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Abstract: )

One of the basic geometric operations involves determining whether a pair of convex objects
intersect. This problem is well understood in a model of computation where the objects are given as
input and their intersection is returned as output. For many applications, however, we may assume
that the objects already exist within the computer and that the only output desired is a single
piece of data giving a common point if the objects intersect, or reporting no intersection if they are
disjoint. For this problem, none of the previous lower bounds are valid and we propose algorithms

requiring sublinear time for their solution in two and three dimensions.
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1. Introduction

This paper describes fast algorithms for testing the predicate
Do convez objects P and Q sntersect?
where an object is taken to be a line or a polygon in two dimensions or a plane or a polyhedron in
three dimensions. The related problem
Given convez objects P and Q, compute thetr intersection

has been well studied, resulting in linear lower bounds and linear or quasilincar upper bounds
(2,3,14,18,19,20]. Lower bounds for this problem use arguments claiming that linear time is required
to read all inputs or report the output. For the problem which we pose, such arguments do not
apply. We only require a witness to the intersection or non-intersection of P and Q, and we further
assume that the objects we wish to intersect are available (i.e., in random-access memory [1]) so
that we cannot rely on input ime to yield a lincar lower bound.

The table in Fignre 1 summarizes our results, all of which are fully original. The time hounds

are achieved by using the standard array representation for two-dimensional objects and a special
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representation of polyhedra which requires O(n?) operations to reach from the standard represen-
tation (where n denotes the total number of vertices). An O(nlogn) preprocessing of the standard
representation is actually sufficient, but the running times given here must then be multiplied by a
factor logn [9]. Note that convex polyhedra have the structure of planar graphs, so the number of
vertices, edges, and faces are linearly related, and any of these measures can be used to represent
the input size. Although the times given in the table are asymptotic, the constants invelved arc
sufficiently small to make the algorithms viable in practice. Furthermore many of the applications
to which such algorithms might be used require a knowledge of only portions of the intersection or
of the existence of an intersection, rather than a complete description of any intersection [11]. For
ex@ple, in computer graphics when we wish to clip or window a scene [15], algorithms of the form
given here would be sufficient for identifying those polygons which would require further processing.
Also, many applications to which such algorithms might be used in Design Rule Checking for VLSI
[2], cornputer geography [10,21] computer aided design and compuler animation require a gross pro-
cedure which detects the possibility of an intersection, from which refined procedures can handle
the small number of cases in which an intersection has been reported and must be computed.

All these algorithms rely on a small number of unifying concepts. Convexity combined with
random-access capabilities allows for binary and Fibonacci search, and it is with an explanation of
these basic principles that we start our analysis. Section 2 is devoted to the two-dimensional case

while Section 3 investigates the problem cast in three dimensions.

2. Computing Planar Intersections

2.1. Notation

Polygons are represented by arrays with their vertices given in clockwise order. Polygon P will
have vertices py,...,p, and polygbn Q vertices gy, ...,q,. We will assume that no three vertices of a
polygon are collinear. All indices of P (resp. Q) are taken modulo p (resp. g) in the obvious fashion.
A line will be specified by any two of its points and a segment by its two endpoints. AB will always
refer to the segment from A to B, and “line(AB)" will represent the infinite line containing AB.
We define d(z,L) as the orthogonal distance from the point z to the line L and &(z,L,v) as the
oriented distance from z to L with respect to point v. This latter quantity is defined as —d(z,L)
if z and v lie on opposite sides of L and as d(z, L) if they lie on the same side. Both d and A can
be computed in constant time. F; will represent the ith Fibonacci number with F; = F; = 1 and
Fy=Fy_1+Fy_g,for N> 1.



2.2. Fibonacci Search on Bimodal Functions

A real function f defined on the integers 1,2,...,n is said to be unimodal if there exists an
integer m (1 < m < n) such that [ is strictly increasing (resp. decreasing) on [1,m] and decreasing
(resp. increasing) on [m +1,n], with f(m) > f(m+1) (resp. f(m) < f(m+1)). Kiefer [12] showed
that Fibonacci search was an optimal method of finding m, the turning point of a unimodal function,
requiring 1.44..logn probes. We extend his algorithm to find the turning point of a bimodal function.
For our purposes, it suffices to define a bimodal function as one for which there is an r in [1,n] such
that f(r),/(r+1),...,f(n), f(1),-..,f(r — 1) is unimodal. Our interest in bimodal functions stems
from the following:

Lemma 1. Let P be a convex polygon with p vertices py,... yPp in clockwise order. For any line L
and any point v not in L, the function defined for i =1,...,p by /(i) = h(p;, L,v) is bimodal.

Proof: Let px be the vertex of P which minimizes f(z) for £ =1,...,p. In case of a tie, we choose
k so that the only other integer which achieves the same value of f is £ — 1. We can do this because
P is convex. We will show that the sequence f(k), f(k+1),...,f(k—1) is unimodal, which suffices
to prove the lemma. Let us choose a directing vector r of the line L such that the angle (rs08Pk4+1)
is less than 180. All angles are measured between 0 and 360 degrees in a counterclockwise motion.
We define the oriented angles a; = (r, pipi+1) and b = (pipis1 yPi-1pi) for i=1,...,p as in Figure
2. By construction, the following relations hold for all 1:

J(E+1) = S () + |pipiz1]|sina;;
;41 = a; — b;4,[mod 360).

Since P is convex, all b; are less than 180 degrees, therefore the sequence sin(ag),sin(axs1),- ..,
sin{a—;) will be positive then negative, thus showing that S(k), S (k+1),...,/(k = 1) is unimodal.
|

Since a unimodal sequence has exactly one maximum and one minimum, and cach of them is
achieved in at most two points which must be consecutive modulo n, bimodal functions have the
same property. However, finding the extrema of a bimodal function may not be as easy since we
do not know the starting point of its unimodal sequence in advance. To circumvent this difficulty,
given a bimodal function f, we construct a unimodal function g as follows: First, let T be the line
through the points (1,/(1)) and (n, f(n)), that is,

z-1
n-—1

T(z) = —((n) - 7(1)) + /(1)

1f f(1) = f(n) then f(1) is an extremmm and f is unimodal, showing that the extrema can he fonnd

with the previous method. Otherwise we assume that f(1) < f(n) (the case f (1) > f{(r) being
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similar). If f(2) 2 /(1) then f(1) is a minirum and the subsequence /12),..., f(n) is unimodal,
which solves our problem. Else, if f(2) < f(1), the function g defined by

g(z) = min{/(z),T ()

can be evaluated in constant time and is unimodal. This follows since for all z, g(z) < f(n) <
max(f(t)), so g first decreases then rises, and is therefore unimodal. It follows that the minimum of
g (which is also the minimum of f) can be found with a Fibonacci search. If z is the point at which
g achieves its minimum, the sequence f(z+1),f(z+2),... ,J(n) is unimodal, and the maximum of

J can also be determined through a second Fibonacci search, yielding:

Lemma 2. The extrema of a bimodal function f(1),...,/(n) can be computed in Oflogn) time,

which involves at most 2.88..log, n + O(1) function evaluations.

2.3. Intersection of a Line with a Convex Polygon - (IGL)

Combining previous facts yields an algorithm for determining the intersection (null, 1 point, 2

points, or an edge of P) of an infinite line L and a convex polygon P.

Theorem 3. The intersection of an infinite line with a convex polygon with p vertices can be

computed in O(logp) time.

