Permutations on Superposed Parallel Buses

(Version 2)

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627
Toshio Nakatani

Department of Computer Science
Princeton University
Princeton, N.J. 08544

CS-TR-024-86

May, 1986

Index Terms: Area-time trade-off, bus-connected arrays, interconnection networks, mesh-connected
computer, parallel processing, permutations, VLSI complexity.

Permutations on Superposed Parallel Buses

Bruce W. Arden
College of Engineering and Applied Science

University of Rochester
Rochester, N.Y. 14627
Toshio Nakatant

Department of Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

This paper presents two schedules for arbitrary permutations on the
square grid of superposed parallel buses. In the first, called a self-pipelined
schedule, row-column broadcasts are pipelined for a single permutation.
Because broadcast-ordering involves the control algorithms similar to those for
setting a Benes rearrangeable network, this schedule is only applicable for static
permutations. A multi-pipelined schedule is based on fixed-order row broadcasts
of one permutation and fixed-order column broadcasts of another permutation.
More than one permutation is in process in the pipeline. Because of the fixed
broadcast order, this schedule is applicable for dynamic permutations. These
two schedules are area-efficient and almost optimal for permutations using the
AT? measure. They take a shorter cycle time than previously reported inter-
connection schemes using almost linear area. They are especially suitable for
highspeed but area-limited technologies because of the simple hardware control
algorithm and the regular, area-efficient interconnections. Descriptions of these
two schedules and a summary of their VLSI complexities and minimum I/O

bandwidths in comparison with other linear area interconnections are included.

May, 1986

Permutations on Superposed Parallel Buses

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627

Toshio Nakatani

Department of Computer Science
Princeton University
Princeton, N.J. 08544

1. Introduction

Area-efficient permutation is one of the most important issues in parallel
supercomputing (Gottlieb and Kruskal[1984], Johnsson[1985], Leiserson[1983],
Schwartz[1980], and Ullman[1984]). Although a crossbar (Pippenger[1975]) is
the most powerfull interconnection scheme, it requires O(N?) area for intercon-
necting N processors because of O(NQ) switches. A rearrangeable, multistage
interconnection network (Benes[1965]) has a reduced number of switches,
O(NlogN), but it still requires O(N?) area because of the quadratically growing
wire area of shuffle connections (Franklin[1981], Rosenberg[1983], and
Wise[1981]). The interconnection schemes based on the perfect shuffle

(Stone[1971]) or the hypercube share the same disadvantages.

On the other hand, a time-multiplexed linear bus takes O(N) area for
static permutation and O(NIogQN) area for dynamic permutation, but a single
permutation takes O(N) time. Tree and Ring interconnections have the same
area and time performance as a linear bus. A mesh connection (Orcutt[1976])
also takes the same area but has better time performance than those using
almost linear area. For static permutation, Thompson[1977] has presented a

(7V N—8) time routing method by simulating the binary Benes permutation

-9

network (Waksman[1968]) on a mesh-connected parallel computer. For dynamic
permutation, Thompson and Kung [1977] have suggested a 4(\/N—I) routing
method by simple sweeps on a mesh-connected computer. For bit-permuted-
complement permutations, Nassimi and Sahni[1980] have also shown an optimal
routing algorithm on a mesh-connected computer using O(logQN) preprocessing

time.

Recently, the authors have found a faster routing algorithm on the inter-
conection schemes based on superposed parallel buses (SPB) (Arden and Naka-
tani[1985]), which use O(Nlog?N) area for static permutation. It is essentially
a simulation of the N=n? three-stage Benes permutation network (Benes[1962]).
This approach takes 3V/'N time and VN time if it operates in pipelined fashion
for multiple permutations. Here, the basic unit of time, or cycle, is the time to

broadcast one packet on a bus. In essence, this is the unit delay assumption

(Thompson[1979]).

In this paper, we present two schedules for arbitrary permutations on the
square grid of superposed parallel buses (Figure 1.1). In a self-pipelined schedule,
row-column broadcasts are pipelined for a single permutation. Because
broadcast-ordering involves the control algorithms similar to those for setting a
Benes rearrangeable network, this schedule is only applicable for static permu-
tations. On the other hand, a multi-pipelined schedule is based on fixed-order
row broadcasts of one permutation and fixed-order column broadcasts of
another permutation. More than one permutation is in process in the pipeline.
Because of the fixed broadcast-orper, this schedule is applicable for dynamic

permutation.

