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Abstract

In this paper we demonstrate two techniques for comparing strings of arbitrary
length on a systolic array we have proposed and implemented. The first is an
application of algorithm partitioning, the second an implementation of a string
matching heuristic for which we prove performance bounds. We analyze the time and
number of processors required in each case and determine the processor utilizations.
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1 Introduction

Rapid advances in very large scale integration have encouraged researchers to implement the
inner loops of many algorithms in special-purpose parallel hardware. The unique demands of VLSI
technology favor architectures which have a large number of identical processing elements with only
local communication requirements; Kung has termed these “systolic arrays.” In the literature, most
such arrays are presented as requiring a number of processors proportional to the size of the problem.
This is, perhaps, an unrealistic assumption as interesting computations would often require hundreds
or thousands of processors. Recently, however, authors have begun to investigate the mapping of
algorithms onto fixed-size arrays [Chen85a][Chen85b][Hwan81][Mold84][Mold86]. In this paper we
demonstrate two techniques for comparing strings of arbitrary length on a systolic array we have
proposed and implemented [Lipt85]. The first is an application of algorithm partitioning, the second
an implementation of a string matching heuristie.

Of other published processor arrays for string comparison [Fost80][Liu84][Chen85b], only
[Chen85b] considers the partitioning problem. The given array, however, is 2-dimensional and
requires a complicated data recirculation.

1.1 Quantifying String Similarity

There are a number of different measures for quantifying the similarity between two strings
[Hall80]. Perhaps one of the most intuitive is the “edit distance,” which can be defined as the
minimum cost of a sequence of insertions, deletions, and substitutions needed to transform one string,
the source, into the other, the target.

For example, one possible transformation of the string systolic into the string symbolic is
systolic =deletes=> sytolic =deletet=> syolic Finsertm=> symolic =insert b= symbolic
which requires two deletions and two insertions. Another possibility, using only substitutions, is
systolic E=substitute m fors= symiolic =substitue b fort= symbolic

If we assign an insertion or a deletion a cost of one, and a substitution a cost of two (a substitution can
be considered an insertion and a deletion), then these are both minimum cost transformations,
yielding an edit distance of four. We will assume these cost assignments for the rest of this paper.

1.2 A Dynamic Programming Algorithm
Wagner and Fischer present a dynamic programming solution to the problem of determining edit
distance [WagnT74]. Given source and target strings
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the algorithm builds an m X n table by comparing successively longer subsequences.

Define d;; to be the edit distance between sysg---s; and ¢1t9---¢;. Then the initial
conditions for the computation are

di,():i 0=si=m and dOJ:J 0=sj=n
and the value d; ; is determined by the recurrence.
4 P d 4 11 ifs, =t . .
— < i< =i<
g = M T gt L d,_y;_+2 otherwise l=i=mislsn

That is, d;; depends only on its three neighboring values up and to the left and on the appropriate
source and target characters. When the algorithm terminates the value d, , is the edit distance
between the two strings.

The example of the previous section would result in the table shown in figure 1.2.1. The arrows
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figure 1.2.1 the table

point back along the paths of optimal decisions. Notice that because the strings are quite similar
these paths never stray far from the main diagonal.

On a serial computer this algorithm takes time O(mn). Although the entire table requires
storage O(mn), the state of the computation necessary for processing a column, row, or diagonal
consists only of the previous column, row, or two diagonals respectively, and the source and target
strings. Hence, the space complexity is O(max(m, n)).

1.3 A Systolic Array for Determining Edit Distance

There is a great deal of potential concurrency in the construction of an edit distance table; all of
the values on any forty-five degree diagonal can be calculated simultaneously. We realize this
parallelism by mapping the algorithm onto a linear systolic array [Lipt85]. The data flow can be



visualized by rotating the index set of the recurrence and collapsing one dimension in time [Capp84],
as depicted in figure 1.3.1.
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figure 1.3.1 mapping the recurrence onto a linear array

For a rigorous analysis, we adopt the formalism of Moldovan and Fortes [Mold86]. The index set I
for the recurrence is

and the dependency vectors D are
0 1 1

o= i[5} o[ )

1 0 1

Since we want to transform this algorithm into one suitable for implementation on a one-dimensional

array we shall, for simplicity, view the first index of the image as time and the second as space. We

T
b =
P
on the index set, where T determines the timing and P determines the processor allocation. That is,

seek a transformation

the computation indexed by [i j]t will be performed during clock cycle T[i jIf, in processor number P[i
jlIt. If we limit each processor to only one calculation per clock, the transformation must be one-to-one.