Proof: We can always assume that p; does not lie on L. Then it follows from Lemma 1 that the
function f(p;) = h(p;,L,p1) is bimodal, therefore the algorithm of Lemma 2 allows us to find a
vertex w of P which minimizes /. We know that P and L intersect if and only if f (w) is negative
or zero. In the latter case, w or an edge including w is the unique intersection of P and L. In the
former case, the signs of f(p1),/(p2),-.-,f(w) and f{w),f(w +1),...,/(p,) can be searched by
binary scarch to determine ¢ and ; such that f(p;) >0 > f(pi4,),/ (j) £0 < f{pj+1) from which

the two points of intersection are determined. g

Our algorithm involves approximately 2.8808log, p+O(1) computations of /. The extension to
the case where L is a line segment does not increase the time bound. Since O(log p) has been shown
to be a lower bound on the time complexity for testing the inclusion of a point in a convex polygon,
which is constant time reducible to our problem, the algorithm we have described is optimal in the
minimax sense [19]. In what follows, we will refer to this algorithm as IGL. Though our algorithms are
more complex than IGL, they are based on principles similar to those used to derive this algorithm.



2.4. Intersection of Two Convex Polygons - (IGG)

The algorithm for computing the intersection of a line and a polygon suggests methods which
might be used to speed up algorithms for intersecting two polygons P and Q. If we could determine
the sides of P closest to Q (and vice versa), we would be able to reduce the problem to a small
number of tests of segment intersections. Our method reduces the number of remaining edges of
one of the polygons by a factor of 2 at each iteration. The algorithm we present (referred to as
JGG) returns NO if P and Q do not intersect and (YES, A) if they do, where A is a point of their
intersection. When a NO answer is returned, it is possible to generate in constant time a pair of
parallel lines which separates the polygons.

We begin by limiting the intersection of P and Q to a quadrilateral or a pentagon. This requires
O(logpq) steps and also tests for simple intersections (e.g, P contained in Q). From the quadrilateral
we form two chains of vertices L, and L, which intersect if and only if P and Q intersect. The
iterative step of the algorithm is a division in which we eliminate half of either L, or L,,. This step
is reachied as one of § possible cases determined from the steucture of Lhe remaining verlices.

It is important to keep in mind that by intersection of P and @, we mean the intersection of
the regions P and Q and not of the polygonal boundaries. We shall prove further that the latter
problem requires linear time whereas our problem can be solved in O(log(p+ q)) time. We first give

a description of the algorithm and prove its correctness, and then we establish its running time.

ALGORITHM IGG (intersecting 2 polygons):

1) - "Cover Q (resp. P) with 2 lines of support intersecting in # (resp. Q).”

a) Let g be a point interior to Q (say the center of mass of three vertices) such that ¢ is not
interior to P (if ¢ is interior to P, we have found an intersection). Compute the intersection of Q
with line(p; ). This line always intersects Q in two points ¢ and b which the algorithm IGL can find
ag well as the edges of Q where a and b lic, say gigi41 and gjgj4, respectively - See Figure 3-a.

b) If p; lies on the segment ab, it also lies in Q and the algorithm can return (YES, p;). Otherwise
we do a Fibonacci search on the sequence of oriented angles (p1¢,p14x), for all gx between g;4; and
gj in clockwise order, in order to find the maximum angle. Call ¢ the corresponding vertex of Q.
Such a Fibonacci search is legitimate since the sequence is unimodal. If it were not, we could find
an ordered list of three consecutive vertices of Q with the angle relative to the middle vertex smaller
than both of the others. Then the line joining p; to this vertex would cut Q in more than 2 points,
contradicting the convexity of Q. Similarly, by considering the sequence gj4y,...,g;, we find the
vertex « which minimizes the angle (p1g,p19x). Call Cy the pencil (pyu,p;t) so defined - See Figure
3-b.

c) Apply the previous procedure (steps a,b) with g; relative to P. If the algorithm does not
return, it will determine another pencil, Ca, centered in q; and covering P. Since Cy (resp. Ch)

contains g;) (resp. p;), the intersection of C; and C; is a convex quadrilateral, p;Y ¢, X, as shown
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in Figure 3-b. Note that X or ¥ may not he defined, in which case we can replace the missing
intersection by a segment joining the two pencils, thus obtaining a pentagon.

II) - Note that the portion of the boundary of P which lies in C, is a contiguous polygonal
line from the intersection of p; X" and P to the intersection of p;Y and P, and lies also in Cj.
Determine its two endpoints (note that one or even both of these endpoints may be p;). Renumber
the vertices of P so that L, = {v1,...,v,} gives the vertices of this polygonal line in clockwise
order (we have v; on p;Y and v, on p; X). Throughout this chapter, any renumbering is implicit,
that is, does not involve any scan through the vertices. It may simply consist of the setting of an
arithmetic expression redefining the mapping. The same procedure is carried out with Q defining
Ly ={w1,...,wm}. In what follows, we rename the former p; and ¢, A and B, respectively, as in
Figure 3-b. Note that although L, intersects AY and AX, it may also intersect BX or BY (in at
most one point, though).

III) - We have now reduced the original problem to checking the intersection of L, and L.

Let z (resp. y) denote the polygonal line AXB (resp. AY B). To simplify the exposition, for
two points F and G, we say that F < G if F and G are both on z or both on y and F is on the

path from A to G.
At this stage, we call upon the function INTERSECT(L,,L,) defined recursively as follows:

INTERSECT (L, L)
Assume that n,m > 5, where n = |L,| and m = |L]|, using the procedure of the previous

section if this is not the case.
i=|n/2]; 5 = [m/2];

Let F and G (resp. E, H) denote the two intersections of line(v;v;4,) (resp. line(wjwjy,)) with
the boundary AYBXA. The point F' (resp. H) is chosen such that v;4; (resp. wjy;) lies on the
segment v; F' (resp. w;H) - See Figure 4-a.

The algorithm distinguishes between cases depending on the relative positions of GF and EH.

Each case reduces the size of L, and/or L, after which a recursive call is made.
Case 1): Either GF or EH lies on the same side of AB (Fig. 4-a).

if G and F lie on z
then L, = {v1,...,%41,%}
else if Gand Flieony
then L, = {v1,v;,...,v,}
if £ and H lie on z
then L, = {w1,wj,...,Wm)
else if F and H lieon y

then Lﬂ = {wl,...,w_,-.,.],wm}



Case 2): From now on, F and E (resp. G and H) lie on z (resp. y) (Fig. 4-b).
if F < E and G < H then return (NO)
Case 3): If the segments GF and EH intersect, let I be this intersection (Fig. 4-c).

ifG<Hand E<F
then if «; lics on GIJ
then L, = {v;,9;y...,%,}
else if wjyy lies on HI
then L, = {wy,...,Wj4+1,Wm}
ifH<Gand F< FE
then if v;4; lLies on FI
then L, = {v1,...,%4+1,%n}
elge if w; lies on ET
then L, = {wt,wj,...,wm}

else
Case 4): Av; and Bw; intersect (Fig. 4-d).

if Av; and Bwj intersect in R
then return (YES, R)

else

Case 5): (Fig. 4-¢). Let R be the intersection of Av; and HE.

if wj lies on ER
then
Ly = {vy,vi,.. “y¥n}
Ly ={w1,wjy...,wn)}
else
Ly={91;:04%i41,%a)}
Lo ={wi,.coqWj41,9m}
Recursive call with parameters of smaller size.

INTERSECT (L, L)

Next we show that INTERSECT runs correctly within the given time bound. For correctness,
it suffices to show that INTERSECT(Ly, L) indeed tests for the intersection of L, with L, and

possibly outputs a point common to P and Q.
Case 1: Suppose that G and F lie on y (the 3 other cases being similar) - See Figure 4-a.

