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Abstract

We introduce a technique for transforming dynamic programming algorithms into ones
which are equivalent, but require asymptotically less space and time under the logarithmic
cost criterion. When mapped into silicon, these transformed algorithms result in VLSI
processor arrays which can be significantly smaller and faster. The condition necessary for
such savings is characterized. We illustrate the discussion with a general case of serial
dynamic programming and a nonserial pattern matching problem. Finally, we show that our
technique does not apply to every instance of dynamic programming.
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1 Introduction

VLSI processor arrays are designed for special-purpose applications; the structure of the
algorithm and the size of the problem dictate the complexity of the hardware required. In general, we
wish to minimize the area and time necessary to implement a specific function. As an obvious
example, to perform addition on numbers which we know will be at most 8 bits long, we do not build a
32 bit adder; this would exact an unnecessary space and performance penalty. Sometimes, however,
the potential for such savings is obscured by the fact that algorithms for VLSI processor arrays are
often analyzed as if they were intended for execution on a general purpose computer.

In this paper we present a technique for transforming certain dynamic programming algorithms
into ones which require asymptotically less space and time under the logarithmic cost criterion, an
appropriate complexity measure for VLSI algorithms. Then we show how to map an algorithm which
has been so transformed into a processor array which can be significantly smaller and faster than
that required for the original algorithm.

1.1 An Analogy

We take this opportunity, before we become immersed in notation, to deseribe an almost perfect
analogy to what follows. In the field of digital audio there are, in effect, two fundamentally different
recording techniques, as depicted in figure 1.1.1. The first, pulse code modulation (PCM), quantifies
the sound pressure level, measured in decibels, at some sampling frequency and records its full value.
The second, delta (A) modulation, records an initial pressure level. It then measures and records only
the change in pressure relative to the previous sample. The true value of the sound pressure at any
point in time can be had by taking the initial level and walking through the effects of the changes. If
it is known in advance that, for a given sampling frequency, the sound pressure will not change too
rapidly, delta modulation can result in a tremendous space savings.

We equate the way algorithms for VLSI processor arrays are normally implemented with PCM,
calculating the full magnitude of the values in question. The transformations we propose result in
algorithms which are concerned primarily with changes in magnitude; we liken them to delta
modulation, from which they take their name.
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figure 1.1.1 digital recording techniques

1.2 Analyzing Space and Time Complexity

When researchers propose algorithms for VLSI processor arrays they often analyze the
complexity using the same uniform cost criterion applied to those intended for execution on general
purpose computers. That is, they assume each value in the computation requires constant storage
and each function of two inputs can be evaluated in constant time. We believe this analysis is
inappropriate as it obscures details which, if exploited, could lead to smaller and faster VLSI
implementations. A more accurate measure of complexity in this case is logarithmic cost [Aho76].

The cost of a non-negative integer i under the log criterion is
1 ifi=0
W= riogin ifi>o0
This definition is motivated by the observation that at least (i) bits are required to represent i in its
standard binary encoding.

The cost of a function flxy,x9) under the logarithmic criterion is the sum of the costs of its inputs
fx,, xp) = Ux,) + Ux,)
This is based on the notion that the time it takes to compute a function is proportional to the number
of bits in its operands. This is a more pessimistic assumption than under uniform cost, but more
optimistic than reality since some functions may not be realizable with this time complexity. Still,
this measure is quite accurate for our purposes, as the functions we require (essentially addition and
comparison) have obvious VLSI implementations which require such time.

Finally, throughout the following analysis we shall make frequent use of the approximation



1.3 The Serial Dynamic Programming Problem

The general case of a problem solvable by serial dynamic programming can be expressed as

min fX) = min > f,X")
X X (€T
where

X = {xl, Xgp suss xn}
is a set of discrete variables, S; is the definition set of the variable x; (|S;] = o;), and

T=1{1,2,..,n-1}
are the discrete time instances of the problem. The function fX) is the objective function which we
wish to minimize over all schedules X, subject to the serializing constraint

i_
X =l

The functions f;(X?) are the components of the objective function [Bert72].