The choice of T is further restricted by the requirement

Td >0 foralld€D
That is, the timing of the transformed algorithm must guarantee that the dependencies can be

satisfied; any calculation which depends on the result of another must be scheduled after that one. Of
the many possibilities, we choose



T=[11]
For P we require
Pd= -1,0,0r1 foralld € D
That is, we permit only nearest-neighbor communication among the processors. If the processors are
numbered from left to right —1 corresponds to a left connection, 0 to a self-connection (or stored
state), and 1 to a right connection. We choose

P=[-11]
The array that results from applying the transformation
L (|
oD =
-11

to the index set [ is that of figure 1.3.1.

As figure 1.3.2 demonstrates, the source and target strings shift in simultaneously from the left

figure 1.3.2 asystolic array for approximate string matching

and right respectively; two new characters are input every other clock cycle. Traveling along with
the characters are initializing data values which are the first column and row of the dynamic

programming matrix. As these values pass through the array they will be transformed in to the last
column and row, and hence the answer.

A single processing element and the program which it executes each clock cycle are shown in
figure 1.3.3. When two non-null characters enter from opposite directions, a comparison is performed
and the processor determines a new state based on the result of the comparison, the two input values,
and its previous state, exactly as in the dynamic programming algorithm.

Before a processor can take part in the computation, its state must be initialized appropriately.
This can be accomplished by first flushing the array with null characters (&), then having each
processor assume the state of the last non-null character it has seen, until it performs its first
comparison. This initialization is not shown in the figures.



inputs: LeftCharin, LeftStateln, RightCharin, RightStateln :
teieeeeieeiieeeaees outputs: LeftCharOut, LeftStateOut, RightCharOut, RightStateOut

LeftCharin _.) _}RightCharOut g

LeftStateln : PRightStateOut : ! if (LeftCharin = RightCharln)
"""""""""" : e then State « min(LeftStateln + 1, RightStateln + 1, State)
PE else State « min(LeftStateln + 1, RightStateln + 1, State + 2)
LeftCharOut‘;_ *;_RightCharIn ! LeftCharOut « RightCharin
© LeftStateOut © RightStateln : : LeftStateOut « State
.................... : RightCharOut « LeftCharin

| RightStateOut « State

a processor its program

figure 1.3.3 one processing element

Since, under the timing [1 1], the first index point to be processed is [1 1]¢ and the last is [m n]¢
the basic computation requires

m
T

1
—T[ ]+1:m+n—l
n 1
clock cycles. It is not difficult to show that this timing achieves the minimum number of cycles

necessary to perform the calculation.

The allocation [—1 1] maps the point [m 1]¢ into the leftmost processor and [1 n]¢ into the
rightmost, so we require

1
P

m
- P i +1=m+n-1
n
processors.

A common efficiency measure for parallel algorithms is processor utilization, the ratio of the
serial processing time to the parallel processing time multiplied by the number of processors used.
First we must remark that the above analysis measures the interval between the first update and the
last and ignores the time needed to shift values into and out of the array. This adds another
(m+n—1) cycles to the processing time and is the price we pay for allowing input to and output from
the array only at the two end processors. With this in mind, we obtain the expression

mn

2im+n—-1Dm+n-1)
For source and target strings which are the same length, m, this simplifies to
1
8 2
8 — _n; + ;é
Thus, the processor utilization is effectively 1/8 for long strings. Note that perfect utilization of the
processors under this alternating scheme is 1/2.

PU =

PU =



There are allocations which require fewer processors (for example [0 1]) and hence have higher
processor utilizations. Still, this P is attractive because, as was shown, it results in an array which
can be implemented with only one mode of operation, shifting data. The array for P equals [0 1]
requires that the target string be shifted into the array, then held there while the source string
streams by.

1.4 Minimizing Processor Complexity

Since the edit distance between two strings can be as large as m+ n, it appears that each processor
requires an adder and a comparator for numbers O(log(m+n)) bits long. There is, however, an
important observation that makes manipulating such large values unnecessary; a constant two bits
will suffice. We remark that, at any instant in time, adjacent processors’ edit distances are close in
magnitude, hence it is only necessary to compute low order bits. As the truncated values shift out of
the right side of the array, the full edit distance is reconstructed. An up/down counter is preloaded
with the length of the target string and a simple finite state machine increments or decrements it
appropriately. Figure 1.4.1 illustrates this. See [Lipt85] and [Lipt86] for details.