For a single permutation, a self-pipelined schedule takes V N+1 cycles and
a multi-pipelined schedule takes 2V N cycles. For sequential or multiple permu-

tations, both schedules take VN cycles in pipelined fashion. These two

-3-

schedules are especially suitable for highspeed but area-limited technology
because of the simple hardware control algorithm and the regular, area-efficient
interconnections. In this case, the broadeasting chips and the buses operate at
a much faster cycle than the processors. The pipelined grid interconnection
(Figure 1.2) and the design of the broadcasting chips (Figure 2.4 and 3.2) to

implement the two schedules are considered.

In section 2 and 3, the two schedules of the SPB are described in detail. In
section 4, VLSI complexities of the SPB, such as area, time, and AT?, are dis-
cussed. In section 5, other linear area interconnections, such as the mesh (Fig-
ure 1.3) and the torus (Figure 1.4), are described in terms of the performance of
permutations. In section 6, minimum 1/O bandwidth is discussed and compared
for those interconnections. In section 7, comparison tables are summarized
including area, time, AT?, and minimum I/O bandwidth of three linear area
interconnections described in this paper for both static and dynamic permuta-

tion.

2. A Self-pipelined Schedule of the SPB for Static Permutation

In this schedule (the hardware control algorithm 2.1), the broadcast-order
must be precalculated in such a way that all the row and the column buses are
continuously busy during the given permutation. This mode of operation is
called self-pipelined in this paper, since row broadcasts and column broadcasts
are pipelined for a single permutation on superposed parallel buses (Figure 2.1).
The following theorem states that it is always possible to consecutively select a
packet with distinct target column addresses from each row and it takes n+1

2

cycles to complete an arbitrary permutation of N=n" data items on a two

dimensional nXn square grid of superposed parallel buses.

-4 -

Theorem 2.1: There exists a schedule for an arbitrary permutation of N=n?
data items in n+1 cycles on a two dimensional nXn square grid of superposed

parallel buses.

Proof: Consider nXn array of column destinations. There are exactly n
occurences of each of the n column destinations in the array. This satisfies the
hypothesis of Hall’s theorem on ‘distinct representatives” (Hall[1935]). That is,
for any k (1<k<n), there are at least k¥ distinct column destinations on any k
rows. Therefore, there exists a selection of distinct column destinations from
each row. After selection and removal of distinct representatives, Hall’s
theorem is again satisfied with the n rows now containing n—1 column destina-
tions. Therefore, there continues to exist a selection of distinct column destina-
tions from each row until exausted. Thus, all the packets on the rows can be
broadcast in n cycles, and all the packets reach their destinations in n+1 cycles

by interleaving operations of row and column broadcasts (Figure 2.1).0

However, it is a time-consuming operation to select a set of distinct
representatives (or equivalently to find a maximum matching on the bipartite
multigraph). The best known sequential algorithm for the case of n sets with n
elements each takes O(n®?) time (Papadimitriou and Steiglitz[1982]). There-
fore, by using this algorithm repeatedly, the whole broadcast-order can be
obtained for a single permutation in a total of O(n7/2) time. On the other
hand, a self-pipelined schedule is regarded as the minimum edge-coloring of the
bipartite multigraph. That is, this schedule is considered to be equivalent to a
time-division-multiplexing (Andresen and Harrison[1972] and Marcus[1972]) of a
n? Benes-Clos rearrangeable network (Figure 2.2) and also to be equivalent to a
time-multiplexed crossbar (Figure 2.3). Therefore, the related control algorithm
can be used to select the sets of distinct representatives. However, the best

2

known sequential algorithm to set the switches of a n® DBenes-Clos

-5-

rearrangeable network takes O(n’logn) (Opferman and Tsao-Wu[1971] and
Andresen[1977]). An O(log*n) time parallel algorithm (Nassimi and Sahni[1982]
and Lev, Pippenger, Valiant[1981]) has also been described. Therefore, this

schedule is primarily applicable for static permutations.

