A LOAD BALANCING IMPLEMENTATION FOR A
LOCAL AREA NETWORK OF WORKSTATIONS

Rafael Alonso
Phillip Goldman
Peter Potrebic

CS-TR-018-86

January, 1986

1986 IEEE Workstation Technology and Systems Conference
March 18-20, 1986
Atlantic City, N.J.

A LOAD BALANCING IMPLEMENTATION FOR A
LOCAL AREA NETWORK OF WORKSTATIONS

Rafael Alonso, Phillip Goldman, Peter Potrebic

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

This paper presents the details of a prototype load balancing pack-
age and tabulates the results of preliminary performance measurements.
Our implementation uses the networking facilities provided in 4.2 BSD
UNIX, and is currently running on 2 local area network of SUN worksta-
tions. Although our work is still in progress, initial benchmarks show

that our approach is extremely promising.

January 5, 1986

A LOAD BALANCING IMPLEMENTATION FOR A
LOCAL AREA NETWORK OF WORKSTATIONS

Rafael Alonso, Philip Goldman, Peter Potrebic

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

1. Introduction

In recent years, advances in technology have made possible a distributed comput-
ing environment composed of a large number of loosely coupled heterogeneous proces-
sors connected by a high bandwidth communication network. This environment is par-
ticularly desirable to many users for a variety of reasons which have been widely dis-
cussed in the literature (see [LeLann1981| for example). These motivations include giv-
ing groups of users the ability to tailor their working environment, gradually increasing
the total computational power available, and achieving greater availability, resource
sharing, as well as increased performance. Many of the currently existing distributed
systems are decentralized, they use a local area network (LAN) [Clark1978] as the com-
munication mechanism, and are composed of a large number of workstations and main-
frames. These systems typically support a wide variety of applications. The hetero-
geneity of the workload, coupled with the decentralization of resource management in
the system, can lead to a situation where, most of the time, the system load is quite
unbalanced across the nodes of the network. For example, at our local computer
center, experience has shown that, while some processors are so heavily loaded as to be
unusable, other machines are underutilized. Although often users could then log onto
another machine, the resulting control system may be unstable, and naive users cannot
be expected to cope effectively with this potential problem. In order to remedy this
problem in a general way, load balancing techniques that can be used transparently by
the system are required, much in the same way that virtual memory techniques are
currently employed on the users’ behalf to help them manage their memory space. The
understanding of such strategies is the long-term goal of our current research.

A condition of load imbalance is undesirable for many reasons. Apart from the
inherent unfairness of that situation (since many jobs are suffering degraded services
while others enjoy underutilized resources), an imbalance may cause a decrease in the
global system’s throughput and an increase in the system’s mean response time.
Misused resources represent a waste of money and typically result in installations buy-
ing more hardware than they really need. It should be made clear that the load imbal-
ance problem exists not only in environments where there is a large number of distri-
buted applications, but even where processes run more or less independently in a single
processor, since in the latter case too many processes may be assigned to a given pro-
cessor. Of course the problem is worse in the former case since a single resource

This research partially supported by New Jersey Governor’s Commission Award No. 85-990660-6

9.

bottleneck can potentially affect many distributed applications.

In broad terms, our current research focuses on the following two questions: (1)
can the performance of a distributed system be improved by using load balancing tech-
niques?, and if so, (2) how to best implement load balancing? With respect to the first
question, it is clear that some degree of improvement could always be achieved by giv-
ing extensive load and task information to a global scheduling mechanism, but only if
the gains are sizable will this approach be of more than academic interest. Also, it
must be shown that, using easily implementable load metrics, and in environments that
are not extremely imbalanced, load balancing still makes sense, even when accounting
for the overhead of the scheme. Furthermore, it would be desirable to reduce to a
minimum the changes required by the introduction of a load balancing scheme. Hence,
a better statement of the the first query would be: can load balancing strategies be
easily introduced into current distributed systems in such a way that the performance
of the system will be substantially improved under reasonable conditions? Our work to
date has addressed only this first question.