It is perhaps instructive to observe that this formulation of a serial dynamic programming
problem is fully equivalent to that of finding the shortest (i.e. lowest cost) path through a multistage
graph where the edge weights are determined by

Ci,jk:fi(j’k) 1=sisn-1, l=sj=o, lsks(;iq}1
and we interpret c; ;3 as the cost of traversing the edge from the jth vertex in the ith stage to the kth
vertex in the i+1st stage. We shall equate this shortest path problem with serial dynamic

programming.

1.4 The Restricted Problem

For the development which follows we make two assumptions which restrict the most general
problem. The first, strictly for notational convenience, is that
Uizl i=1,n and o.=m 2<i=n-1
so that the graphs we consider have n stages with one vertex (or “node” or “state”) in the first and last
stages and m vertices in each of the intermediate stages. An example of such a multistage graph is
shown in figure 1.5.1.

The second assumption is a necessary condition for the transformations we present. Itis
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ci.,kEN and OSCi.’kSC l=i=n-1, 1 =jso, 1 sksoi_‘_1
That is, we assume that the edge weights can be represented as elements chosen from a finite set of
non-negative integers and we know in advance their maximum value. This is a highly restrictive
assumption, but it reflects real-world conditions. Since programs are written and processor arrays
are built to solve specific problems, and have limited resources, we often know (or at least must

require) bounds on the edge weights.

1.5 A Dynamic Programming Solution

The shortest path through a multistage graph can be found by a backward recurrence with
boundary condition

-] = 7<
Pty Cpogiy | VR RO

and recurrence step

r..= min
Woo1=p =0,
where r;; is the length of the shortest path from the jth vertex in the ith stage to the lone vertex in the
nth stage.

Topig T G l ’ i

This recurrence is technically not an algorithm as an ordering for performing the minimizations
is not specified. Nonetheless, we use the terms “recurrence” and “algorithm” interchangably,
knowing that we can specify an ordering if the need arises. In particular, we shall refer to this
recurrence as the standard serial dynamic programming algorithm.

1.6 Space and Time Complexity

First we analyze the space complexity. Since the edge weights of the graph lie between 0 and C,
the cost of a path from a vertex in the ith stage to the vertex in the last stage can range from 0 to at



most (n—i)C. We remark that after the optimal costs for the i+ 1st stage are used to determine those
in the ith they can be forgotten. Thus, the space complexity is dominated by the storage needed to
determine the values in the second stage. The cost of a path from a node in the third stage can require
l((n—3)C) bits to represent and that of a path from a node in the second may need [((n—2)C) bits.
Hence, the storage required is approximately

ml((n—3)C) + ml((n—2)C))

bits, which means the space complexity is O(mlogn).

To determine the time complexity, we begin by noting that an addition in the ith stage requires
time [((n—i—1)C)+{(C) and a comparison requires 2/((n—i)C). Since determining the cost of the
optimal path for each of the m nodes in the second stages through the n— 2nd requires m additions and
m—1 minimizations, the intermediate stages contribute

n—2
= lmQ[l(n — i —1)C + UO)N + m(m — 1)2U(n — HO)]

which is O(m2nlogn). To determine the optimal path from the vertex in the first stage requires m
additions and m — 1 minimizations, so it contributes

m[ln — 2)C + UC)] + (m — 1)[2(n — 1)O)]
which is O(mlogn). Hence the time complexity of this algorithm is O(m2nlogn).