An implementation of this schedule on the pipelined grid interconnection is
described below. First, every processor puts a packet in its broadcasting chip
(Figure 2.4). A packet (Figure 2.5) is composed of the broadcast order, the des-
tination address in two parts, and the data. The broadcasting sequence for the
row buses is prescheduled and known by the broadcast order of a packet.
Whenever the content of the broadcast order is matched by the modulo n clock
counter, a chip will broadcast a packet on the row bus after stripping the
broadcast order from the packet. Whenever the first half of the destination
address is matched by its own location, a chip moves a packet from the row bus
into the input and output register. In the following cycle, the chip strips the
first half of the destination address from the packet and broadcasts the
remainder on the column bus. A chip on the column bus moves a packet to the
input & output register, whenever the latter part of the destination address of a
packet is matched by its own location. After the first broadcast, the row and
column buses are used simultaneously. Finally, every processor receives its data

specified by the given permutation after n+1 cycles.

Finally, we note that the self-pipelined schedule is optimal for arbitrary
static permutations on a grid of superposed parallel buses (Arden and Naka-

tani[1986]).

-6 -

3. A Multi-pipelined Schedule of the SPB for Dynamic Permutation

In this schedule (the hardware control algorithm 3.1), the broadcast-order
is fixed so that the broadcast operations on the row and the column buses for
one permutation are not overlapped and thus not pipelined in itself. Instead
the column broadcasts of one permutation are overlapped with the row broad-
casts of the following permutation (Figure 3.1). Thereby, all the buses on the
rows and the columns are kept busy during consecutive permutations. This
mode of operation is called multi-pipelined in this paper, since multiple permu-
tations are pipelined. This schedule can be used for dynamic permutations
since the broadcast-order is fixed and independent of permutations. However, n
buffers on each broadcasting chip (Figure 3.2) are needed for the pipeline opera-
tion of this schedule. The following theorem states that n buffers are necessary
and sufficient to implement an arbitrary permutation of N =n? data items on a

two dimensional n)Xn square grid of superposed parallel buses.

Theorem 4.1: There exists a dynamic schedule for an arbitrary permutation of
N=n? data items in 2n cycles on a two dimensional nXn square grid of super-

posed parallel buses and n buffers are necessary and sufficient.

Proof: Since there are n packets on each row, all the packets can reach their
destination columns by n row broadcasts (that is, in n cycles). There are
exactly n packets on each column after n row broadcasts. Therefore, n column
broadcasts (that is, in n cycles) can convey all the packets to their destinations.
Row and column broadcast-orders are both fixed, independent of permutations.
That is, it takes 2n cycles to permute n? data items dynamically on nXn square
grid of superposed parallel buses. In the worst case of permutations, as many
as n packets must be received by the buffer of a single processor on a destina-
tion column. Therefore, n buffers are necessary. On the other hand, for any &

(1<k<n), after k column broadcasts, at most n—Fk buffers remain filled for

-l

transmissions on columns and at most k new packets have been received from

row transmissions. Therefore, n buffers are sufficient.O

An implementation of this schedule on the pipelined grid interconnection is
described below. First, every processor puts a packet in its broadcasting chip.
A packet (Figure 3.3) is composed of the destination address and the data.
Whenever the modulo n clock counter is matched by its own location in the
row, a chip broadcasts a packet on the row bus. Whenever the first half of the
destination address of the broadcast packet is matched by its own location on
the row, the chip moves a packet to the input and output buffer. After n
cycles, the row broadcast operations are completed and some chips may have at
most n packets. Then, the chips start broadcasting on the column bus. When-
ever the modulo n clock counter is matched by the last half of the destination
address of the packets in the buffer, the chip broadcasts the packet on the
column bus after stripping the destination address of the packet. Whenever the
modulo n clock counter is matched by its own location in the column, a chip
moves a packet to the input and output register. After n cycles, the column
broadcast operations are completed. Every processor receives a packet specified
by the given permutation after 2n cycles. Since the row and the column opera-
tion can be pipelined for multiple permutations, every processor can send and
receive a new packet every n cycles after all the row and the column buses are

busy.