By construction, line(BY ) intersects P in exactly one point which lies on the same side of B as Y.
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Now, since P lics totally on the same side of line(GF) as X, the intersection of P with line(BY) lies
on the segment BF. Therefore, if L, and L, intersect, at least one intersection point lies on the
polygonal line {v;,...,%a}. By making L, equal to {419y .-19n}, we reset the initial conditions
required by the algorithm. Moreover, we note that since the region delimited by the new setting of
L, is included in P, any intersection point later output will surcly be in P. This remark prevails in
all the remaining cases.

Consider the two polygons delimited by (4,z,FG,y) and (B,z,EH,y) and call V their inter-
section - See Figure 4-b. Since P and Q are convex, their intersection lies totally in V.

Case 2: Corresponds to V empty - See Figure 4-b.

Case 3: The first if statement supposes that E and F belong to ¥ and the other that H and G
belong to V. Since both cases are similar, we treat only the first. Suppose that v; does not liein V.
Then, since Gv; lies outside of EHBX, L, cannot intersect this segment, therefore if L, intersects
the polygonal line vy ,.. , Ui, it also intersects vjv;. Thus the new setting of L, is legitimate. Same
with w4 ;. From now on, we know that both v;vi41 and w;w;4; lie on the boundary of V.

Case 4: Assumes that Av; and Bw; intersect - See Figure 4-d. Since these two segments lie in
P and Q respectively, their intersection lies in the intersection of P and Q, which is then non-empty.

Case 5: First, we note that since E lies on z and v; lies in V, R is well defined. We also
know that Av; and Bwj do not intersect. The algorithm supposes successively that Av; lies "above”
and "below” Bw;. The two cases being similar, we treat only the first. L, cannot intersect the
polygonal line v ,. . .,v; without first crossing v, v;. Similarly, L, cannot intersect wy,...,w; without
first crossing wyw;. Conversely, if either L, crosses vy v; or L, crosses w;wuj, the intersection belongs
to both P and Q. Finally, since wy,...,w; {resp. v1,...,v;) cannot intersect vyv; (resp. wywj), the
new setting of L, and L, is legitimate.

To prove the time bound, we observe that the algorithm runs in constant time between consec-
utive recursive calls. Every call reduces the size of one or both polygonal lines by roughly half, and
when either becomes smaller than 6, the algorithm returns after O(log(p+g)) operations. Therefore,
the main algorithm detects the intersection of I’ and Q in O(log(p + ¢)) time.

We can regard the intersection of a line with a polygon as a special case of this problem, and the
results of the preceding section show that the algorithm described above is optimal in the minimax
sense.

We have achieved our main goal. However, we now wish to refine the algorithm IGG so that
it produces a pair of parallel separating lines (Lp, Lg) when it fails to detect an intersection. We
have preferred to present this procedure separately since there are applications where this additional
information is not needed. Instead of a complicated formal definition, Figure 5-a best illustrates
what we mean by a pair of separating lines.

Recall that the algorithm IGG [ails to detect an intersection in two cases:
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(1) Tt falls into case 2 of the INTERSECT procedure - See Figure 4-b). Since P lies in the
pencil (BY,BX), it does not intersect line(EH), therefore line(EH) is a separating line Lg. To
compute Lp, we observe that it passes through the vertex of P which minimizes the distance to
Lg. This distance is a bimodal function for the vertices of P, therefore Lp can be determined in
O(logp) time.

(2) Either L, or L, {say L,) is reduced to fower than 8 vertices {n < 6). We say that the
intersection of line(p;pi+1) with Q is positive if it is not empty and lies entirely on the same side of
p; as piy1. I it 1s not empty and lies totally on the same side of p;4; as p;, it is called negative.
It is clear that il P and @ do not intersect, any intersection of line(p;p;41) with Q (called Q;) is
positive, negative, or empty. The algorithm proceeds in stages, each consisting of the reduction of
one or both polygonal lines L,, L. Let v; = py; at any stage, we will show that if vg = p; then,
for each u between k and [ — 1, the intersection Qy is either empty or positive. Starting with the
obvious observation that initially v; and vy are consecutive around P (! = k+1), therefore that the
fact is true at the first stage, we prove the assertion by induction on the number of stages. Clearly,
the only stages of interest are those which reduce L, from {vj,...,v,} to {v1,v;,...,v,}. Asbefore,
let v; be pi and v3 be p;, and let v; be ps. Using the induction hypothesis, it suffices to show that
@, 1s empty or positive for each u between [ and h — 1. Assume that one of them is negative. Then
the intersection must occur in the triangle v; Gv;: a trivial examination of case 3 shows this to be
impossible. Cases 2 and 4 are ruled out by assumption. As to cases 1 and 5, the presence of Q, in
the triangle v; Gv; implies a non-empty intersection between L, and L, which is excluded.

Let us now come back to the final stage where L, has fewer than 6 vertices. Let p; be the
vertex v and pj the vertex v,_;. We have just showed that Q;_; is empty or positive. Similarly,
a symmetric reasoning would show that Q; is empty or negative. It follows that if some Q; among
Qi-15..-,Q5 (note that there are at most 4 of them to consider) is empty, Lp can be set to Qj -
See Figure 5-a. Otherwise, there exists a pair (Qg-1,Qk) with Q- positive and Qi negative (Fig.
5-b). Observing that the angles (p;,q;,pkq;) are bimodal for ! = 1,...,g (here we measure angles
counterclockwise with values between —180 and +180 degrees), we can find the vertex z (resp. y) of
Q which minimizes (resp. maximizes) that angle, in O(logg) time. A simple argument shows that
Lp may be set to the line passing through p; and perpendicular to the bisector of (piz,piy). The
line Lg is then obtained by minimizing the distance to P as we did earlier (1). We can conclude

Theorem 4. An intersection between two convex polygons with p and g vertices, respectively, can
be detected in O(log(p + g)) time. A common point is returned when the polygons intersect and a

pair of parallel separating lines otherwise.

While the previous algorithm can decide whether P and Q intersect,, it is unable to tell whether

one polygon lies strictly inside the other, that is, whether the boundaries of P and Q intersect or not.
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This is because the more general problem of deciding whether two convex polygonal lines intersect
requires linear time to be solved. To see this, consider two polygons P and Q given in the complex

plane with vertices of P being the roots of z” — 1 = 0 and the vertices of Q the roots of

1 1
" —(§+W)"=O.
It can be easily verified that for any consecutive vertices a,b,c on the boundary of Q, neither the
edge ab nor be intersects the boundary P, whereas the segment ac does - See Figure 6. So, any
vertex of @ can be moved along a radius to create an intersection, without altering any of the n —1
remaining vertices. Therefore any algorithm checking the intersection of the boundaries of P and Q
has to look at all the vertices of Q, yielding the claimed lower bound. This is assuming, as usual,

that the points are given in an array, with no additional information except the size of the polygons.

Theorem 5. Testing the intersection of two convex polygonal lines requires linear time.

Thus no general extensions of the algorithm in the plane are possible. However, there are many
cases where the algorithm can be applied to give a description of the region of intersection sufficient

for its reconstruction.

3. Detecting Three-dimensional Intersections

3.1. Introduction

Although detecting intersections becomes substantially more difficult in three dimensions, the
algorithms which we will describe are based on principles similar to those used in the previous
sections. We still use Fibonacci searches to find extrema of bimodal functions and answer questions
of the form: "Does object A lie entirely on one side of a given hyperplane?”. Similarly, binary
searches will be used to reduce the size of a problem by a constant factor.