Answering the second question requires exploring different load balancing stra-
tegies, which involves studying the performance of various metric-policy combinations.
But it also requires a careful definition of what is meant by the load of a processor (it is
clear that both the intrinsic power of a processor and the type of jobs running in it
must play a part), as well as a thorough study of the impact of system topology and
network bandwidth on the different strategies.

Much of the previous work in load balancing has consisted of formalizations of the
problem so that it becomes mathematically tractable (for example, see [Stonel977]
and[Chul980]). We have instead chosen to study the problem by actually implement-
ing a load balancing mechanism and measuring its performance. Although there have
been a few load balancing implementations reported (for example, see [Presottol982]
and[Hwangl982]), no attempt was made to study the problem systematically in those
cases.

In this paper we describe the nature of our load balancing implementation and
give the performance results that indicate that load balancing techniques can be very
successfully employed in distributed systems. In the next section we describe both the
hardware and software environment of the facility in which our experiments were car-
ried out. Section 3 provides a description of the load balancing software. In Section 4
we report the results of our preliminary tests. In the last section we present our conclu-
sions and remark on the direction of our current research.

2. Experimental Facilities

Our experimental facility is currently composed of 7 Sun workstations of various
types: one Sun2/170 with 300 Megabyte disk (which acts as a network file server), four
Sun2/120 workstations (each with a 120 Mbyte and a 70 Mbyte disks), and 2 Sun2/50
(which are diskless workstations that page from the file server). All the processors are
connected by a stand-alone 10 Mbit/s Ethernet. There were no users on the machines
or using the network while our experiments were taking place.

The operating system for the workstations is Sun UNIX 4.2 Release 2.0, a varia-
tion of Berkeley UNIX 4.2 BSD [Leffler1983]. We will not describe in detail the net-
working facilities provided by 4.2 BSD (see[Sechrest1984] for a tutorial overview).
Suffice it to say that two communication facilities were used in our work, TCP/IP and
UDP. The TPC/IC software enables processes to communicate by using error-free data

-

streams (the user or application program is guaranteed to receive any message sent to
his host), while UDP is a datagram facility (i.e., there is no assurance that UDP mes-
sages will arrive at receiving node; we have found that, at high loads, sometimes over
80% of all UDP datagrams are lost).

A few words are in order about Sun’s network file system. Sun Release 2.0 sup-
ports a network file system called NF'S, which provides an extension to the standard
UNIX tree-like file system structure [Ritchiel1978|. (More details about NF'S are avail-
able in [Walsh1985] NFS allows each machine to access any file or device in the net-
work with almost complete location transparency. NFS accomplishes this with the use
of two primitives, mount() and export(). The former allows machines to actually mount
a remote file system as if it were a directory tree; this tree can be linked at any point
on the local file system. The latter primitive allows a machine to specify which file sys-
tems can be mounted remotely by other machines. This functionality creates a fairly
uniform naming environment which simplifies the task of the load balancing software.

3. The Load Balancing Software

Essentially, our prototype implementation consists of a shell (Ish) that executes
commands in the "least loaded"” processor (a shell, in UNIX terms, is an on-line com-
mand interpreter); this shell is aided in its task by two ancillary daemons (Ilshd and
rld) which will be described below.

The load balancing shell is invoked by the call:
Ish command | args |

At this point, from a user’s perspective, most commands will proceed to execute as if
they were being executed by one of the standard UNIX shells; in particular, the com-
mand can be combined with other commands using pipes, have its input and output
redirected, and the process may also access environment variables. IFor almost all
applications the load balancing shell is transparent. Of course, there are still some
cases in which the shell is not completely transparent; two such cases involve accessing
local files (i.e., files which have not been remotely mounted), and communicating with a
local process (such as a daemon that is only installed on certain machines).