Stateln L T e e
fsm o sannter  inputs: Stateln, CounterLow
ane \/ éoutputs: Count
25 CounterLow { if (Stateln = (CounterLow-1) mod 4)

then Count «dec
else Count «inc

monitoring the output fsm'’s program

figure 1.4.1 reconstructing the edit distance

This result is significant. Our implementation of this systolic array is unlimited in the length
strings that it can compare. Any number of chips can be placed side-by-side as there is no maximum
edit distance hardwired in silicon; only the up/down counter, an inexpensive and cascadable TTL
part, is length dependent.

2 Comparing Long Strings in Multiple Passes

Despite the unrestricted expandability of our design, it may not always be cost effective to build
an array long enough to handle each possible comparison. For example, our current chip is designed
to compare DNA sequences, which range in length from tens to tens of thousands of characters. To
perform every comparison in a single pass would require tens of thousands of processors, when often



only a hundred or so are actually used. Fortunately, it is possible to partition the problem into blocks
so that strings of any length can be compared on an array of fixed length. In this case, rows or
columns at earlier points in the computation are recirculated to initialize later calculations.

Figure 2.1 depicts a partitioning of the dynamic programming matrix shown earlier for a systolic
array which has seven processors. The calculation is done in four separate passes. The intermediate
rows and columns must be stored, external to the array, for their later use.

Yo N o u S

figure 2.1 the partitioned tables

In general, say that we have 2p — 1 processors in a linear array and hence can compare two p-long
string segments in one pass. Further, for simplicity, assume that m/p is mj and n/p is n,. We divide
the computation into myn, blocks, each of size pXp. The scheduling of this secondary computation
can be handled just as the primary case was. The index set is

i
I=H _p]:1si =m 1<j Sn}

o= Lo}

Now we are looking for a transformation

and the dependency vectors are

Tp
%=,
p pp
for the block calculations. Again, we require that
Td >0 foralld €D
PP P D
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However, since we assume that we have only one array, there is no “processor” allocation, so P, is [0
0]. Hence, to guarantee that index points are mapped one-to-one, we require the transformation T, to
yield a complete ordering in time. To guide the choice of T;, we observe that the interval between the
time a column is generated and when it is used is T),[0 1]. This is a measure of the amount of external
storage required to hold intermediate column values. Similarly for rows, T,[1 0] measures the time
between when a row is generated and when it is used. Hence, to minimize external storage we want
the T, which minimizes
0 1
NN
Pl 1 Pl O

Thus, we are lead to choose [1 my] for T', if the source string is shorter than the target (i.e. mp < np),

and [n, 1] otherwise. Of course, in reality it is far more practical to fix the architecture and define the
target string to be the shorter of the two.

Figure 2.2 depicts a systolic array for comparing long strings in multiple passes, illustrated by the
source and target strings of the earlier example. The computation as pictured is beginning its second
pass, which corresponds to the block in the upper right corner of figure 2.1. The longer queue provides

@ & ©

:
il

figure 2.2 a multiple pass array

the temporary external storage discussed earlier; its length is that of the shorter string. The two
finite state machines fsm and fsmg determine when new characters are input and when old ones are
recirculated; their programs are shown in figure 2.3. The routine FlushArray() simply shifts null
characters through to force the source and target segments out and reinitialize the array for the next
pass. The shorter queue is necessary to hold values during this flushing. Of course, the state
encoding trick of section 1.4 still applies and can be realized by augmenting the program for one of the
state machines accordingly.



: outputs: OutChar, OutState

forie1to mg
: forje1top
QutChar « SourceChar
QutState « SourceState
FlushArray()

forje2ton,
forke<1top
OutChar « QueueChar
QutState « QueueState
FlushArray()

: inputs: SourceChar, SourceState, QueueChar, QueueState

::inputs: TargetChar, TargetState, QueueChar, QueueState
: outputs: OutChar, OutState :

Eforie—1tonp

forj<1top
QutChar « TargetChar
QutState « TargetState
FlushArray()

éfori<—2'c0mp

forje1ton,
forke<1top
QutChar «- QueueChar
QutState « QueueState

FlushArray()

fsm4's program fsmy's program
prog 25P

figure 2.3 the finite state machine programs

The time needed for the entire computation using this method is

(number of blocks)(time per block) = (m—z )2@p — 1))

p

The number of processors is, of course,

2p -1
Hence, the processor utilization is

1
Pli=
. 8 N 2
P p?

which, as before, is effectively 1/8 for p’s of interest.

3 Systolic Implementation of a String Matching Heuristic

Partitioning the computation, as deseribed in the previous section, has the distinct disadvantage
of requiring external queues (of programmable size if strings of differing lengths are to be compared)
and a rather complicated data recirculation. Fortunately, in some situations long strings can be
compared on an array of fixed length by using a heuristic modification of the original dynamic
programming algorithm, with no such increase in hardware complexity.