Since all these techniques assume some kind of random-access capabilities, we must give our
three-dimensional objects a special representation to provide these features. From the observation
that the surface of a convex polyhedron has the structure of a planar graph, it has been a standard
method to represent convex polyhedra by a description of the planar graph along with the geometric
location of the vertices [l{]. Unfortunately this representation does not meet all of our requirements
and some preprocessing is needed. We represent each polyhedron as a set of parallel convex polygons.
These polygons, called preprocessing polygons, consist of a cross-section of the polyhedron for each
vertex. Each cross-section is the intersection of the polyhedron with a plane parallel to the zy-plane
passing through the vertex - See Fignre 7. This reduces a polyhedron P of p vertices to a set. of p
(or fewer) convex polygons Pi,... +Pp and p—1 convex drums (we call a drum a convex polyhedron
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with all the vertices lying on two parallel faces). Since each drum can be tested for intersection
with a convex polygon in logarithmic time, and projections and intersections of those drums with
a plane give convex objects, only O(logp) preprocessing polygons need be considered for all of our
purposes, which yiclds the desired results. Before describing the preprocessing more precisely, we

briefly outline the various algorithms which we will present.

1) IBP - Intersection of a polyhedron P with a plane T

The projections of P and T on a plane perpendicular to T and the preprocessing polygons form
respectively a convex polygon and a line which intersect if and only if P and T intersect. We call
IGL to test the intersection. This requires O(logp) steps, each step involving O(logp) operations,
since the access to any vertex of the projected polygon involves maximizing a linear combination of
the z- or y-coordinates of a preprocessing polygon, that is, maximizing a bimodal function.

- 2) IHG - Intersection of a polyhedron P with a polygon R

If IHP fails to detect an intersection between P and the plane T supporting R, we are finished.
Otherwise, T intersects a set of consecutive preprocessing polygons which we can compute implicitly
in O(lf;»g2 p) time by a binary search whose basic step involves intersecting a polygon with a line.
Letting @ be the intersection of P and T, we first test the intersection of R with the subpolygon of
Q formed by the preprocessing polygons determined earlier. If we fail, IGG will return a separating
line adjacent to Q. We can show that this line is adjacent to two consecutive drums of P which must
intersect R if P does. We can test each drum for intersection in turn, thus the whole algorithm runs
in time O(log® N}, if NV is the total number of vertices involved in P and R.

3) IHH - Interscction of two polyhedra P and Q

By intersecting P and @ with a plane, a series of binary searches will reduce P successively to a
drum, a "slice”, and a pentahedron. Each step of the binary searches involves O(log’ N) operations,
thus leading to an O(]c;g3 N) time algorithm, with N the total number of vertices in P and Q.

3.2. Representation of Three-Dimensional Objects

All of our polyhedra are assumed to be in a standard representation as p (or fewer) polygonal
cross-sections. These cross-sections are created by setting a planar direction K and intersecting
the polyhedron with a plane in that direction passing through each of its vertices - see Figure
7. The naive representation of this structure would require O(p?) preprocessing time and O(p?)
storage space in the worst case. In [9] a representation using Oplogp) time and space is given.
Accessing this data structure, however, adds a factor of O(logp) to the running times of our algo-
rithms. We do not consider the details of this algorithm here and assume that questions of the form:

What is the sth vertex of the sth cross-section?

may he answered in constant time. In a model where the accesses actnally require O(f(p)) opera-

tions, our upper bounds of O{g(p)) are actually O(f(p)g(r))-
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For the polyhedron P, we denote its cross-sections as Py, Pa,...,Pp and let P, ; represent the
part of the polyhedron between P; and P; (inclusive). A key feature of this representation is that we
make no assumption about the preprocessing direction. Therefore, the representation (in terms of
P1,Py,...,P,) is invariant under scaling, rotation, or translation. Furthermore, when we consider
the intersection of two preprocessed polyhedra, we need not assume that their polygonal cross-
scctions lic in parallel planes. Since it is almost the case that cach vertex of 5 is adjacent to a
unique vertex of Pi4;, we nearly have a one-to-one correspondence between P; and P;4;, and these
two polygons almost fully describe the drum P; i+1. Unfortunately, the vertices of P; which are also
vertices of P may be adjacent to several vertices of Pi41, and to remedy this discrepancy, we add
dummy vertices and dummy edges of length 0. More precisely, let z;,; be the jth vertex of P; and
let cl,...,eki be the lateral (i.e. joining P; and Pi41) edges of P;;,, emanating from Z; ;, given
in clockwise order around Pjy, (whichever order on P;,; can be called clockwise as long as this is
done consistently with all the cross-sections). In general k = 1. I, however, k > 1, we conceptually
duplicate z, ; into k vertices vy, ..., yx all of which having the same geometric location as z;,j. Each
Yu, however, is made incident to exactly one edge e,.

Iterating on this process for all vertices of P; and all preprocessing polygons, we rename the
vertices thus obtained for ecach Py iy, z;-r,,z;‘:,,.. . in clockwise order. Similarly, we consider all
the lateral edges of P;; ; emanating from z; 7 and duplicate z; ; accordingly. We thus define a
refinement of P; with respect to the drum Fi_1,i, renaming all the vertices of P;, z

- + - -
that there is a one-to-one correspondence between {z'.,l.z;-t,,...} and {z;‘+1,1"”|'+1,2""}' and all

1:";—,2"-' Note
the preprocessing can be done in O(p?) time.

3.3. Intersection of a Plane with a Polyhedron - (maP)

Let P be a convex polyhedron with p vertices py,pa,... and let T denote the plane under
consideration. Let K be a plane containing a (non-degenerate) preprocessing polygon. If K and
T are parallel, then we can find which drum the plane 7" intersects by binary search and, in the
affirmative, intersect T with any edge of the drum non parallel to X and output an intersection
point. So, let’s assume in the following that the intersection K [T is a line . Let M be a plane
normal to I; P and T intersect if and only if their projections on M intersect (Fig.8).

Let a; (resp. b;) be the vertex of P; with minimum (resp. maximum) coordinate in the direction
K[1M. In general, a; and b; are unique, although there may be two of them if P; has an edge parallel
to the [-axis. In any case, the orthogonal projection of a; (resp. b;) on the M-plane, denoted a;
(resp. ¥';) is unique. We first show that the polygon Q = o, ... a'pt'p... b is convex - See Figure
8.

Lemma 8. The polygon Q is convex.
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Proof:  We show that none of the angles ('kb'kt1,8 kb k_1) is reflex. Let B be the intersection of
the segment bg_1bsy1 with the plane P} supporting Py. Since P is convex, B lies on Py, therefore
its K [)M-coordinate cannot be greater than the X {JM-coordinate of bg. The projection of B on
M being also the intersection of s bty with Pg, it follows that the angle (' kb k41,6505, ) is no
greater than 180 degrees. We have the same result with the vertices @'k, and it is easy to conclude

that Q is convex.

This leads to

Lemma 7. Let L be the intersection of T with M. Then P and T intersect if and only f @ and L

intersect.

Proof: If P and T intersect, we distinguish between two cases:

1. T intersccts some P;. Then the intersection of P; and T is a line segment parallel to {, and its

projection on M is a point which lies on the segment a’;b';. It follows that Q@ and L intersect.

2. If T does not intersect any P;, it lies strictly between two consecutive preprocessing polygons
F; and P4, thus L intersects a';al +1» that is, intersects Q.

Conversely, if L intersects @, it must intersect one of its edges. Its endpoints are the projections on

M of two vertices u and v on the boundary of P, and it is clear that T must intersect the segment

uv, that is, intersect P. Note that u and v are not necessarily vertices of P. i

From the previous results, we can easily derive the algorithm IHP.

ALGORITHM IHP

If P and T' do not intersect the algorithm returns NO, otherwise it returns (YES, A), where A
is a point of the intersection.