1.7 Mapping the Algorithm into Silicon

The problem of realizing recurrence relations in VLSI has been examined by many researchers;
Fortes, Fu, and Wah [Fort84] survey of a number of techniques. We choose to illustrate our
discussion with a method due to Li and Wah [Li85] which is quite general, at the expense of failing to
exploit all of the potential parallelism. Their mapping requires ordering the minimizations; an
obvious choice leads to an algorithm with the initial conditions
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L
and inner loop step

= min Igifn=2, 1=2j20, LSksq,.,

Tidk Tijh-1 ri+1,k,oi o T B
where r; j  is the length of the shortest path from the jth vertex in the ith stage to the vertex in the nth
stage which is constrained to pass through a vertex numbered between one and % in the i+ 1st stage.
We remark here that « is a token which represents the identity element of minimization, but we

leave its precise encoding unspecified.

Li and Wah’s architecture is based on the observation that the inner loop step of the algorithm is
equivalent to an inner-product in the closed semiring (N, min, +, «, 0). Hence, the problem can be
solved as a sequence of matrix-vector multiplications, where the additive step is minimization and
the multiplicative step is addition. They describe a linear systolic array, as depicted in figure 1.7.1,
for executing this formulation.
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figure 1.7.1 Li and Wah's systolic array for serial dynamic programming

To determine the shortest paths for vertices in the n—2nd stage, the multiplicand vector is shifted
through the array while the cost matrix for that stage is applied and the product vector accumulates.
For the next stage, the product vector is shifted while the multiplicand vector remains stationary.
This alternation continues; on the last pass the cost vector corresponding to the first stage is input
and the final value of the shortest path is accumulated in the first processor.

This parallel architecture requires m processors to solve our problem. The first must be able to
store values which can be as large as (n—1)C, the others as large as (n—2)C. Hence, each processor
requires area O(logn), so the area of the entire array is O(mlogn).

The time for the array to complete the computation is determined by that of the first processor,
since it performs both the first and last operations. In processing the ith stage, it must perform m
additions which require time I[(n—i—1)C)+I(C) and (m—1) comparisons which require (n—i)C.
Thus, the time required is

n-2
Z lm[l((n — =10+ O]+ (m = D(n — DC]

L
which yields a time complexity of O(mnlogn).

2 Delta Transformations for Serial Dynamic Programming

We are now ready to present the main result of this paper, the development of which we illustrate
with the serial dynamic programming problem. That the edge weights in the multistage graph are
known to have a fixed range permits us to transform the standard algorithm into one which requires
asymptotically less area and time under the log cost criteria. We develop this transformation in two



steps. First, we introduce the notion of a residue reduction; an algorithm which has been residue-
reduced computes relative values, just as delta modulation records changes in pressure. We then
show how a reduced algorithm can be augmented to reconstruct the original value of interest, as the
true sound pressure in delta recording can be found by taking the initial sample and walking through
the changes. We term the combination of the reduced algorithm and the augmenting path the delta
transformation of the original algorithm. Fortunately, the delta transformation of an algorithm has
almost the same structure as the original, so it can be mapped into a nearly identical VLSI processor
array, only one which requires significantly less area and time.

2.1 The Residue Reduction

We build up a series of lemmas to show how the bounded edge weights constrain the maximum
difference between terms which appear in a minimization.

Lemma 1: the difference between edge weights at any stage in the graph is at most C. That is,

=C

max

o hij ~ Ched
h,i,j, k,1

This follows directly from the definition of C.

The next step is to observe that the costs of the shortest paths for vertices within any one stage are
related.

Lemma 2: the difference between the costs of the shortest paths for vertices in the same stage is at
most C. That is,

=C

max

r—T
Lk

i,k

Proof: is based on the observation that any vertex in the i+ 1st stage which appears in the
minimization determining r;; also appears in that determining r;;. By Lemma 1 r;; can
reach the same vertex with additional cost at most C.

Now we can characterize the maximum difference between terms which the algorithm must
minimize.

Lemma 3: the difference between any two terms which appear in a minimization in the standard
serial dynamic programming algorithm is at most 2C. In particular,
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i+1,k1+ cij,kl) i 1n ci,j,kz) =2C

Proof: by an application of Lemma 2 and the definition of C.