The interactions between the software involved in the load balancing mechanism
are shown in Figure 1. The user first submits his command to the Ish shell. The next
step in the process is to determine on which computer the job should be run. To do
this, Ish connects to rld (using a virtual circuit) and passes the contents of the com-
mand line to it. Based on that information and on data about the load on all the
machines in the network, rld sends back to Ish the name of the machine on which the
job is to be run. If the machine chosen is the local one, Ish interprets the command in
the usual way. However, if a remote host is chosen, Ish attempts to connect to the
Ishd daemon on that host. If the connection is successful, Ish transfers the command
line and other relevant information (such as the user name, current working directory,
and the environment variables) to that daemon. If the connection fails then the com-
mand is executed locally. At this point, Ish has to coordinate with the remote Ishd in
order to to ensure that I/O flows between the command process and the user, and to
clean up after the command terminates.

There is a single Ishd daemon per machine, which forks a process for each request
that it receives. The task of the forked process is to ensure that the migrated com-
mand sees an environment identical to the one in the original processor.

Network

USER

Remote Host Local Host

Figure 1. Software Interactions

There is also a single rld daemon on each machine in the network. rld is responsi-
ble for broadcasting the local load information across the network, and maintaining a
small database of load data that is has received from the other workstations on the
network. (rld uses datagrams to distribute local load information across the network.)
Broadcasting of the local load data is done at periodic intervals (currently, this interval
is 20 seconds long).

il

The present version of rld uses a very simple and naive load metric and decision
making algorithm (one of the areas of our current research is the development of more
sophisticated definitions of load). rld uses as a measure of system load the UNIX "load
average", which is defined as the average number of jobs in the run queue over the last
1, 5, and 15 minutes. For our experiments we used the average over the past minute
(and we will be referring to this number when speaking of the load average in the rest
of the paper). For each remote host, rld keeps a time stamp that represents the last
time it received load data from that particular machine. If rld determines that a par-
ticular workstation has not sent its load within the last broadcast interval, it assumes
that the workstation is down (until that machine resumes its broadcasts).

4. Performance Results

The first test performed was a measurement of the overhead incurred by running
the load balancing system (i.e., the extra load caused by running the two daemons, Ishd
and rld). We expected this overhead to be minimal (since the daemons are suspended
when waiting for user requests, and the exchange of load information is not very fre-
quent), and our measurements confirmed this. Running the load balancing software
increases the load average (defined in Section 3) by 0.02. Low overhead was one of our
design goals, since we did not want users to pay a performance penalty when they were
not using the load balancing mechanism. This test was performed on a Sun2/120.

There is another kind of overhead, that seen by users of Ish when it decides to run
their job locally. Clearly, in that case, the users would pay the overhead of the
decision-making software of lsh without obtaining any benefits. Furthermore, that
decision-making overhead increases as the local machine becomes more loaded (the case
in which load balancing may seem most appealing to users). In Figure 2 we show a
comparison of the response times of two compilations of a C program ("cc middle.c”),
one using Ish (which, in this case, is choosing to run locally) and the other using the
normal system shell. As can be seen, the overhead in choosing lsh ranged from less
than 1.0 second to a maximum of 11.0 seconds. (Note: in this and the rest of the graphs
in this paper, load is defined as the "load average" described in Section 3; furthermore,
the maximum load applied in any of the experiments is 4.0, since a higher CPU load
renders a Sun2 workstation almost unusable for interactive work. Finally, system load
was created by executing a series of CPU intensive jobs in parallel with our tests.) This
test was also carried out on a Sun2 120.

In a third test, we measured the time to execute remotely a trivial program using
our software. It took 3.0 seconds to execute remotely a command that simply echoed
its arguments. This number provides a limit on the type of jobs that are appropriate
candidates for migration; clearly, if a command were to require less than 3 seconds to
execute locally, it would not be effective to execute it remotely. As a comparison, we
measured the time to run the same command using the remote execution software pro-
vided by Sun, the rsh command (this software lets the user specify a remote site and
execute a command there). We found that it took 5.6 seconds to accomplish the task
using that software, even though our mechanism had the extra overhead involved in
choosing an execution site. This test was conducted using 2 Sun2/120’s.

