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ABSTRACT

This paper presents a new class of interconnection schemes,
based on superposed parallel buses and called systolic grid intercon-
nection. This scheme is optimal both in area and time in terms of
VLSI complexity for multi-point networks with prescheduled per-
mutation. This scheme is faster than previously reported intercon-
nection schemes using linear area. This scheme is especially suit-
able for utilizing fast but area-limited technology to interconnect a
large number of single chip processors using slower technology.
Although the primary proposed application is to solve large sparse
systems of linear equations, such as those arising from finite ele-
ment analysis, this interconnection scheme is widely applicable
because of its fast permutation capability. The construction of the
grid and its VLSI optimality are described as well as some applica-

tions.
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1. Introduction

The finite element formulation of physical problems can typically be
represented as interacting computations on the nodes of a planar graph, and gen-
erally such problems are solved using iterative methods such as the one due to
Jacobi (Adams[1982]). This method requires {}(N) area since the bisection width
(Thompson([1979]) of a family of the finite element graphs with N nodes is O{\/M
(Lipton and Tarjan[1979]).* Leiserson[1983] has shown that O(Nlog®N) area is
sufficient for layout, but he observes that he knows of no planar graph that
requires more than linear area. However, optimal mapping of a finite element
graph to a fixed grid is intractable, as is shown by Bokhari[1981]. The difficulty
of direct mapping has been described in several different contexts. The Finite
Element Machine (FEM) developed by NASA (Jordan[1978]) has a hexagonal
mesh of processors augmented by a global bus, and it has suffered from the long
latency of global communication. The modification (Dew[1984]) of two dimen-
sional Systolic Matrix Multiplication Arrays (Kung[1979]) for Jacobi iteration by
the insertion of delay queues is a second example. It works nicely for banded
matricies, but not for non-banded matricies. It also requires frequent dynamic
reconfigurations of the delay queues, which would interrupt the data flow and

degrade the system performance.

An alternative is to use a class of rearrangeable, multistage interconnection

networks to customize the processor interconnections for the topology of the

* 1) There exist an infinite number of planar graphs that require O(NlogN) area
(Ullman|[1984a)).

2) In this paper, “f{n)=0(g(n))” means that there is some constant ¢ so that f{n)< cg(n)
for all sufficiently large n. Similarly, “f{n)=0Q(g(r))” means that there is some constant c
so that fin)>cg(n) for all sufficiently large n. “f{n)=6(g(n))” means that fin)=0(g(n))
and fin)=0Q(g(n)).
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given finite element graph. This is based on the idea that the connectivity of a
sparse graph with maximum degree d can be simulated by d permutation rout-
ings, which can be easily shown using Hall's[1935] distinct representative
theorem. However, as Rosenberg|1983] has shown, it requires ©(N?) area to
implement such networks because of many crossing wires between stages. The
NYU Ultracomputer (Schwartz[1980]), or its successor the IBM RP3
(Pfister[1985]), uses an Q-network, which is a blocking network that is one half of
the Benes rearrangeable network (Lawrie[1975]). The interconnection for 512
processors expends a large area to lay out the shuffle wires. The IBM GF11
Supercomputer (Beeten[1984]), which is intended for QCD computations and uses
three-stage Benes rearrangeable networks to interconnect 576 processors, must
also accommodate the large number of wires for shuffle connections. All the
parallel processors interconnected by the shuffle or hypercube connections,
whether they use a packet switching or a circuit switching scheme, share the
same disadvantage; there are area penalties in planar layouts. This could become
a major limitation to the interconnetion of large numbers of processors. In par-
ticular, the quadratic growth of wire area would prohibit the use of fast technol-
ogy for the processor interconnections, and yet fast technology would be
indispensible for compensating the {2(logN) theoretical lower bound in the graph
diameter to interconnect N processors. This is obvious because fast technology
limits the chip area more severely than the slower technology. This is obvious,
for example, if we consider the use of ECL and GaS technology today. It seems
that this relation between feature size and speed will continue. Furthermore, pin
limitations greatly restrict the design of large interconnection networks. It is pos-
sible to reduce the shuffle connections by using larger crossbars as the basic
building blocks. For example, the GF11 uses 24X 24 crossbars. But, it will be
much harder to design a large VLSI crossbar (Makrucki[1981], Rau[1981], Geor-
giou[1984], Hsu[1984]). If we assume fully parallel (as oposed to serial) operation,
an nXn crossbar requires at least (}(n) data pins and (l(nlogn) control pins
(Thurber[1971]). The requirement of this large number of pins limits the use of

large crossbars.

