expiration time and will ignore them.

Appendix 3. Basic Scheduling Algorithm

on receipt of a transaction request from a user:
reliable_broadcast (transaction)

when a transaction in the final set has an expired timestamp:
schedule (transaction)
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Appendix 4. Premature Scheduling Algorithm

on receipt of a transaction request from a user:
reliable_broadcast (transaction)

when a transaction in the final set has an expired timestamp:

schedule (transaction)

when a transaction is added to the final set:

count =0
for all transactions in final set
if trans.seqn == next_seqn_from(trans.origin)
then
count = count + 1
If count ==
then

schedule (transaction_with_earliest_timestamp)
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