The rest of the experiments described in this Section were devised to test Ish in a
"canonical” two machine configuration. That is, there was a "local” processor where the
user entered his commands, and a "remote” host (whose load was always lower than the
local one). Of course, in a real situation, there would be many "remote” hosts, but as

-6-

far as the performance of Ish goes, there is only one significant "remote” host (the one
that lsh chooses as the least loaded one).

Figure 3 shows the response time for "cc middle.c” again, this time executing it
both in the normal manner (ie., locally) and with Ish , for different combinations of
local and remote loads. Both the local and remote hosts were Sun2/50’s (i.e., the disk-
less workstations that paged from the file server). The line labeled "local cc middle.c”
marks the response time of the compile command, executing locally, as the local load
increases from O to 4. The family of curves labeled "Ish (remote =)" reveal the
response time of the same command, but now running under Ish, for a variety of remote
loads. There are several items to notice in this graph. First, it is clear that, if there is
a remote machine that is idle, it is faster to use Ish than to execute locally (except
when local load is almost zero). Also, if the local load is less than or equal to the load
of the least loaded remote site, Ish performs only slightly worse than the normal shell
(in this case Ish is choosing to run locally, but still has to incur the decision-making
overhead). And, for any value of local load, if there is a remote machine with a load
slightly less than the local load, the user obtains a faster response time by using Ish.
The actual amount of improvement in response time can be sizable, even when there is
a relatively small difference in loads. For example, if the local load is 3 and the remote
load is 1, a user could improve the response time of his compile by almost 40 percent.

We repeated the above experiment, this time using 2 Sun2/120’s. In this case, the
code to be compiled resided in the disk of the local machine, and thus, the code had to
be migrated to the remote processor before compilation. As Figure 4 shows, the graph
is very similar to that of Figure 3, but there is a small increase in the overhead of using
Ish when compared to using the standard shell.

In Figure 5 we show the result of a another experiment, this time with a smaller
job ("small.c”) to be compiled. Two Sun2/50’s were again used here. Since the execu-
tion time of this command is of the same order of magnitude as the overhead of using
Ish, the potential gains of using the load balancing mechanism are only realized when
the difference in load averages is large; for example, even when the local load is 3 and
there is a remote machine with a load of 1, the user can obtain faster response time by
running the normal shell.

Figure 6 shows the information from the graph in Figure 3 in a different form.
The x-axis of the graph is labeled with the value of the load in the local processor, and
the remote load appears on the y-axis. The graph shows the region in the load space
where the use of Ish is effective (i.e., where using Ish leads to an improvement in perfor-
mance). In Figure 7 we do the same with the information of Figure 5. A comparison of
these two graphs shows that, although in both cases there are large regions of the load
space for which the use of Ish is indicated, the command "cc medium.c” is better suited
for load balancing than the other one. The line marked "optimal” in both graphs
represents the ideal performance of a load balancing mechanism with zero overhead (for
both decision-making and moving data across the network); with such a system, for
these two experiments, running on a remote machine with the same load as the local
processor should be just as fast as running locally. The overhead of our system can be
appreciated as the separation from the optimal line of our results.

5. Conclusions

In the previous Section, we presented the results of some of our performance tests,
which show the possible benefits of using load balancing strategies in local area net-
works. The performance improvements that can be obtained are sizable, and achiev-
able even under conditions of mild load imbalance. We have studied a variety of UNIX
commands, in experiments similar to those in Section 4, and the results have been
equally satisfying.

It is clear that there are many other issues to be explored in the context of load
balancing mechanisms. In particular, we are currently trying to develop less naive load
metrics, ones that will also include the notion of disk utilization. We are also exploring
the performance of a variety of load balancing schemes, including ones that take into
account the type of job being migrated. In this study, we did not focus on network
load, but, as distributed applications become more common, and as more users work on
diskless workstations that constantly create network traffic, it does not seems improb-
able that the network might become a potential bottleneck. We have tentative solu-
tions for some of these problems, but much work remains to be done.