3.1 The Heuristic

It is frequently the case that we are interested in the precise edit distance between two strings
only if they are quite similar, for example, when searching databases for near matches. The heuristic
is based on the observation that if two strings are close, then the path of optimal editing decisions
must not stray far from the main diagonal [Fick84] (a similar remark applies to the dynamic time
warping of speech [Rabi78]). Hence the modified algorithm only calculates edit distances for index
points within some & of the diagonal.

Define d*;; to be the edit distance calculated under the heuristic. Then, for & greater than or
equal to two, the initial conditions are

*

d,=i 0<i<8 and d;J:j 0<j<8
and the recurrence breaks into three cases
5
" d. .. ifs.=1t.
d.=min|d . +1,d 1.+1,[ g s ; _J] ifli-i<8-1
iy Ly = ) d. .. .+2 otherwise
i—-1j-1
and
. 2 o ifs.=t,
& =min|d_ . +1,{ .V ‘ ,Jl ifi—j=8-1
LJ 1=4J d .. .+2 otherwise
i—1-1
and
d .. ifs. = t.
d' . =min|d . +1,{ o L ‘ ,f] ifi—i=86-1
Ly ij-1 di—l,j— 1 + 2  otherwise

That is, we only calculate those d*; ; which are within  of the main diagonal.

Figure 3.1.1 shows the effect of the heuristic on the computation of the earlier example, with &
equal to four. In this case, we get precisely the same answer as originally; this is because optimal

figure 3.1.1 the heuristicwith§ = 4
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paths exist close to the diagonal. We may not always be so lucky, as is demonstrated in figure 3.1.2.

o I i ¢ s y s t o I i ¢ s y s t
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figure 3.1.2 a case where the heuristic fails

Here the optimal paths stray far from the center diagonal. When the search is limited we obtain a
poor result.

We now characterize the quality of this heuristic. First we show that it always returns edit
distances at least as great as those calculated by the original algorithm.

Theorem 1:
d:}. = di,j forany iandj for which d;. is defined
Proof: by induction. Clearly d*;o equals d;o and d*j equals dp, so the basis holds. Any
index that appears in the minimization determining d*;; also appears in that determining
d; ;. Hence, by the inductive hypothesis, the theorem holds.

Now we show that if the original algorithm returns a final edit distance less than or equal to some
value, the heuristic is guaranteed to give us the same result. Without loss of generality, say that the
source string is the longer of the two and the difference between the lengths, m—n, is a. Then we
have

Theorem 2: if

then

17



Proof: let us view the transformation as performing the necessary editing operations solely
on the source string. Consider any path of optimal decisions which determines d, ,. First we
observe that it must include a deletions to equalize lengths. After these operations are
accounted for, each of  deletions in the source string must be matched by an insertion. Now,
clearly

a+2ﬁsdm,n52(6—a—1)
0

2+P=280—-a-1
or, since a is greater than or equal to zero

a+B<8
This last result implies that at no point does the optimal path stray more than 8 from the
main diagonal. Hence, the computation determining d*,, , has access to the same path in its
entirety. The proof that d*,, , equals d,, , now follows by a simple induction.

These two theorems demonstrate that strings which are found to be distant under the original
algorithm remain at least as distant under the heuristic, while strings which are close remain just as
close. The choice of § determines when strings are considered “close.”

If, as before, we assume that the source string is the longer the heuristic requires at most
26 -1
@5 —1)(m—20)+2 » i=2m—m—5 -8

i=28
steps, which, for § a constant, is O(m). The space required is still O(m) since eventually the full source

and target strings are needed. However, the state of the computation at any point in time uses only
constant storage.

3.2 A Systolic Implementation

Fortunately, the structure of the heuristic is nearly identical to that of the original algorithm; we

&
I =
J
Hence we can use precisely the same transformation

can easily map it onto our existing systolic array. The index set I" for the recurrence is
i
] 1=i=m,i—-8+ 1)5js(i+6—1)}
and the dependency vectors are, as before,
. 0 1 1
D = 2 2
1 0 1
" 11
P =
-11

Figure 3.2.1 depicts the corresponding systolic implementation of the heuristic. The only
difference between this array and the one shown in figure 1.3.2 is that in this case end processors
minimize two values instead of three. Our current chip can be “fooled” into doing this by always
inputing values which are one greater than these processors’ stored states. If the simplifying

v



figure 3.2.1 asystolic array for the string matching heuristic

technique of section 1.4 is to be used the finite state machine must be changed slightly as now edit
distances shifting out of the array can differ by two instead of one.