Finally, we note that a buffering approach has been studied in the context
of space-time equivalence in communication networks for real time telephone
traffic control. For example, the queueing crossbar (Marcus and
McDonald[1969]) contains a time-division queue (a set of shift registers) at each
cross point of a crossbar to switch digitally encoded speech information (Figure

3.4). A multi-pipelined schedule is also considered to be equivalent to a time-

-8-

division-multiplexing of a n? (rnetwork (Lawrie[1975]) (Figure 3.5).

4. VLSI Complexities of the SPB

VLSI area, time, and A7? measures for the two schedules are discussed in
this section. The area is measured in both communication area and total area.
The communication area is the greater concern when the implementation
involves only buses and the broadcast control is not implemented as separate
chips but is instead programmed within the existing processors. On the other
hand, the total area is of more concern when the implementation involves both

buses and highspeed, but area-limited, broadcast chips.

In slightly more detail, the area measures considered are only those depen-
dent on N and they are presented as two components. The area due to the hor-
izontal and vertical buses is called the communication area. When registers
whose size is dependent on NN are used in the processors in the multi-pipelined
case, the associated area is added to the communication area. The complexity
order is of course determined by the dominant term in this sum. The horizontal
and vertical buses in the case of the self-pipelined case and the horizontal buses
in the case of the multi-pipelined case are O(logN) width. A connection between
one of these buses and a processor occupies O(log?N) area (Figure 4.1). There-
fore, the basic communication area is O(Nlog®N) in both cases. In the self-
pipeline case, a processor area is O(logN) due to the counter and register of size
O(logN). Therefore, the total processor area is O(NlogN), which is dominated
by O(Nlog®N) communication area. Note that it is possible to reduce the com-
munication area to O(NN) but at the cost of the increased total area of O(N®/?).
In the multi-pipelined case, the addition of VN buffers of size O(logN) at each
processor adds area proportional to NMlogN to the total and this term

dominates O(Nlog?N) communication area.

w) o

The time is measured by the number of broadcasting steps on the buses.
The basic unit of time, or cycle, is the time to broadcast one packet on a bus.
That is, we assume the unit delay model based on Thompson[1979]. In the
self-pipelined case, a single permutation takes \/N—!—l cycles. In the multi-
pipelined case, a single permutation takes VN cycles. The time and area

measures are combined in the obvious way to produce the AT? measures.

5. Other Almost Linear Area Interconnections

The other interconnection networks that can be embedded in almost linear
area are a linear bus, ring, tree, mesh, and torus. For a linear bus, ring, and
tree, a permutation takes at least O(N) time. On the other hand, a permuta-
tion takes O(\/N) time for a mesh and torus. For a permutation of IV items,
AT2=Q(N2) due to the lower bound technique using the bisection argument
based on Thompson[1979]. When a permutation is performed with linear area,
that is A=0(N), then at least T=0(V'N) is required. That is, the interconnec-
tion networks based on a grid, such as a SPB, mesh, torus, are optimal for per-

mutation in linear area.

On a mesh-connected computer (Figure 1.3), Thompson[1977] has presented
a (TVEHS) time (SIMD) routine method by simulating the binary Benes permu-
tation network (Waksman[1968]) for static permutation. Here, the basic unit of
time is the time for a unit route, that is, the time to pass a packet from a pro-
cessor to one of the four nearest-neighbour processors. The communication area
in this case is simply O(N) since a packet of constant length (no address por-
tion is required) is transferred. On the other hand, a processor area is O(logN)
due to both O(1) instructions of size O(logN) and O(logN) data corresponding
the switch settings. That is, the total processor area is O(NlogN), which dom-

inates O(N) communication area. For multiple permutations, one permutation

- i

cannot overlap with another in this method. Therefore, the pipeline perfor-

mance is the same as the one for a single permutaion.