Lemma 3 is an important observation; this problem does not require the minimization of
arbitrary values, they are guaranteed to be close in magnitude. This fact can be exploited to make
determining the minimum simpler. Say we have two values x; and x9 and we know x2 can be at most
8 less than x; and at most 8 greater than x;, If we examine this constraint on a number line, we see
that wherever x; is, xg must fall within a maximum spread of 28. Consider wrapping this line around
a circle, as shown in figure 2.1.1. This is, in effect, taking the remainder modulo the circumference of

[4—5—)44-—3—)-

figure 2.1.1 the modular circle

the circle. If the circumference is at least 28, then no two values in the interval can overlap on the
circle. This observation also follows from the Chinese Remainder Theorem [Knut81]. We now show
how to determine which of x; and x9 is smaller by comparing just their remainders modulo the

circumference. First we have,

Lemma 4: given three non-negative integers x1, x9, and & such that

x,—-d=x,=x +8
choose any A greater than or equal to 26+ 1 and let y; = x;modA and y; = xgmodA. Then there exists
a function minAg such that

min?[yl, Yol = minlx,, x2]modA
Proof: we define minfgto be

min'ﬁfy B mm[yl,yz] Lfmax[yl, Yol = mmbfl, y2] =38
5 Yol = maxly,, y,l otherwise



We can identify four possible relative positionings of x; and x3 on the modular circle; these are
depicted in figure 2.1.2. The assertion follows through a case by case analysis.

<5 <5 >§ >8
X2 :i ijh X1 ji jj X2
X1 X2 X2 X1
<8 <8
>8 >§

figqure 2.1.1 the cases for Lemmas 4 and 6

Next, we replace the minimizing step in the standard algorithm with

_— - 5 A —
P = Mot + Cik if ming. (ri-i-l,kMOdA + ciJ.’kmodA)modA = (riH,kmodA + ciJ,kmodA)modA
L,k
for any A greater than or equal to 4C+ 1. Notice that we have used the identity
(r s g F )mod/_\ (r. i kmodA +ec. ik modA)modA
to also simplify the addition w1th1n the minimization. By an application of Lemma 4, this new inner

loop is equivalent to the original.

Recall that in the original algorithm a comparison can take time O(logn). If determining
remainders modulo A can be done in time O(logA), for example when A is chosen to be power of two,
minfyc itself has time complexity O(logA). This is O(1) since C is a constant. Hence, this new
minimization is asymptotically faster than the general case. The addition required to determine the
full value of r;; still requires time O(logn), but fortunately it is only performed once for every m
comparisons. Thus, replacing the inner loop with this modified version decreases the time complexity
of the algorithm from O(m2nlogn) to O(mnlogn + m2n).

As we still have to store the full values r; ;, the space complexity remains O(mlogn).

Since area is as much a concern as time in designing for VLSI, we might wonder “why stop at
performing just the comparisons modulo A? Why not execute the entire algorithm this way to save
space?” At first this may seem ridiculous, since if every value were reduced to its remainder modulo
A we would lose information. We ask the reader to bear with us; in the next section we demonstrate
how true path costs can be recovered from their residues. For now, we procede with the reduction.



We replace the standard dynamic programming recurrence with the following

A : :
— <i<
P 1y cn—l,j,lmo‘iA 1=j=o0,_,
and
P2 = ming, |2+ )modd| 1=i<n-2, 1sjso, l<k=o
ij 2¢ [Vit1r T Gk == d R e 5 |
Lk

for any A greater than or equal to 4C+ 1. Whence we arrive at the main result of this section.

Theorem 1: for rd;; defined as above

riA,j:riJmOdA 1<isn 1=jso,
That is, the new recurrence performs precisely the same computation as the old, only with values

modulo A.