References

LeLann1981.
LeLann, Gerald, “Motivations, Objectives and Characterization of Distributed
Systems,” in Distributed Systems — Architecture and Implementation: An Advanced
Course, Lecture Notes in Computer Science, ed. B. W. Lampson, M. Paul, and H. J.
Siegert, vol. 105, pp. 1-9, Springer-Verlag, 1981.

Clark1978.
Clark, D. D., Pogran, K. T., and Reed, D. P., “An Introduction to Local Area Net-
works,” Proceedings of the IEEE, vol. 66, no. 11, pp. 1497-1517, November 1978.

Stonel977.
Stone, H. S., “Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms,” IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp. 83-93,
January 1977.

Chu1980.
Chu, W. W, Holloway, L. J., Lan, M., and Efe, K., “Task Allocation in Distributed
Data Processing,” IEEE Computer, November 1980.

Presotto1982.
Presotto, D., “Dsh command,” 4.2 BSD manual page, U.C Berkeley, 1982.

Hwang1982.
Hwang, K., Croft, W. J., Goble, G. H., Wah, B. W., Briggs, F. A., Simmons, W. R,
and Coates, C. L., “Unix Networking and Load Balancing on Multi-Minicomputers
for Distr. Proc.,” IEEE Computer, April 1982.

Lefller1983.
Leffler, S., Joy, W., and McKusick, K., UNIX Programmers’s Manual - 4.2 Berkeley
Software Distribution, U.C Berkeley, August 1983.

Sechrest1984.

Sechrest, Stuart, “Tutorial Examples of Interprocess Communication in Berkeley
UNIX 4.2BSD,” Report No. UCB/CSD 84/191, U.C. Berkeley, June 1984.

Ritchiel1978.
Ritchie, D. and Thompson, K., “UNIX Time-Sharing System,” Bell System Techni-
cal Journal, vol. 57, no. 6, pp. 1905-1929, 1978.

Walsh1985.
Walsh, Dan, Lyon, Bob, and Sager, Gary, “Overview of the Sun Network File Sys-
tem,” Proceedings USENIX Winter Conference 1985, January 1985.

140

120

100

80
response

time
(sec)

60

40

20

0

1sh

local

local load

Figure 2. Lsh Overhead - compile of middle.c

- 10 =

140 |

120

100 |

response
time
(sec)

60 |

[l I

Alsh (remote

olsh (remote

oy1lsh (remote

©y1sh (remote

)

20

D//_E\E' 1sh (remote

I | I : |

a)

local cc middle.c

3)

2)

1)

),

2 3 4 5

local load

Figure 3. Lsh Performance: compile of middle.c, diskless workstations

140

120

100

response
time
(sec)
60
40
20
0

=}

1sh

local cc middle

(remote

%)

1sh (remote = 3)

S— _© 1sh (remote = 2)

o ~N & 1lsh (remote = 1)

o =] I

= g 5 1sh (remote = 6}
| | | |
2 3 4 5

local load

Lsh Performance: compile of middle.c, local disk

= 19=

24
1 [[I
1sh (remote = 2)
22 | i
al cc small.c
20 | -
18 [lsh (remote = 1)
response
time
sec
() g 1sh (remote = 0)
16 o
d
14 2l
12 ol
Vi
10 l J | I |
0 5 2 3 4 5

local load

Figure 5. Lsh Performance: compile of small.c, diskless workstations

remote
load

38 .

optimal

1sh ineffegtive

1sh effective

Figure 6. Lsh Effectiveness

local load

: compile of middle.c, diskless workstations

-14-

|
4 |
optimal

3 k.
remote
load

Z L

1lsh ineffective
o (I
1lsh effective
0 I | [

local load

Figure 7. Lsh Effectiveness: compile of small.c, diskless workstations