For dynamic permutation, Thompson and Kung [1979] have presented
4(\/N—1) routing method by simple sweeps, which uses O(\/—]V) memories for
each processor. The communication area in this case is O(Nlog?N) due to the
horizontal and vertical buses of width O(logN). On the other hand, a processor
area is O(VNlogN) due to O(VN) buffers of size O(logN). That is, the total
processor area is O(N%/?logN), which dominates O(Nlog?N) communication
area. For multiple permutations, the row sweep of one permutation can overlap
with the column sweep of another. Therefore, the pipeline performance is
Q(VN—I) time.

On a torus interconnection (Figure 1.4), which is a mesh with wrap-around
connections, we can simply apply the same method as a mesh-connected com-
puter for static permutation. In this case, area and time complexities are the
same as a mesh-connected computer. For multiple permutations, the pipeline
performance is the same as the one for a single permutation. For dynamic per-
mutation, we can use a 2('\/17—1) time routing method using a single (\/N—-—l)
horizontal rotation and a single (VVN—1) vertical rotation on a torus, which
also uses O(\/N) memories for each processor. In this case, area complexity is
the same as a mesh-connected computer for dynamic permutation, but time
complexity is improved. For multiple permutaions, the row rotation of one per-
mutation can overlap with the column rotation of another. Therefore, the pipe-

line performance is V N—1 time.

- 11 -

6. Minimum I/ O Bandwidth

Minimum I/O bandwidth is determined by the minimum amount of data
required to start and keep operating a permutation every cycle with no idle
cycles. For example, dynamic permutation for a mesh-connected computer and
both static and dynamic permutation for SPB require O(\/N) new data every
cycle. On the other hand, static permutation for a mesh-connected computer
and both static and dynamic permutation for a torus requires O(N) new data
for the first cycle. On a torus, if only O('\/N) new data is available every
cycle, a dynamic permutation takes 4('\/[?——1) cycles as in the case of a mesh-

connected computer.

7. Comparison Tables

VLSI area, time, AT?, and minimum I[/O bandwidth of the SPB, the
mesh-connected computer, and the torus are summarized in tabular forms for

comparisons of both static and dynamic permutation.

Communication Area (Bus area dependent on N)

The Interconnections Static Permutation Dynamic Permutation
(without buffers) (with buffers)
SPB O(Nlog®N) O(Nlog®N)

Mesh /Torus O(N) O(Nlog® N)

-12 -

Total Area (Bus and buffer area dependent on V)

The Interconnections

Static Permutation

(without buffers)

Dynamic Permutation

(with buffers)

SPB
Mesh / Torus

O(Nlog® N)
O(NlogN)

O(N*/logN)
O(N3/logN)

Time for A Single Permutation

The Interconnections

Static Permutation

(without buffers)

Dynamic Permutation

(with buffers)

SPB
Mesh

Torus

V N+1
™V N-8
TVN-8

2VN
4(VN-1)
2(VN—-1)

Time for Multiple Permutations

The Interconnections

Statiec Permutation

(without buffers)

Dynamic Permutation

(with buffers)

SPB
Mesh

Torus

VN]t
7VN-8 [0]
7V N—=8 [0]

VN [VN]
2(VN-1) 2(VN-1)]
VN-1 [VN—1]

+ Note: The number in [| indicates the pipe-filling time.

-12 -

AT? (A: Communication Area)

The Interconnections

Static Permutation

(without buffers)

Dynamic Permutation

(with buffers)

Lower bound
SPB
Mesh /Torus

O(N?)
O(N%log?N)
O(N?)

O(N?)
O (N?log®N)
O (N?log®N)

AT? (A: Total Area)

The Interconnections

Static Permutation

(without buffers)

Dynamic Permutation

(with buffers)

Lower bound
SPB
Mesh /Torus

O(N?)
O(N?log®N)
O (N?logN)

O(N?)
O(N°?1ogN)
O(N*/?logN)

Minimum I/O Bandwidth

The Interconnections

Static Permutation

(without buffers)

Dynamic Permutation

(with buffers)

SPB
Mesh

Torus

VN
N

VN
VN
N

- 14 -
8. Conclusions

We presented two schedules on a square grid of superposed parallel buses;
one for static and the other for dynamic permutations. They are area-efficient
and yet almost optimal in AT? measure of VLSI complexity. Moreover, they
take a shorter cycle time than previously reported permutation schemes using

almost linear communication area.