Proof: by induction on i. The basis, for i = n—1, follows immediately as

c . modA = ¢ :
n-1y,1 n-1;41
since c; j ; is strictly less than A. The induction requires
A -
(r +ik + cij’k)modA = (ri-z»l,k + ci,j’k)modA
but this follows from
_ _ A
(ri+1,k -+ ci,j,k)mOdA = (ri+1,kmOdA + ciJ.,kmodA)modA = (ri+1,k + Ci,j,k)MOdA
as
.
ragmedA=r .,
by the inductive hypothesis and
ci,j kmodA =Ciik

as before. The final step is an application of Lemma 4.

We call rd;; so defined a residue reduction; it is, in some sense, a distillation of the original
algorithm.

2.2 The Augmentation Path

As we mentioned previously, the residue-reduced algorithm does not give us the true cost of the
shortest path through the graph, although it does determine its remainder modulo A correctly. We
observe, however, that the costs for the n— 1st stage are determined exactly; that 2, ; jequals rpq
was the basis for the proof of Theorem 1. So, taking a cue from digital audio and delta modulation, we
consider picking an r8,; ; as our initial sample and walking a path through the residue values to
determine the true cost, r; 1. To this end, we state

=10=



Lemma 5: the difference between the costs of the shortest paths from vertices in any two consecutive
stages is at most C. More specifically,

— =
i C—ﬁﬂﬁ*QJ+C

Proof: since r;41+¢;jis a term which appears in the minimization determining r; j wecan
deduce that
— =
N Ty riep SC
by the definition of C. For the other direction, we note that r; j must equal some r;+17+c¢;y,
hence we have

c.,.=C

+ ci,l) - (";‘+1,k - ri+1,l) =y

ok =5 SFpas ~ Vi
by Lemma 2.

Now we make our second general observation; it concerns the difficulty of determining the true
value of a non-negative integer given only that integer’s remainder modulo some value and the full
value of another integer which is known to be close in magnitude.

Lemma 6: given three non-negative integers x1, x9, and § such that

x1—65x2$x1+8
choose any A greater than or equal to 26+ 1 and let y; = x;modA. Then there exists a function augAs

such that
A
augg [yl, x2] =x,
Proof: we define aug?s to be

g _
Xy — (meodA - yl)mod/_\ if ming [yl, xgmodA] =,

A
au, ,X] =
g5 %y x, + (yl — x,modA)modA  if ming‘[yl, x,modA] = xzmod/_\

As in Lemma 4, the proof is an examination of the four possible cases depicted in figure 2.1.2.

Before we continue, we address two concerns. The first is that for this problem the 8 for minAg is
2C, while that for augAg is C. This presents no difficulty as the bounds still hold and the functions are
valid for any & greater than or equal to these minimums; we will simply define § to be the greater of
the two, in this case 2C. The other remark is that by Lemma 5 we can augment the reduced
recurrence along any path from the last stage to the first. If the algorithm is to be run on a general
purpose computer the exact choice of a path is unimportant, but if the recurrence will be mapped into
a VLSI processor array some care is necessary. In particular, if we want to retain the general
interconnection scheme of the array used for the original algorithm, we should make sure the values
necessary to perform the augmentation are available in border processors. For the matrix-vector
multiplication array given earlier, a logical choice is the path along the top of the recurrence,
corresponding to ry; for j between n—1 and 1, as these values are always available in the first
processing element.

P=



Now, to the residue recurrence given earlier

A "
= =j<
i Cnulj,lmOdA l<sj=<o

n-1
and
P = ming, |2 +ec . )modd| 1=i=n-2, 1<j<o, 1<k=o
i 2C |Mi+lk | Tijk K S A £
L,j,k
we add
a _J"A
n=1" "n-11
and
A A .
- <i<n-—
a, augm[ri,l,ai_‘_l] l1=i=n-2

We assert that this new recurrence relation correctly determines the values r; j and in particular
the cost of the shortest path through the graph, ry .