On the other hand, microprocessors are inherently local and well suited to
chip implementation. RISC processors (Patterson[1981], Hennessy[1981],
Radin[1983]) are popular examples where the processing elements and associated
registers fit nicely on a chip. This observation serves to emphasize the need for a

compact interconnection scheme to exploit the computational chips for parallel
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computation. It is obvious from their function that interconnection components
are inherently non-local and pose the problems described above. The solution lies
in maximizing the traffic on a relatively small numbers of links - much less than
that required for complete, simultaneous single-step communication. A promising
approach, therefore, is to simulate the pin-limited crossbars by highspeed time-
multiplexed buses (we call its clock cycle a minor cycle ) and to simulate the
area-consuming shuffle connections by rotation of data movement, while preserv-
ing the powerful permutation capability of rearrangeable multistage networks
and maintaining high communication bandwidth for the processors (we call a
processor’s cycle a major cycle ). Careful selection of the minor cycle to the

major cycle ratio would clearly increase the speedup of parallel algorithms.

In this paper, we present a systolic grid interconnection for statically
scheduled permutations. It is optimal both in area and time in terms of VLSI
complexity for multipoint networks (Ullman[1984b]), and therefore suitable for
employing fast but area-limited technology. The network can permute data from
N processors in VN minor cycles in a systolic fashion, and 3V N minor cycles
without systolic synchrony. This is faster than any other interconnection scheme
using O(N) area known to us. As an example of the interconnection schemes
requiring linear area, the mesh-connection scheme requires at least 4V Kffl) steps
as a lower bound for permutation and sorting, as Thompson and Kung[1977]
have shown. Thompson[1978] has given a (7\/“]\_f-v8) time routing method for
prescheduled permutations by applying a binary Benes rearrangeable network to
a mesh-connected processor. For sorting, Kung and Thompson[1977] (also Nas-
simi and Sahni[1979]) have given a 6V N algorithm on a mesh-connected processor
by applying a Batcher’s[1968] bitonic sort. Unlike the others, the permutations
are not prescheduled since it is a ‘‘real time” sorting algorithm. By comparison,
the grid interconnection has the fastest permutation time using linear area.
Furthermore, if a highspeed time-multiplexed bus is used to send at least one
packet of data from each of VN processors to a destination processor on the same
bus within VN minor ceyeles, and if one major (processor) cycle is equivalent to
v'N minor cycles, then N processors can permute their data in every major (pro-
cessor) cycle. In the following sections, we describe the construction of such an
interconnecton, a systolic architecture, routing algorithms, universality, VLSI

optimality and some application areas.
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2. Construction of Grid Interconnections for Fast Permutation

To construct a fast permutation network, we transform a three-stage N—=n?
Benes-Clos (Benes[1962], Clos[1953]) rearrangeable network (Figure 2.1) into a
two dimensional nXn square grid of superposed parallel buses. First, we replace
each nXn crossbar by a highspeed time-multiplexed linear bus, which can
transmit at least one packet of data from each processor (a total of n processors
on a bus) to the other on the same bus in n:\/J_V- minor cycles. Second, we over-
lay the second column of n buses onto the first column of n buses by a rotation of
90 degrees, which eliminates the shuffle connection between the first and the
second columns of crossbars. Similarly, we overlay the third column of n buses
onto the second column by the same rotation. Finally, we get the two dimen-
sional square grid of superposed parallel buses (Figure 2.2). Permutations can be
performed in three steps by simulating the original Benes rearrangeable network.
That is, at each step, a crossbar function can be simulated by the time-
multiplexd linear buses in the sense that the broadcast address and data are
received by the listeners in the prescheduled order of the listener’s address. A
shuffle function, between steps, can be simulated by switching the broadcasting
buses from the row to the column, and from the column to the row.* A total of
three steps are required to simulate the whole three-stage rearrangeable network.
The performance of the interconnection can be further improved by pipelining
the three stages. If one major (processor) cycle is equivalent to v'N minor cycles,
then every processor can send to a destination and receive from a source a packet
on every processor cycle. Furthermore, this scheme can be extended to a systolic
architecture as described in the following sections. In summary, we obtain the
following theorem:

Theorem 2.1: With a nXn grid interconnetion, an arbitrary prescheduled per-
mutation can be completed every 3n minor cycles. If the operation is systolic,
then an arbitrary prescheduled permutation can be completed every n minor cy-

cles.
Proof: The grid interconnection simulates the three-stage Benes permutation
network in 3n minor cycles.[d

Interconnection schemes requiring linear area, such as mesh-connected pro-

cessors where every processor has only local connections with four neighbors,

* A similar observation has been made in the context of three dimensional embeddings of
a Banyan network (Wise[1981]) and a permutation network (Preparata[1983]).
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have been studied extensively since the ILLIAC-IV (Barnes[1968], Orcutt[1974]).
The lower bound for sorting and permutation on a N=n® mesh-connected proces-
sor is 4(n-1) steps, as Thompson and Kung[1977] have shown. They (and Nas-
simi and Sahni[1977]) have also given a 6n time algorithm for sorting. Further-
more, Thompson[1978] has shown a (7n-8) time routing method for prescheduled
permutation. Nassimi and Sahni[1980] have shown an optimal routing algorithm
for frequently used permutations on a mesh-connected processor, but not for arbi-
trary permutations. Recently, Stout[1983] and Kumar[1985] have shown that
some operations of a mesh-connected processor can be improved by augmenting
the row and colum broadcasting buses. However, they have not suceeded in
improving permutation with the augmented buses. The grid interconnection pro-
posed here appears to be the fastest prescheduled permutation scheme imple-

mented in linear area.

3. A Systolic Architecture

In order to pipeline the three stages of permutation operations described in
the previous section and to implement a square grid of the highspeed time-
multiplexed buses using area limited technology, a systolic broadcasting chip
(Figure 3.2) has been outlined. A set of four chips is used to link a processor to
three sets of buses; a total of 4n? chips (32 bits for data and 12 bits for tags) are
required to construct the entire nX n systolic grid interconnection (Figure 3.3) for
permutation operations of n? processors. At 3n minor cycles after every processor
starts sending a packet, entire registers on the systolic broadcasting chips will be
filled with the packets and n row buses Ry o-FRg (,1), n column buses Cq o-Co (5-1);
and n row buses R;q-Rj(, 1 will operate systolically (Figure 3.4 shows the
scheduling chart). A packet (Figure 3.1) is composed of the ¢ag0, tagl, and tag2
followed by the data. The broadcasting sequence is predetermined by the order
of the contents of the tags and the program in each chip. Whenever the content
of the leading tag of a packet is matched by the modulo n clock counter, a chip
broadcasts its packet from the output register after stripping the leading tag.
Whenever the modulo n counter is matched by its own turn that has been pro-
grammed in advance, the chip moves a packet from the bus into the input regis-
ter.*

Where, is a simple identification number representing the turn for the chip

to take a broadcast data into its input register, and is independent of the specific permu-
tations.
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For example, a packet with tag=0 will be broadcast first to the row bus
and a packet with tag=1 will be broadcast second to the row bus, etc. The con-
tent of tagd determines the order of broadcasting a packet to the row buses
Ry o~Ro (n-1); tagl the order to the column buses Cp g~Co (5 1), and tag2 the order
to the row buses R ¢-R; (5 1)- Every processor sends its packet to the first sys-
tolic broadcasting chip and receives its incoming packet from the fourth systolic
broadeasting chip. Every time a packet is broadcast, the leading tag is consumed
by a systolic broadcasting chip. That is, at first, tag0.tagl.tag2.data is sent from
a processor and received by the first chip. Second, tagl.tag2.data is broadcast by
the first chip and received by the second chip. Third, tag2.data is broadcast by
the second chip and received by the third chip. Fourth, dafa is broadcast by the
third chip and received by the fourth chip. Finally, the designated data is ready
at the fourth chip to the destination processor. These operations proceed systoli-
cally to perform the prescheduled permutation among n® processors. If a
highspeed bus can broadcast n packets within one major (processor) cycle, then
all the n? processors can send and receive the prescheduled permutation of data

every processor cycle.