The area, time, and AT? comlexity measures for the SPB are compared to
those for two other linear area interconnections; the mesh-connected computer
and the torus. The SPB compares favorably in almost all respects, including
the necessary I1/O bandwidth. The most striking improvement afforded by the
SPB is in the time for a static permutation. In fact, on the basis of linear area

arguments, the SPB is almost optimal.

If the broadcast control and interconnection hardware are entirely imple-
mented using highspeed technologies, then, for example, a very fast permuta-
tion network could be realized to interconnect off-the-shelf RISC microproces-
sors (Patterson[1981], Hennessy[1981], Radin[1983]). The two schedules
described in this paper are particularly suitable for this purpose because of the
simple hardware control algorithms and the regular, area-efficient interconnec-

tions.

- 15 -
References

Andresen, S. and S. R. Harrison [1972]. “Toward a general class of time-
division multiplexed connection networks,” IEEE Trans. on Communications

COM-20:5, pp. 836-846.

Andresen, S. [1977]. “The looping algorithm extended to base 2! rearrangeable
switching networks,” IEEE Trans. on Communications COM-25:10, pp. 1057-
1063.

Arden, B. W. and T. Nakatani [1985]. ‘“Superposed parallel buses: a systolic
area-time optimal VLSI interconnection,” Technical Report CS-TR-19, Depart-

ment of Computer Science, Princeton University.

Arden, B. W. and T. Nakatani [1986]. ‘“The optimal uniform schedule of arbi-
trary static permutations on superposed parallel buses,” Technical Report CS-

TR-33, Department of Computer Science, Princeton University.

Batcher, K. E. [1968]. “Sorting networks and their applications,” 1968 Spring
Joint Comput. Conf., AFIPS Conf. Proc., 32, Washington, DC, pp. 307-314.

Benes, V. E. [1962]. *“On rearrangeable three-stage connection networks,” Bell

Sys. Tech. J., 41, pp. 1481-1492.

Benes, V. E. [1965]. Mathematical Theory of Connecting Networks and Tele-
phone Traphic, Academic Press, New York.

Franklin, M.A. [1981]. “VLSI performance comparison of Banyan and crossbar

communication networks,” IEEE Trans. on Computer, C-30:4, pp. 283-290.

Gottlieb, A. and C. P. Kruskal [1984]. ‘“Complexity results for permuting data

and other computations on parallel processors,” J. ACM, 31:2, pp. 193-209.

Hall, P. [1935]. “On representatives of subsets,” J. London Math. Soc., 10,

pp.26-30.

- 16 -

Hennessy, J., J. Norman, F. Baskett, and J. Gill [1981]. “MIPS: a VLSI proces-
sor architecture,” In Kung, H. T., R. Sproull, and G. Steele(eds.), VLSI Systems

and Computations, Computer Science Press, Rockville, Md.

Johnsson, S. L. [1985]. “Data permutation and basic linera algebra computa-
tions on ensemble architectures,” Research Report YALEU/DCS/RR-367, Yale

University.

Lawrie, D. H. [1975]. ““Access and alignment of data in array processor,” [EEE
Trans. on Computers, C-24:12, pp. 1145-1155.

Leiserson, C. E. [1983]. Area efficient VLSI computations, MIT Press, Cam-
bridge, Mass.

Lev, G. F., N. Pippenger, and L. Valiant [1981]. ‘“A fast algorithm for routing
in permutation networks,” IEEE Trans. on Computers C-30:2, pp. 93-100.
Marcus, M. J. and H. S. McDonald [1969]. ‘“The queuing crossbar: a hybrid

division and space-division network,” Proc. 1969 National Electronics Conf., pp.

605-610.

Marcus, M. [1972]. ‘“Space time equivalents in connecting networks,” Con/.

Record, 1972 IEEE Int. Conf. Communications 31, pp. 35/25-31.

Nassimi, D. and S. Sahni [1979]. “Bitonic sort on a mesh-connected parallel

computer,” IEEE Trans. on Computers, C-27:1, pp. 2-7.