Theorem 2: for the recurrence defined above and any A greater than or equal to 4C +1

a.=r. l1=sisn-1
i i1

Proof: the result follows from Lemma 6 and Theorem 1.

We call the combination of a residue reduction and a path augmentation a delta transformation.
Figure 2.2.1 shows graphically the effect the given transformation has on the data dependencies of
the original serial dynamic programming algorithm. The dashed circles in the delta recurrence
represent the residue-reduced computations, the darkened circles correspond to the augmentation
path.
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figure 2.2.1 effect of the delta transformation

2.3 Space and Time Complexity of the Delta Algorithm

g2



The residue-reduced recurrence rd; ; requires storage of I(A) bits for each value. As before, the
space complexity is determined by that required to determine one stage of costs. There are m vertices
in a stage, so the space complexity is O(mlogA) which is O(m) since A is a constant. For the
augmentation path, we observe that a value at the ith stage can be as large as (n—i)C. Since only two
augmentation values need be retained at any one time, the storage required is at most
l((n—-1)C)+U{(n—2)C) bits. Thus, the space complexity of the entire delta-transformed algorithm is
O(m+logn). This is asymptoticallly less than the O(mlogn) required by the standard dynamic
programming algorithm.

In analyzing the time complexity we first remark that, as we alluded to earlier, to simplify
computing remainders modulo A we let A be the smallest power of two greater than or equal to 4C +1;
this does not change the number of bits required to represent a remainder, but it does makes finding
them as simple as ignoring high-order bits. With this in mind, it is clear that the time required for a
minAg at any stage of the computation is O(log(A)), which is to say constant. Hence, the complexity
contributed by the reduced recurrence is O(m2n). The time required for an augly at the ith stage is
proportional to /((n—i)C), hence the augmentation path contributes

n—2

> Un—D0) = ni(n)
i=1
or O(nlogn) to the time complexity. Thus, the complexity for the entire algorithm is O(m2n+ nlogn),

which is asymptotically faster than the O(m2nlogn) required by the original.

2.4 Mapping the Delta Algorithm into Silicon

That the data dependencies for the delta recurrence are identical to those for the original, save for
a slight addition, is fortunate. We can again use Li and Wah’s matrix multiplication scheme, with a
slight addition. Recall that the value r; 1 is available at PE; after the ith stage has been processed; on
odd numbered iterations it is the stationary value, on even numbered iterations it is the first value to
shift in. Hence, we add a processor external to the array on the left side, as depicted in figure 2.4.1.
This processor is initialized with the value cy.1,1,1. Then, every m clock cycles after that it alternates
between sampling PEq’s stored value and the first value of the next pass to shift in.

This scheme requires a total of m+ 1 processors. Each of the m computing the residue recurrence
must be able to store values which can be at most 2C; hence each requires area O(logC), which is a
constant, so their combined space complexity is O(m). The augmenting processor must manipulate
values as large as (n—1)C, hence it requires area O(logn). Thus, the area of the entire array is
O(m+logn) as opposed to the area O(mlogn) the original required.

The reduced processors perform inner product steps on data values of a constant size, which
require constant time. Since each processor handles O(mn) of these steps, their time complexity is
O(mn). In the same time that these processors compute an entire stage, the augmenting processor
must perform operations which requires time at most O(logn). Since there are O(n) stages, the
augmenting processor requires a total time O(nlogn). Hence the time complexity of the entire array
is O(nmax[m, logn]) as opposed to the O(mnlogn) the original array required.

3
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figure 2.4.1 the delta array for serial dynamic programming

3 Delta Transformations for Other Dynamic Programming Problems

To extend this technique to other dynamic programming problems, serial and nonserial, we point
out that the necessary condition for a delta transformation is that the values to be minimized have
bounded range. At this point it may be tempting to believe we may be able to apply delta
transformations to any dynamic programming algorithm. Unfortunately, this is not the case, as we
shall show in the next section. In the section following we deseribe a nonserial dynamic programming
problem which benefits from delta transformations.