Lemma 7 shows that we can test the intersection of P with T by applying the IGL algorithm to
Q and L. We have an implicit description of @, since we have random-access to any of its vertices in
O(logp) time. This is due to the fact that the M [} K-coordinates of the vertices of any preprocessing
polygon form a bimodal function since the polygon is convex. Therefore, any a; or b; can be obtained
in O(log p) time, from which a’; and b'; are computed in constant time. If Q and L do not intersect,
THP will return NO, else IGL provides, in O(logp) time, an edge of Q intersecting L, say Vibliga.
Since knowing &'; and &}, implies that b; and b;; have already been computed, we can immediately
determine the intersection A of T with the segment b;b;,, and return (YES, A). Note that in this
case, the segment b;b; || always intersects T'. Since the algorithm IGL runs in logarithmic time and

each basic step requires O(logp) operations, we can conclude:

Theorem 8. The intersection of a plane with a preprocessed convex polyhedron of p vertices can

be detected in Oflog’ p) operations.
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3.4. Intersection of a Polygon with a Polyhedron - (IHG)

We start with an analysis of the problem, concentrating only on the most difficult points. Let P
be a preprocessed convex polyhedron of p vertices and R a convex polygon of g vertices. Call Q the
intersection of P with the plane T supporting R - See Figure 9. By first calling upon IHP, we can
check whether Q is empty. Assume that this is not the case. It is equivalent to test the intersection
of P and R or Q and R. Although Q is not readily available, the preprocessing of P permits us to
compute an implicit description of it. We first observe that from the convexity of P, T intersects a
set (possibly empty) of consecutive P;, say, Py,..., Pm (I € m). Let w;, w'; be the endpoints of the
intersection of ' and F;, and W denote the polygon w';...w'mwpm ... w; - See Figure 11. Since W
is a subpolygon of Q (i.e., W lies inside Q and all its vertices lie on the boundary of Q), it is easy
to see that the convexity of Q implies the convexity of W. If u,v are two consecutive vertices of W
in clockwise order, we define Q, , to be the convex polygon (outside of W) delimited by the edge
uv and the boundary of Q - See Figure 10.

The following result shows how to reduce our main problem to two easier subproblems.

Lemma 9. If Q and W are not empty, P and R intersect if and only if either of the following
conditions is satisfied:
1. W and R intersect.
2. Let L be a separating line of W and R passing through a vertex a of W, and let b,c be the
vertices of W adjacent to a (b= c if W is reduced to a line segment). Then R intersects Qe
or Qg - See Figure 11.

Proof: It suffices to observe that when R intersects Q but not W, the only parts of Q that L does
not separate from R are Q; , and Q, . The remainder of the proof is straightforward. g

Case 1 being easy to handle, let us turn to the other case. We wish to compute an implicit
description of Q. and Q, c in order to test these polygons for intersection with R. We describe
the method for Q5 4, the other case being similar. Call ¢;,..., g the vertices of Qs,q, that is, the
vertices of @ lying between b and a. Note that g;,...,q, are the intersections of the plane T with
consecutive lateral edges of some drum P; 4, say, e1,...,¢¢. Since all the edges ¢,,...,c; must
pass through consecutive vertices of P;, 21,...,2j, it suffices to determine z; and z; to have an
implicit description of Q4 4. In order to havg a one-to-one correspondence between the z; and the
¢;, we must consider P; with its vertices of the form z}'_'l ,z:-f,, ve. We dist.inguiéh between two cases:

1) The segment ab is parallel to the preprocessing polygons (horizontal); it is then the top or
bottom edge of W, say, the top edge (wlog). Consider the three-dimensional strip S of P; i1 formed
by all its lateral faces. The intersection of 7' with this strip is a continnons hroken line 1) running

from P; to P; without intersecting Pi4, - See Figure 12-a. Therefore any path from the portion
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of the boundary of P; between a and b to P; 41 must intersect D. It follows that [ TR TR 1y -
exactly all the vertices of P; between a and b. To decide whether it is between @ and b or 6 and a in
clockwise order around P;, we simply observe that on one part of the boundary all the lateral edges
intersect 7', whereas none does on the other. Thus, testing any lateral edge for intersection with T
will resolve the ambiguity in constant time.

2) The scgment @b is not a horizontal edge of W. Then Piiyy now designates the drum lying
between a and 6. The intersection of T with the strip S consists of two broken lines, one of which
runs from a to b - See Figure 12-b. Let z,z .4, (resp. yu¥ut1) be the edge of P; (resp. Pi4,), given in
clockwise order, which contains a (resp. b). Note that these edges will have already been computed
when a and b are obtained. Since we wish to access the edges of P; iy from the vertices of P;, it
is important to have a one-to-one correspondence between the vertices of P; and P; 4, therefore we
will consider the polygon P; (resp. Piy;) with its vertices z;-tl,z;{", -.. (resp. Tit1,11%i41,20--- ) Let
z; be the vertex of P; in correspondence with Yu, that is, the vertex lying with y, on the same lateral
edge of Piiy1. It is clear that if the lateral edge of Pi,i4+1 passing through z, intersects T, then
g1y++s9k are exactly the intersections of " with the lateral edges emanating from z;41,2143,...,2,
- See Figure 12-b. Otherwise, if the lateral edge emanating from z,.; intersects T, the vertices
q1s+-+39k of Q are determined by the set of vertices Zy41y-+-521 - See Figure 12-c. Finally, if
neither of the above cases arises, no lateral edge intersects T between a and b, and Qs . is reduced
to the single edge ab, therefore no testing is necessary.

Putting all these results together and handling the remaining cases is straightforward. We can

now set out the algorithm IHG, whose correctness is established by these results.

ALGORITHM IHG

The algorithm takes a convex polygon R and a preprocessed convex polyhedron P as input, and
returns NO if P and R do not intersect, or (YES, A) if they do, with A a point of the intersection.
Step 1:

Test the intersection of P with the plane T supporting R by calling upon IHP. If P and T do
not intersect, return NO, else the algorithm IHP will provide a point £ of the intersection as well as
the preprocessing plane P’ such that I lies in the drum P;i41- I IGL indicates that T intersects

neither P; nor P4y, go to step 2, else go to step 3.

Step 2: “T lies strictly between P; and P;4,”

Q being the intersection of T' and P, the vertices of Q are exactly the intersections of T with
all the lateral edges of Fii41. Therelore P; gives an implicit description of Q, and it is possible Lo
test the intersection of Q and R with the IGG algorithm, returning NO if it is empty, or (YES, A)

if it is not, where A is a point of the intersection returned by IGG.
Step 3: “T intersects P; or Piy,”
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Wlog, assume that T intersects P;. Since T intersects a set of consecutive preprocessing polygons
Pi,...,Pm, we can determine P and P,, through a binary search by testing the intersection of Py
and T with the IGL algorithun. This gives an implicit description of W, from which we can test
the intersection of R and W with IGG. Note thai to access a vertex of W, we must compute the
intersection of 7" with some preprocessing polygon, using the IGL algorithm. If the intersection of R
and W is not empty, !GG will provide 2 common point A, and we can return (YES, A). Otherwise,
IGG will return a separating line L of W and R passing through W, thus providing the vertices
a,b,c.

Step 4: “If R intersects P, it intersects Qs or Qg "
Apply the procedure described above for Qo and Q, . successively, and test these polygons

for intersection with R (IGG), returning NO or a common point accordingly.

Before analyzing the running time of IHG, we wish to extend the algorithm slightly so that it
returns a pair of parallel separating lines when P and R do not intersect, that is, a pair of separating
lines for @ and K. When I1HG returns NO in step 1, no such pair can be defined, but the plane I’
is itsell a separating hyperplane and is sufficient information for our purposes. In all of the other
cases, a non-intersection of P and R is detected after testing both Q; , and Q, ¢ for int.ersection has
failed. Instead of testing these two polygons successively, we can simply use the implicit description
of Qs,s and Qg . to test the intersection of Qs with R (Qs,c is defined as the union of Qy,q, Qa,c,
and the triangle abc). If no intersection is found, the algorithm IGG will return a pair of separating
lines (12, 1) for Qyc and K. Let v be the vertex of Qs lying on the separating line D.