Since the first index point to be processed is [1 1]t and the last is [m n]f the computation requires
2m —1 clock cycles. To this must be added 28 — 1 cycles for shifting the initial values in and the final
values out of the array. Under the chosen allocation P*, the point [i i—8+ 1]¢ will be processed in the
leftmost processor and [i i+8— 1]t will be processed in the rightmost, so the heuristic requires 26 —1
processing elements. Hence the processor utilization is

2
26 -1 —

5
U~ oms —m—62—8 ~ P
@m —1)(26 — 1) + (26 — 1)% 48> 65 2

48 24 — = — o —

nm m m

as m gets large this approaches

26 -1 1

48 -2 2
which, under this alternating scheme, is perfect utilization of the processors.

PU =

4 Conclusions

In this paper we have presented two techniques for comparing long strings on a short systolic
array. The first always returns a correct edit distance, the second does so only when the strings are
similar. Although the discussion was illustrated by the specific implementation we have realized in
silicon, both methods can be generalized. The relative merits of alternative architectures, in light of

the partitioning problem, as well as the usefulness of the string matching heuristic deserve further
investigation.

« PR



5 References

[Capp84]

[Chen85a]

[Chen85b]

[Fick84]

[Fost80]

[Hall80]

[Hwan81]

[Lipt85]

[Lipt86]

[Liu84]

[Mold84]

[Mold86]

[Rabi78]

Peter R. Cappello and Kenneth Steiglitz, “Unifying VLSI Array Design with Linear

Transformations of Space-Time,” Advances in Computing Research, volume 2, 1984, pp.
23-65.

H. D. Cheng and K. S. Fu, “Algorithm Partition for a Fixed-Size VLSI Architecture Using
Space-Time Domain Expansion,” Proceedings of the Seventh Symposium on Computer
Arithmetie, June 1985, pp. 126-132.

H. D. Cheng and K. 8. Fu, “VLSI Architectures for Pattern Matching Using Space-Time
Domain Expansion Approach,” Proceedings of the IEEE International Conference on
Computer Design: VLSI in Computers, 1985, pp. 181-184.

James W. Fickett, “Fast Optimal Alignment,” Nucleic Acids Research, volume 12,
number 1, 1984, pp. 175-179.

M. J. Foster and H. T. Kung, “The Design of Special-Purpose VLSI Chips,” IEEE
Computer, volume 13, January 1980, pp. 26-40.

Patrick A. V. Hall and Geoff Dowling, “Approximate String Matching,” ACM Computing
Surveys, volume 12, number 4, December 1980, pp. 381-402.

Kai Hwang and Yen-Heng Cheng, “Partitioned Algorithms and VLSI Structures for
Large-Scale Matrix Computations,” Proceedings of the Fifth Symposium on Computer
Arithmetic, 1981, pp. 222-232.

Richard J. Lipton and Daniel Lopresti, “A Systolic Array for Rapid String Comparison,”
1985 Chapel Hill Conference on Very Large Scale Integration, Henry Fuchs, ed., Rockville,
MD: Computer Science Press, 1985, pp. 363-376.

Richard J. Lipton and Daniel Lopresti, “Using Residue Arithmetic to Simplify VLSI

Processor Arrays for Dynamic Programming,” TR CS-022, Princeton University, January
1986.

Hsi-Ho Liu and King-Sun Fu, “VLSI Arrays for Minimum-Distance Classifications,”
VLSI for Pattern Recognition and Image Processing, King-Sun Fu, ed., Berlin: Springer-
Verlag, 1984, pp. 53-59.

D.I. Moldovan, C. 1. Wu, and J. A. B. Fortes, “Mapping an arbitrarily large QR algorithm
into a fixed size VLSI array,” Proceedings of the 1984 International Conference on Parallel
Processing, August 1984,

Dan [. Moldovan and Jose A. B. Fortes, “Partitioning and Mapping Algorithms into Fixed
Size Systolic Arrays,” IEEE Transactions on Computers, volume C-35, number 1, January
1986, pp. 1-12.

Lawrence R. Rabinev, Aaron E. Rosenberg, and Stephen E. Levinson, “Considerations in
Dynamic Time Warping Algorithms for Discrete Word Recognition,” IEEE Transactions

-14 -



on Acoustics, Speech, and Signal Processing, volume ASSP-26, number 6, December 1978,
pp. 575-582.

[Wagn74] R.A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal of the
Association for Computing Machinery, volume 1, 1974, pp. 168-173.

~15 -