4. Routing Algorithms

Routing algorithms for rearrangeable multistage networks have been exten-
sivly studied (Waksman[1968], Opferman and Tsao-Wu[1971], Andresen[1977],
Lee[1981]). These algorithms all run in O(MogN) time on a single processor. The
natural extension of these algorithms to a parallel system leads to a O(N) time
parallel algorithm (Parker[1978]). The faster parallel algorithms have been
developed by Nassimi and Sahni[1982] and Lev, Pippenger, and Valiant[1981].
These parallel algorithms run on N completely connected processors in O(log® N)
time.* The completely connected processors can be simulated by sorting data on
the single stage shuffle-exchange network (Stone[1971]) in O(log?N) time slow-
down. Therefore, routing tags for the permutations of the faster parallel algo-
rithms can be calculated on N processors with a systolic grid interconnection in
O(log*N) time. The routing for specific permutations, which might be called a
“boot-strap”’, can be done with the shuffle-exchange (Stone[1971]) as the default

interconnection.

* Here we assume that n:\/]_\f is an integral power of two. Otherwise, time complexity of
these algorithms for a three-stage nX n Benes-Clos network becomes O(logsN).



5. Universality

Since the original Benes rearrangeable network can perform an arbitrary per-
mutation by setting the switches with a precalculated control pattern, the nXn
systolic grid interconection can also simulate any n® single-stage fixed intercon-
nection network with fan-in/out degree d in dn minor cycles. If a highspeed bus
for a grid interconnection can transmit n packets to n processors on a bus in one
major cycle, then a nX n systolic grid interconnection can simulate any n® single-
stage fixed interconnection network with fan-in/out degree d in d major cycles.

As a summary, we have the following theorem:

Theorem 5.1: With a nXn systolic grid interconnection, any n® single-stage
fixed interconnection network with fan-in/out degree d can be simulated in dn

minor cycles.

Proof: Any n’ single-stage fixed interconnection network with fan-in/out d can

be simulated sequentially by d permutation routings.[J

6. VLSI Optimality for Permutation

Ullman[1984b] has extended Thompson’s[1979)] AT? lower bound argument
for the point-to-point networks to the AT?M? lower bound for the multipoint net-
works and has shown that a fast sorting network can be constructed using high
“flux’” nets. For sorting, he has shown the lower bound AT’ MP=Q(N?) and the
lower bound of the maximum number of processors on a net, Mrzﬂ(\/}\?), which
is necessary to achieve the optimal fast sorting networks using O(NN) minimum
area. By these criteria, the so-called grid-of-nets has been shown to be nearly
optimal as a fast sorting network. In similar fashion, we can show that our inter-
conection scheme is optimal for permutation by choosing M=vVN. For an N-
permuter, Rosenberg[1983] has shown that ATP=0Q(N?) and A=0Q(N?). We can
extend this formula to the A T2M? lower bound for N-permuter as follows:

Theorem 6.1: For an N-permuter,
(1) AT2MP=0(N?) and A=Q(N)
(2) AT°MP=0O(N?) and A=O(N)

Proof: (1) The information transfer required is Q(N?) for permutation. (2) Since
the grid interconnection can permute N data items in 7=0O(1) time and A= O(N)
area, the network can achieve the lower bound, provided the highspeed time-

multiplexed bus is fast enough to support M=+V'N processors on the bus.[]
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Therefore, the interconnection scheme is optimal as a permuter for both time and

area in terms of VLSI complexity for the multipoint network.

7. Applications

A systolic grid interconnection is suitable for those synchronous parallel
algorithms, whose communication patterns are known prior to execution and
therefore the necessary permutations can be precalculated. Moreover, since no
special memory is required to store the control patterns for permutations, as in
the GF11 supercomputer (Beeten[1984]), the number of permutations is unlim-
ited. Although finite element computations are particularly well matched by this
architecture, arbitrary sparse matrix computations are also efficiently performed.
Furthermore, any statically schedulable dataflow program with large parallelism
can be effectively executed on this architecture by precalculating the permuta-
tions necessary for connectivity of granules at every synchronization point. The
important architectural issue here is to determine the relative communication
complexity and arithmetic complexity of the parallel algorithms under considera-
tion. Observations have been made for some numerical parallel algorithms (Gan-
non and Rosendale[1984] and Johnsson[1985]). In the context of a parallel proces-
sor with a grid interconnection, correct selection of the ratio of the minor cycle to
the major cycle is the important design factor for efficient execution of the chosen
family of parallel algorithms. In addition, we further note that the size of com-
putational granules obviously affects the relative effects of communication com-

plexity and arithmetic complexity.