If v is distinct from b and ¢, (D, D’) is also a pair of separating lines for Q and R since Q is
convex, and fits our purposes - See Figure 13-a.

If v is b or ¢ (say b, wlog), D may intersect Q outside of v, thus not separate Q and R. In that
case, let d be the vertex of Q. adjacent to b and distinct from ¢. We can show that the line F
passing through bd separates Q from R. Then computing a line F' adjacent to R and parallel to I’
so that (F,F') forms a pair of separating lines will take only O(logg) time, as described earlier. We
now prove our claim.

Recall that the algorithm has already computed a line L adjacent to the vertex a of Q, and
which separates W and R. Call L*, D*, F* the halfspaces delimited by L, D, F respectively, which
do not contain the vertex c - See Figure 13-b. Since both L and D separate R from the triangle abe,
R lies in the intersection of L* and D, denoted LD. Since Q; . does not intersect the interior of
D, the line F cannot intersect LD, therefore R is completely inside F*. This implies that F is a
separating line of R and Q, which proves our claim.

Step 1 calls upon IHP and IGL and thus requires O(log® p) operations. Step 2 is a simple
application of IGG and takes O(log(p-+q)) time. Step 3 involves a hinary search on the preprocessing
polygons with a call on IGL at each step, which amounts to O(log’ p) time. Testing the intersection
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of W and R takes O((logp) log(p+g)) time since cach vertex of W is obtained by intersecting T with
some Pi (IGL), which takes O(log p) time. Finally, step 4 performs a constant-time case analysis,
then calls on 1GG, which requires O(log(p + g)) operations. We can finally state our main result.

Theorem 10. The intersection of a preprocessed convex polyhedron of p vertices with a convex
polygon of g vertices can be detected in O((logp)log(p + g}] operations, that is, in O(log® N) time,
where N is the total number of vertices in both objects.

3.5. Intersection of a Line with a Polyhedron - (IHL)

We now consider the problem of detecting an intersection between an infinite line (or a line
segment) L and a convex polyhedron of p vertices preprocessed as usual. We can contemplate a
solution which is a straightforward application of the method described in the previous section.

We first test the intersection of P with any plane T supporting the line L, using IHP. If we fail
to detect an intersection, we obviously return NO. Otherwise, we define the polygon Q as usual (i.e.,
the intersection of P and T'), and we compute an implicit description of its subpolygon W formed
by the preprocessing polygons of P. Next, we test the intersection of W and L (IGL), and in the
event of a failure compute a separating line adjacent to W and derive the polygons Qs,a and Qg .
Finally, we test these polygons for intersection with L, calling upon IGL.

Note that in the case of an intersection, we can compute the segment S of L which liesin P in

O(logp) time. There are essentially two cases to consider:

1. If an intersection is detected while intersecting Qs (resp. Qa,c) with L, then S is exactly the
intersection of Qs (resp. Qs,c) with L, and we can compute it in Oflogp) time (IGL) - See
Figure 14-a.

2. If W and L intersect then IGL will provide the two edges of W which intersect L, say, ab and
a't’ (fig.14-b). It is clear that if A (resp. D) is the point on the boundary of Qg (resp. Qo)
which intersects L and does not lie on ab (resp. a't’), then S is the segment AB. To obtain
this segment, we need to compute implicit descriptions of Qg and Q4 and intersect L with
these two polygons (see Algorithm [HG for details of the procedure). Finally, IGL will provide
A and B in O(logp) time.

The total running time of the algorithm is clearly O(log” p), and we conclude,

Theorem 11. We can compute (explicitly) the intersection of a preprocessed polyhedron of p

vertices with an infinite line or a line segment in O(lcvg2 p) operations.
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3.6. Intersection of Two Polyhedra - (IHH)

We now turn to the problem of detecting the intersection of two convex polyhedra P and Q of
respectively p and g vertices. We assume that both polyhedra have been preprocessed, yet we do not
require that the preprocessing planes of P shonld be parallel to those of Q - See Figure 16-a. Thus we
can maintain a coordinate-free environment. If either P or Q is rotated, no new preprocessing will
be necessary. The algorithm THH proceeds by a series of binary searches, all very similar in nature,
and reduces P to a drum, a “slice”, and a pentahedron successively. For the clarity of exposition,
we start our analysis of the problem with some preliminary results related to lines and planes of
support. We redefine a line of support of P more precisely as a line having exactly one point or one
segment (not necessarily an edge) in common with the boundary of P. Similarly, a plane of support
of P is defined as a plane with exactly one edge or one face in common with the boundary of P.

For later purposes, we need to extend the preprocessing of P slightly. We require the existence,
for each vertex of P, of an array listing the edges incident to it in clockwise order. This addi-
tional information is readily obtained once the polyhedron has been preprocessed. We begin with a

preliminary result:

Lemma 12. If L is a line of support of P and one edge of P which intersects L is known, then it

is possible to determine a plane of support of P containing L in O(logp) operations.

Proof: Call v the intersection of L with that edge ¢ of P known to intersect L. We distinguish
between 2 cases:
1. If v is not a vertex of P (check whether v is an endpoint of ¢) then the plane containing both

e and L is a plane of support of P - See Figure 15-a.

2. If v is a vertex of P then the plane passing through ¢ and L may unfortunately intersect the
interior of P, and further analysis is needed - See Figure 15-b. Let ¢;,..., ¢ be a list of the edges
of P adjacent to v, in clockwise order. Recall that the preprocessing of P ensures random-access
to these edges. Let U denote a plane parallel to £ which intersects an endpoint of ¢; but does
not intersect v. Call w;,...,wx the intersections of the plane U with the infinite lines passing
through ¢;,...,ex, respectively (n_ote that ¢; = vw;] - See Figure 15-c. Since wj,...,w; form
a convex polygon, the distance from w; to the plane T passing through L and perpendicular to
U gives a bimodal sequence if it is counted positive on one side of T and negative on the other.
Thus, its extrema can be found in O(logp) time. Let w; be one of them; since the plane passing
through Z and vw; is a plane of support of the polyhedron formed by v,wy,...,w;, it is also a
plane of support of P, which completes the proof. y

We now turn to the crux of the algorithm THH. Let us assnme that P and Q intersect hnt,

neither contains the other. Let T be a plane intersecting P and Q but not their intersection. Call
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R (resp. S) the intersection of T and P (resp. Q), and let (Lp,Lg) be a pair of parallel separating
lines for R and S respectively. If Tp (resp. Tq) is a plane of support of P (resp. Q) passing through
Lp (resp. Lg), observing the relative position of Tp and Ty will indicate on which side of T the
intersection of P and @ lies. Indeed, since P and Q intersect but R and S do not, the intersection of
P and Q lies entirely in one of the halfspaces delimited by T - See Figure 16. To determine which,
we first observe that the intersection of £ and Q must Ye in the intersection H of the halfspace
delimited by Tp which contains P with the halfspace delimited by Tq containing Q. Since Lp and
Lg are parallel, H lies totally on one side of T’ and the intersection L of Tp and To (which must exist
since H is non-empty) may be computed in constant time, and indicates which side of T contains
the intersection of P and Q. Note that L is an infinite line parallel to T - See Figure 16-b,c. The
portion of P which does not lie on the same side of T as L can be rejected since it cannot intersect
with Q. This gives us a means to reduce the size of the problem, so carrying out this process in a

binary search fashion will guarantee efliciency. We now proceed to describe the algorithm.