Nassimi, D. and S. Sahni [1980]. “An optimal routing algorithm for mesh-

connected parallel computers,” J. ACM, 27:1, pp. 6-29.

Nassimi, D. and S. Sahni [1982]. “Parallel algorithms to set up the Benes per-
mutation network,” IEEE Trans. on Computers C-31:2, pp. 148-154. Opferman,
D. C. and Tsao-Wu [1971]. “On a class of rearrangeable switching networks,”

Bell Sys. Tech. J. 50, pp.1579-1618.

-17 -

Orcutt, S. E. [1976]. “Implementation of permutation functions in Illiac IV-type
computers,” IEEE Teans. on Computers, C-25:9, pp. 929-936.

Papadimitriou, C. H. and K. Steiglitz [1982]. Combinatorial Oprimization: Algo-
rithms and Complexity, Prentice Hall, Englewood Cliffs, New Jersey.

Patterson, D. A. and C. H. Sequin [1981]. “A reduced instruction set VLSI com-

puter,” Proc. of The Eighth Annual Symposium on Computer Architecture, Min-
neapolis, Minn.

Pippenger, N. [1975]. “On crossbar switching networks,” IEEE Trans. on Com-
munications, COM-23:6, pp. 646-659.

Radin, G. [1983]. “The 801 minicomputer,” IBM Journal of Research and

Development, 27:3, pp. 237-246.

Rosenberg, A. L. [1983]. ‘“Three-dimensional VLSI: a case study,” J. ACM,
30:3, pp. 397-416.

Schwartz, J. T. [1980]. ‘“Ultracomputers,” ACM Trans. on Programming langu-
agees and Systems, 2:4, pp.484-521.

Stone, H. S. [1971]. “Parallel processing with the perfect shuffle,” IEEE Trans.
on Computers, C-20:2, pp.153-161.

Thompson, C.D., H. T. Kung [1977]. “Sorting on a Mesh-connected Parallel

Computer,” Comm. ACM, 20:4, pp. 263-271.

Thompson, C.D. [1978]. “Generalized connection networks for parallel processor

interconnection,” IEEE Trans. on Computers, C-27:12, pp. 1119-1125.

Thompson, C.D. [1979]. “A complexity theory for VLSIL” Ph.D. dissertation,
Carnegie-Mellon Univ., Pittsburgh, PA.

Ullman, J. D. [1984]. Computational Aspects of VLSI, Computer Science Press,
Rockville, Maryland.

= FRe=

Waksman, A. [1968]. “A permutation network,” J. ACM, 15, pp. 159-163.

Wise, D. S. [1981]. “Compact layouts of Banyan/FFT networks,” Proc. of the

CMU Conference on VLSI Systems and Computations, Pittsburgh, Penn., pp.
186-195.

procedure self-pipelined.hardware-control.algorithm;

for all broadcasting-chips i on every row do id: = i;
for all broadcasting-chips i on every row do location: = initial, second, or third;
for all broadcasting-chips i on every row do begin

if location = initial, then
input&output-registere—bus;
if location = second, then begin
if bus[destination.partA] = id, then begin
input&output-registere—bus[destination.partB, dataj;
end
end
if location = third, then begin
if bus[destination.partB] = id, then begin
input&output-registere-bus[dataj;
end
end

end
for all broadcasting-chips i on every row do begin

if location = initial, then begin

if modulo-counter = input&output-register[broadcast-order], then begin
bus<input&output-register[destination, data];

end

end

if location = second, then begin
bus«—input&output-register[destination.partB, data];

end

if location = third, then begin
buseinput&output-register[data];

end

end

end;

Algorithm 2.1:The self-pipelined hardware-control algorithm

procedure multi-pipelined.hardware-control.algorithm;

for all broadcasting-chips i on every row do id: = i;
for all broadcasting-chips i on every rowdo location: = initial, second, or third;
for all broadcasting-chips i on every row do begin

if location = initial, then input&output-buffere-bus,
if location = second, then begin
if bus[destination.partA] = id, then begin
input&output-buffer + + «bus[destination.partB, datal;
end
end
if location = third, then begin
if modulo-counter = id, then begin
input&output-buffere-bus[data];
end
end

end
for all broadcasting-chips i on every row do begin

if location = initial, then begin

if modulo-counter = id, then begin
buseinput&output-buffer[destination, data];

end

end

if location = second, then begin
if modulo-counter = 3input&output-buffer[destination.partB], then begin
buse3input&output-buffer[data] - - ;

end

if location = third, then begin
bus<input&output-buffer[datal;

end

end
end;
Note: + + means a first-in/first-out addition of a buffer entry

— - means a deletion of a buffer entry matched by the associative matching
3 means existence of an entry matched by the associative matching