3.1 A Case Where Delta Transformations Do Not Apply

In this section we show that delta transformations do not apply in every case, at least when the
minimizations are performed in a fixed order, as is necessary in an algorithm or a VLSI
implementation. To do this we exhibit a dynamic programming problem in which the difference
between terms in a minimization can grow as a function of the problem size.

Consider a generalization of the problem deseribed earlier, that of finding the shortest paths
between the vertices of an arbitrary directed graph, where the vertices are numbered from 1 to n and
c;jis the cost of traversing the edge from vertex i to vertex j, if one exists, and is = if one does not exist.

This problem is solved by the dynamie programming recurrence with boundary conditions
r., =10
and



and recurrence step

r..= min |r., +r,. 1<i=sn
i i,k kj

k
where r; ; is interpreted as the cost of the shortest path between vertices i and j.

One possible ordering for the minimizations is lexicographic, which results in an algorithm with
the initial conditions

and

and inner loop step

= min|r +r l<isn, l1<jsn, i=j

r.. .z r. !
ij.k ij.k—=1" i kk-1 kjk—1
where r;;, is interpreted as the cost of the shortest path between vertices i and j passing through no

vertex numbered higher than k.

Now, consider the family of graphs shown in figure 3.1.1. Clearlyry ,_1,_1isn—2and ryppn_1

figure 3.1.1 afamily of graphs

andrp,_1.,_1are both one. So

= min[r 1= min[n — 2,2]

T r +r
ln—-1n Ln—-1n-1 1n,n-1 nn—1ln—1
which means as the size of the problem grows, the potential difference between the terms which

appear in a minimization also grows. Thus delta transformations, as presented, will not apply.

3.2 Delta Transformations for Pattern Matching Problems

Approximate string matching [Wagn74], two-dimensional image comparison [Moor79], and
dynamic time warping of speech [West83] are all problems with similar nonserial formulations. That
is, decisions made at a stage may depend on decisions more than one stage back. We show that delta
transformations apply in these cases, as illustrated by the problem of approximate string matching.

Recognizing that two strings are similar, even though they are not exact matches, is important in
many disciplines. There are a number of metrics for quantifying the similarity between strings and
many have dynamic programming formulations [Hall80]. Perhaps one of the most intuitive is the
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“edit distance,” which is defined as the minimum cost sequence of the basic editing operations insert,
delete, and substitute needed to transform one string into the other.

A dynamic programming recurrence for determining the edit distance between two strings

R and Bty - b
has boundary conditions
=i =i< =3 =j<
Ti0 = ©ing 0=si=m and Toj =41 0<j=n
and recurrence step
r..=min|r +ec ,r +c fi-1j-1 Lfsi:tj
iJ i-1y ing’ ij—-1 “del’ | r. .. +e¢ otherwise
i=17-1 sub

where the non-negative integer constants c;ns, ¢der, and cgyp are the costs of an insertion, a deletion,
and a substitution respectively and where we interpret r;; as the edit distance between the substrings
s152--s; and f1t9--f. To simplify what follows we assume the strings are of the same length,
n.

To analyze the space complexity we note that the edit distance at r; j is proportional to i+j. Asin
the case of serial dynamic programming, once we use the ith row to determine the i+ 1st row we no
longer need its values. Hence the space complexity of this algorithm is determined by that of the last
row, which is O(nlogn).

The time needed to determine the value r; ; is proportional to /(i +j). Hence the time complexity is

n n
> > K+
i=1j=1
which is O(rn?logn).
We now determine the maximum difference between two terms in a minimization. Our first
observations are

Lemma 7: the maximum pairwise differences between terms are

= & <
ST o T30S G

and
0=r

; .= T. ; =c.
i—1y i—-1j-1 Cms
and

=r .—T.. =c.
cdel i—1y rl,]— 1 cms

Proof: the lower bounds for the first two follow from the fact that edit costs are non-negative
which implies that the edit distance is monotonic increasing in i and j. The upper bounds
result because r;_j j_1 appears in the minimizations determining both r; j—1and ri_yj, at
added costs of ¢4,y and c;p,s respectively. The last relation follows from algebraic manipulation

of the first two.