1) Let P; be the middle preprocessing polygon of P (! = [p/2])- The first step consists of
reducing P to Py or Py ,. To do so, we test the intersection of Q with the preprocessing plane P
passing through Py, using the IHP algorithm. If it fails to detect an intersection, Q lies entirely on
one side of P;" which can be determined in constant time. We then iterate on this process with Py
or Pyp, whichever lies on the same side of P’ as Q. If P and Q intersect, we call upon IHG to
test the intersection of Q with the polygon Py, returning (YES, A) if [HG finds a point A of the
intersection, or providing a pair of separating lines (Ep,Lg) - See Figure 16-b. Since in this last
case, [HG will also indicate edges of P (resp. Q) which intersect Lp (resp. Lg), we can apply the
result of Lemma 12 and compute a plane of support of P passing through L p, which we denote Tp.
A similar computation will give a plane of support of Q passing through Lg,Tgy - See Figure 186-c.
Finally our discussion above shows how locating the intersection of Lp and Lqg with respect to P*
permits us to substitute P or Py, for P accordingly. Of course, if Tp and Tg do not intersect
(i.e., are parallel), neither do P and Q, so we can terminate.

Iterating on this process will either produce a point of the intersection or will reduce P to a
convex drum Piyy. Note that we may have 141 =1 or i = p, in which case the algorithm can
return NO since P and Q do not then intersect.

2) There now remains to test the intersection of Q and Piii1. Let 21,...,24 be the vertices
of F; in ciockwise order. We choose a lateral edge ¢ of P;;4,, say, an edge passing through z;, and
consider the plane T} containing both z; and the edge e. For any u,v, 1 < u < v < k, we define
Tu,v as the portion of F; ;) comprised between Ty and T, (i.e., the portion which contains the
edge 2,2,41). We have seen in the description of the IHG algorithm how to compute an implicit
description of the polygon S; formed hy the intersection of P;;y) and T; - See Fignre 17. Recall

that this involves computing the points a and b as well as the lateral edges of P; ;;, which intersect
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T;. Having an implicit description of S;, we can apply the procedure described earlier, using first
IHP with arguments T, @ and then IHG with arguments S;,Q. This will either return a point of
the intersection of S; and Q, in which case we are done, or produce a pair of planes of support for
P and Q respectively, containing two parallel lines separating Sj and Q.

Once again, locating the intersection of these two planes will permit us to substitute Ty, or
Tj,k for P accordingly. We can perform a binary search on j in the interval 12,&]. If the algorithm
does not terminate before, it will reduce P; ;41 to the convex polyhedron Tjj+1 for some j - See
Figure 18-a.

3) Tj,5+1 has one face lying on P; (the triangle z,z;2;41) and a parallel face on P;41, denoted
F. Unfortunately, Figure 18-a illustrates only the simplest case since F is not necessarily a triangle.
However, we can remedy this discrepancy easily. Let y; be the endpoint of the edge ¢ which lies
on Piyy (e =2z1y;1) and let y1,...,yn denote the vertices of Piy1 in clockwise order. F is a convex
Polygon ¥1,%, Y1y« s ¥m:¥',¥1 - See Figure 18-b,c. We can determine y and ¢’ in O(logp) time by
intersecting P;4) with T; and Tj4,, using the IGL algorithm (which actually must have been done
already). If y and y’ do not lie on the same edge of P, , we carry on the previous binary search on
the planes Ty',...,T;', where T}’ is now the plane containing ¢ and y;. If the algorithm does not
return, it will reduce P to a convex polyhedron B with two parallel faces on P; and P; 41, denoted
zyab and y,a’t’ respectively, both of which are triangles - See Figure 19. Let F; (resp. Fj41) be the
face of B lying on T; (resp. Tj+1). In addition to aband a't’, B may contain other edges f1,...,/¢
intersecting both Ij and Fj4;. These edges lie on consecutive lateral edges of Pijis1, 83, €14...,€
in clockwise order. Our next task is to compute an implicit description of this set of edges, that is,
to determine ¢; and ¢.

The following fact will permit us to compute ¢; and ¢; in constant time. We can always assume
that a,b (resp. a’,') occur in clockwise order in a traversal of the boundary of P; (resp. Pi41). Let
g be alateral edge of P; 4y intersecting both Fj and Fj4,, with g, (resp. gs) the endpoint of 5 lying
on P; (resp. Pit1). Note that by construction of B, any edge intersecting Fj intersects Fj; as well,
and vice-versa. We can observe that if g; occurs between z; and a (resp. & and z;) in clockwise
order, g must lie between &’ and y; (resp. y; and a') in clockwise order. Wlog, suppose that 7
occurs between z; and a. Let m;-t, be the vertex of P; such that a lies on the edge z;{',z,-tlﬂ. Since
lateral edges can only intersect at their endpoints, the lateral edge of P; i+1 adjacent to z;-tl (which
is uniquely defined by the preprocessing) also intersects both Fj and Fj4,. This shows that lateral
edges of P; ;1) intersect Fj and Fj4, if and only if the lateral edge adjacent to z.'-'", or z;-fﬂ_, intersects
T;. This gives us a convenient way to determine ¢; and ¢, in constant time with the technique already

used in the JHG algorithm. Namely, let zi, 1,u""i-+|,u +1 be the edge of P;; which intersects F; and

let x:{'m

is the edge 2 27, ., and ¢ the lateral edge adjacent to 2. All the lateral edges between e,

be the vertex of P; in one-to-one correspondence with i+1,u+1+ It is then clear that ¢,
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and ¢ also intersect Fj and Fjyq, that is, the edges adjacent to .':"-tm,z;-fmﬂ Gaida ,z:-t,. Recall that
the one-to-one correspondence between {z},,z},,...} and {2, +1,19%i41,9s+--} established in the
preprocessing allows random-access to the lateral edges of Piisa.

4) Having an implicit description of ¢,,..., ¢, we can define U; as the plane containing z; and
¢j and apply the procedure of 2) on this set of plancs - See Figure 19. This will either return a
point of the intersection of P, Q, and Uj, or produce a pair of planes of support from which we can
decide which side of U; contains the intersection of P and @, if it exists. Note that the intersection
of B and Uj is simply a triangle which we can compute in constant time. If the algorithm does
not return, it will eventually reduce P to a pentahedron K lying between Tj, Tj+1, two consecutive
triangles Uj, U, and a lateral face of Py it1- In fact, K can be “degenerate” and have fewer than
5 faces.

5) Finally, we have to test the intersection of K and Q. To do so, we can test each face of K
successively, using the IHG algorithm. If we fail to detect an intersection, we determine whether Q
lies entirely inside or outside of K by testing the inclusion of any point of Q in K, which can be
done in constant time.

We now give a more formal outline of the algorithm IHH, which will also serve as a summary.

ALGORITHM IHH
The input consists of two preprocessed convex polyhedra P and @, and the output is NO if P

and Q do not intersect or (YES, A) if they do, where A is a point of the intersection.

Step 1:
l=1;m=p
while l <m —1
begin
§ = L]
if P? does not intersect Q [IIP]
then :
if g; lies above P
then | =1
else m =1
else
if P; intersects Q [THG]
then return (YES, A = point returned by [HG)
“IHG provides a pair of separating lines from which Tp and Tq are computed”
if Tp and T do not intersect
then return (NO)
if Tp and Ty intersect above P?
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then [ =1
else m =1
end
1=
Step 2: “P is reduced to a convex drum F; ;4"
Let ¢ be alateral edge of P;;;, and T be the plane containing ¢ and the vertex z; of F;. Apply
Step 1 with respect to the planes T;. Finally set 5 to L.

Step 3: “P is reduced to a convex polyhedron T ;;; "
If the face of Tj,;41 lying on P7,, is not a triangle, apply step 2 with respect to the planes

Ti'y...yTm' (defined in the previous discussion).