Algorithm 3.1:The multi-pipelined hardware-control algorithm

AP

Aol e
Aol
Aleole

. @ processor

O

Figure 1.1: A 4x4 square grid of superposed parallel buses

: a broadcasting chip

O : a processor

Figure 1.2: A 4x4 pipelined grid interconnection

)

(s)
N

O—
(D—0

CO—)

Q

Figure 1.3: A 4x4 mesh interconne

m_wl?
(&)

@__.

ction

N
o

|
OO

Gll

0

OO
0

%

-

Figure 1.4: A 4x4 torus interconnection

21| 13| (10| |03 00(|10| |20/ |30
02||20(|12]|30 0111|2131
01||11|(23]]31 — 02|]12]]22]]32
22||00((32|33 03|13 23|33
Initial Position Final Position

Time —» 01 02 03 04 05

Row0 [21][13][10][03]

ot o] fan] o] 2]

Row2 |11](01]|28)|31]}

fows [32] [33] [oo] [22]

o [[o] [o] o2

car [11] 1z [[2

cr [] 2] 2

s [)[m]m)[m

Scheduling Chart

Figure 2.1: A 4x4 self-pipelined schedule

00
01

03

10

12
13

L 111

L1l

1T

Figure 2.2: A 4% Benes-Clos network

ITTT

20
21
22
23

30
31

33

L1

L1

N

4x4
Crossbar

1111

Figure 2.3: A 4% time-multiplexed crossbar

[TT1 ITTTI

1T

Second

ID &Thil’d — X

Matching Unit

-

Third

4
x

<+

Modulo
Counter

Second

-
Ll

+

X +— |nitial

Y

Input & Output register

1

L

—

v v
\Matching Unit /

X 4+— |nitial

Initial

% —

< Third
X 4 Second
» X
x

Figure 2.4: A broadcasting chip for the self-pipelined schedule

Broadcast
order

Destination Address

Part A

|

PartB

Data

Figure 2.5: A packet format for the self-pipelined schedule

21((13(|10] |03 00||10|(20] |30

02(({20{(12]|30 01((11((21]]|31

01((11]]23]|31 - 02|]12]|22]|32

22((00||32]||33 03(13|(23]|33
Initial Position Final Position

Time —»01 02 03 04 05 06 07 08

owo (2] [13][10]os]:
ot [o2] [20] [12][30] |
we WEEE
ows [22][o0] [32] [33]
oo (0o [o1][o2]]o3

it o]z

o2 o [o][2] (2]

SRR LT T £ EXH EXY) X

Scheduling Chart

Figure 3.1: A 4x4 multi-pipelined schedule

Second

L

ID . X
v
.) - e i
Matching Unit Third 1 X Initial
> X
X «— Third Second v
v
| |
Modulo Input & Qutput Buffer
Counter ¥ P put=t
ID
| |
Initial l_J VP SRS w—
|_, X (Associative
l | Matching)
¥ v
Matching Unit l
atcning uni B X < Third
Initial
| ¢ X < Second
X —» X
v
A\ 4
v

Figure 3.2: A broadcasting chip for the multi-pipelined schedule

|
Destination Address

Part A \ PartB

Data

Figure 3.3: A packet format for the multi-pipelined schedule

2
111

_.
N
[111

)

" aqueue

Figure 3.4: A 42 queueing crossbar

10
1
12
13

30
31

33

ITTI

ITT1

Figure 3.5: A 42 Q-network

00
01

03

10
11
12
13

20
21
22
23

O(log N)
4 —»

O(log N) I a bus

to a processor

Figure 4.1: O(log? N) area of a connection between a bus and a processor