Hence, the maximum range of values which appear in a minimization is ¢j;5+ c¢ge;. This bring out
a point which we did not consider in the serial dynamic programming example; since it is not
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necessarily true that c;,s equals cge; the range may not be symmetric about a given value. Here we
have two options. We could construct the delta transformation using the maximum of ¢;,s and cg,; as
8. This is somewhat wasteful because we know that there is a legal A less than this 26+ 1. Or we
could generalize ming to reflect this asymmetry. For brevity, we simply assume that ¢;,s = cge; =
Cid, which is often the case.

Now we have a residue reduction with boundary conditions

A _ . A
rio= (zcz. d)mOdA and Toj = (]ci d)modA
and recurrence
A "
Fi s ifs.=t,
2 = min® (r'f'\‘ .+ ¢. JmodA, (ré. + ¢. )modA, i-1j-1 L
i cgl -1/ d ij=1 " "id (ri—l,j—l +ec  JmodA  otherwise

As was the case for serial dynamic programming, there are a number of possible augmentation
paths. The VLSI architecture we have in mind is a linear systolic array where the terms in the last
row and column of the recurrence flow out of the end processors; we choose to augment along the last
column. Since rg , is known to be nc;,s, we take this as our initial sample. We need the following
observation.

Lemma 9:

- Sr =r. +ie
in i+1,n i,n id

Proof: this is a rewrite of the first relation in Lemma 7.

Thus, the minimum A for our augmentation path is ¢;3+ 1, which is not the same as the minimum
A for our residue reduction, 2¢;3+1. As before, we take A to be the maximum of these. Then we
augment the residue recurrence with

ao = ncid
and
A A ;
= i<
a, = aug, [ri,n, ai—ll 1<i=n

id
to yield a delta transformation.
An analysis similar to that for the serial dynamic programming example yields a space
complexity of O(n+logn) and a time complexity of O(n2+ nlogn) for the delta algorithm; both are
asymptotic improvements over the original.

To map this delta recurrence into a linear array we use a geometric interpretation due to Cappello
and Steiglitz [Capp84]. We apply a rotation R to the index set, then view one dimension as time.
Figure 3.2.1 depicts this process. As before, the dashed circles correspond to the residue recurrence
and the darkened ones to the augmentation path.

This realization requires 2n— 1 processing elements for the residue reduction and one for the path
augmentation. Each of the residue processors requires constant storage, hence together they
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figure 3.2.1 mapping the transformed recurrence onto a linear array

contribute O(n) to the space complexity. The augmentation processor must store values which are
proportional to n, hence the total space complexity for this parallel implementation is O(n+ logn).

The time complexity for the residue recurrence is determined by that of the middle processor,
since it performs the first and last operations. Each of the n comparisons requires constant time, so
the total complexity for this portion of the computation is O(n). The augmenting processor must
determine a value for each minimization the middle processor performs. Since computing a; requires
time proportional to {(n+ 1), the time complexity for the augmenting processor is O(nlogn). Thus, the
total time complexity is O(nlogn).

If this same mapping were used to realize the original string matching algorithm in VLSI, it
would require space O(nlogn) and time O(nlogn). Hence, in this case, the delta transformation results
in an array which requires asymptotically less area, but the same time.

A delta array for approximate string matching with insertion and deletion costs one, substitution
cost two, and A equal to four was designed and implemented by the authors [Lipt85].
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4 Conclusions

In this paper we have demonstrated a general technique for simplifying VLSI processor arrays for
dynamic programming. Although our delta transformations do not apply in the general case, they
yield a significant savings in space and time for a large class of such problems.
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