Step 4: “P is reduced to a polyhedron B bordered by two triangles, subpolygons of P; and P;4y"
Apply the procedure of Step 1 with respect to the planes U; passing through z; and e;, where
z) is a vertex of P; and ¢; is the j-th lateral edge of B.

Step 5: “P is reduced to a polyhedron K with at most 5 faces”

Check if Q lies entirely inside K by testing if g, does. In the affirmative, return (YES, ¢;).
Otherwise, apply the IHG algorithm to test if Q intersects any of the faces of K. If this is the case,
return (YES, A), where A is a point of the intersection, else return (NO).

We can now state our main result.

Theorem 13. The intersection of two preprocessed convex polyhedra of p and g vertices respectively
can be detected in O((logp)(logg)log(p + g)) operations, that is, O(log®N) time, where N is the

total number of vertices in P and Q.

Proof: At this stage, we simply have to evaluate the execution time of the algorithm. We review
its various phases and derive its complexity.

1. Involves O(logp) applications of [HP (log® ¢), IHG ((logq)log(p + g)), and the algorithm of
Lemma 12 (log pq)-

2. We can obtain an implicit description of S; in constant time, once the intersection of T; with
P; and P;4; has been computed (logp). The remainder of this step is similar to the previous
one.

3. Same complexity as (2), since computing an implicit description of y,...,ym takes constant

time.
4. Same as (2).
5. Essentially a repeated application of IHG to Q and a triangle or a quadrilateral {log’ ¢). &
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4. Conclusions

We have described a complete set of algorithms for detecting intersections in two and three
dimensions. In all cases, we have avoided issues of efficiency beyond the asymptotic level. Although
the algorithm for computing planar intersections is asymptotically optimal [19], we believe that a
more sophisticated treatment of bimodal functions may improve its running time. Also, a more
refined case analysis might permit us to reduce not only one of the polygons by half but always both
of them.

In three dimensions, aside from speeding up the preprocessing [9], we believe that Algorithm
IHH would benefit from a more symmetric treatment of the two polyhedra (along the lines of the
algorithm IGG, for example). There also remains the question of proving lower bounds since none
of these algorithms has been shown to be optimal.

In all cases, we believe that improvements can be best discovered by implementing the algo-
rithms and observing their behavior on real problems. There is also the possibility of using the
methods presented here as the basis of fast probabilistic algorithms [17] or algorithms efficient on

the average [4].

Note: While this paper was being refereed, some of the results were improved. In particular, terms
of O(log’ n) in Section 3.6 have been reduced to O(log” n) and terms of O(log? ) in Sections 3.3
and 3.5 have been reduced to O(logn) in [7)].

Acknowledgment: We wish to thank Garret Swart for pointing out a flaw in algorithm IGG in an
carlier draft.

References

[1] Aho,A.V., Hopcroft,J.E., and Ullman,).D., The Design and Analysis of Computer Algo-
rithms, Addison-Wesley Publishing Company, Reading, Massachussetts, 1974.

[2] Bentley,J L., Haken,D., and Hon,R., Fast geometric algorithms for VLSI tasks, Proc. Com-
put. Conf., 1981, pp. 88-92.

[3] Bentley,1.1.. and Ottmann,T., Algorithms for reporting and counting geometric intersections,
IEEE Trans. Comput., Vol. C-28, pp. 643-647, Sept. 1979.

[4] Bentley,J.L. and Shamos M.1., Divide and Conquer for linear expected time, Information
Processing Letters, Vol. 7, pp. 87-91, 1978.

[6] Chazelle,B., Computational Geometry and Convexity, PhD thesis, Yale University, 1980.

[6] Chazelle,B. and Dobkin,D.P., Detection is easier than computation, Proceedings of the 12th
Annual ACM Symposium on Theory of Computing, Los Angeles, California, May, 1980, pp.146-153.

[7] Dobkin N.P. and Kirkpatrick, N.G., Fast. detection of polyhedral intersection, Thearetical
Computer Science, 27, 1983, pp. 241-253.

24



[8] Dobkin,D.P. and Lipton,R.L., Multidimensional searching problems, SIAM Journal on Com-
puting, Vol.5, No.2, June, 1976, pp.181-186.

[5] Dobkin,D.P. and Munro,J.1., Efficient uses of the past, Proceedings of the 21st Annual IEEE
Symposium on Foundations of Computer Science, Syracuse, pp. 200-206, Oct. 1980.

[10] Dobkin,D.P. and Tomlin,D., Cartographic modelling techniques in environmental planning:
an cfficient system design, Submitted for publication.

[11] Forrest,A., private communication, March 29, 1979.

[12] Kiefer,J., Sequential minimax search for a maximum, Proceedings of the American Math-
ematical Society, Vol.4, 1953, pp.502-506.

[13] Knuth,D.E., The art of computer programming: fundamental algorithms, Addison-Wesley
Publishing Company, Reading, Massachussetts, 1968.

[14] Muller,D.E. and Preparata,F.P., Finding the intersection of two convex polyhedra, Theo-
retical Computer Science, Vol. 7, pp. 217-236, 1978.

[15] Newman,W. and Sproull,R., Principles of Interactive Computer Graphics, Second Edition,
McGraw Hill, New York, 1979.

[16] Nievergelt,J. and Preparata,F.P., Plane-sweeping algorithms for intersecting geometric fig-
ures, Comm. ACM, Vol. 25, No. 10, pp. 739-747, 1982.

[17] Rabin,M., Probabilistic algorithms, in Algorithms and Complexity: New directions and
Recent Results, Traub,l., Ed. Academic Press, 1976.

(18] Shamos,M.1., Geometric Complexity, Proceedings of the 7th Annual ACM Symposium on
Theory of Computing, Albuquerque, New Mexico, May, 1975, pp.224-233. '

[19] Shamos M.1., Computational Geometry, PhD thesis, Yale University, May, 1978.

[20] Shamos M.I. and Hoey,D., Geometric intersection problems, 17th Annual IEEE Symposium
on Foundations of Computer Science, Houston, Texas, October, 1976, pp.208-215.

[21] Tomlin,D., Private communication to D. Dobkin, 1978.

25



INTERSECTED| LINE |POLYGON| PLANE POLYHED#\’ON
LINE  |constant | log n |constant| log®n
POLYGON log n log n logZ?n
PLANE constant | log2n
POLYHEDRON log® n

Figure 1: The time bounds of our algorithms.
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Figure 2: The distance from a convex polygon to a line is bimodal.
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Figure 3: We form AYBX as a bounding quadrilateral in which
PAQ lies if it exists.
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‘ Case 1: GF (resp. EH) lies on the same side of AB, in which case
‘ we eliminate half of L, (resp. Ly).

1

G

b) F

X
Case 2: A,F,E,B and A,G,H,B occur in this order on x and ¥
respectively, in which case there is no intersection.

c)

Case 3: GF and EH intersect.

(Figure 4 .../...)




d)
X

Case 4: Avy and BWj intersect, in which case POQ contains their

intersection point.

H

e)

Case 5: Av; lies strictly "above" (or "below") Bwj.

Figure 4: The algorithm INTERSECT
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Figure 5: Computing a pair of separating lines.
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Figure 6: Intersecting polygonal lines.



Figure 7: Preprocessing three-dimensional objects.
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Figure 9: Intersection of a polyhedron and a polygon.

Figure 10: The polygons QW Qy,v-

— Figure 11: The two cases of interesction of Q and R.
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Figure 13:
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Computing a pair of separating lines for Q and R.
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Figure 14: The algorithm IHL.
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Figure 15:

Computing a plane of support of P.
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Figure 16: Reducing the size of P in IHH.



Figure 17: Reducing the cap Pi;i*i in IHH.
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Figure 18: The cap Pi,i*l after reduction.
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Réducing the slice A in IHH.
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