For example, a saturated (Gottlieb and Kruskal[1984]) parallel Jacobi algo-
rithm for finite element graph with maximum degree d requires d permutations,
while every iteration requires roughly d multiplication, (d-1) additions, and one
division. For effective pipeline operation of computation and communication, the
computation time of each iteration should be equal to the communication time
for the next iteration. That is, if we assume that any arithmetic operation takes
one major cycle, then the selection of technology for interconnection must be
done in such a way that one major cycle is equal to n minor cycles for nX n sys-
tolic grid interconnection. This is because computation time for each iteration is
roughly equal to the communication time, on condition that the multiply unit

and addition unit are pipelined.

On the other hand, a supersaturated (Gottlieb and Kruskal[1984]) parallel

Jacobi algorithm on the n® parallel processors requires O(ﬂ) permutations for
n
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a finite element graph with K nodes, since the bisection width of planar graphs

with K nodes 1s O(\/E'), while a computation at every iteration comprises of
2

O(ﬁ) arithmetic operations. In this case, a period of O(—n—
n’ VK
close enough to one major cycle to achieve a linear speedup of the number of pro-

cessors, n®. That is, the bisection width of a sparse graph affects the communica-

) minor cycles is

tion complexity when the granule size increases and therefore affects the relative
effects of arithmetic complexity and communication comlexity. A suitable selec-
tion of the effective ratio of the minor cycle to the major cycle for the computa-
tional granules under consideration is a key for a successful parallel computation

with a systolic grid interconnection.

8. Conclusions

We presented an area-time optimal interconnection scheme, called systolic
grid interconnection, for arbitrary prescheduled permutation. Unlike the rear-
rangeable multistage networks, this interconnection has neither pin limitations
due to crossbars nor quadratic growth of shuffling area, and yet preserves fast
permutation capability. Unlike the fixed interconnection network, it has no map-
ping problem from a parallel algorithm to the network. Furthermore, owing to
its linear and regular area layout, we can utilize fast technology for the intercon-
nection and thereby time-multiplex the highspeed broadcast operation with a
very fast minor cycle on the bus. By selecting the optimal ratio of the minor
cycle to the major cycle, efficient parallel computations can be carried out with a

systolic grid interconnection.

We note that transformation of space-division networks to time-division net-
works has been discussed (Marcus[1972], Andresen and Harrison[1972]) in the con-
text of space-time equivalence in communication networks for the cost of the
number of cross points. We have further shown that a crossbar can be com-
pletely eliminated by a highspeed time-multiplexed bus and that a shuffle inter-
connection can be eliminated by a rotational transformation from row to column
and from column to row. These observations lead to a linear area layout. The
systolic grid interconnection scheme is particulary important when we consider
VLSI implementaion of interconnections of a large number of processors. That is,
the number of cross points is no longer a valid criterion for the cost of intercon-
nection networks. VLSI layout area and pin limitations are more important fac-

tors for both the cost and the performance of interconnection networks. The
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larger the number of processors connected, the more important the interconnec-

tion area becomes.

Future research in this area includes an extension of grid interconnections to
dynamic permutation capability for real-time applications. A randomized, local
routing strategy (Valiant[1981], Aleliunas[1982], Upfal[1982]) might be helpful for
asynchronous communication. Another alternative is to find an oblivious routing
strategy (Borodin and Hoperoft[1982]) that is not strictly local but
communication-synchronized or when-determinate (Lipton and Sedgewick[1981]
and Ullman[1984a]). For the latter strategy, we have investigated the simulations
of an OQ-network on the systolic grid interconnection for dynamic permutation
(Arden and Nakatani[1986]). Although it requires additional hardware to imple-

ment, the systolic grid interconnection can successfully simulate an Q-network.
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