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Abstract

This document presents a high level description of an architecture for a massive memory machine (a
computer with several gigabytes of main memory). The architecture provides a logical extension of
the standard three level (cache, main memory, disk) memory hierarchy to a four level scheme
(massive register set, cache, main memory, disk). The design combines: the compiler optimized
data motion of registers; the temporal locality advantages of caching; and the high throughput
benefits of interleaving into a design which suggests a very natural physical implementation using
present day packaging technologies.
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Introduction

This paper is divided into three sections. The first section describes a comprehensive design for a
large memory computing system. Several features of this design involve innovative ideas that will
provide interesting topics for continuing research. The second section describes a prototype two
board implementation of the architecture which uses mostly off the shelf components and can be
realistically implemented in within the next two years. The third section presents a simple design for
a massive memory system using strictly standard components which can be implemented
immediately (as soon as the PO's are sent out).

Overview of the Memory Hierarchy

The memory hierarchy for this Interleaved Massive Memory Machine (IMMM) is perhaps best
described in comparison to hierarchies of existing machines. The table below contrasts the memory
hierarchy of a VAX-11/780 to the new machine [1].

IMMM VAX

registers 1K bytes registers 64 bytes

4 byte blocks 4 byte blocks
massive registers 64 K bytes cache 8 K bytes

16 byte blocks 8byte blocks
cache 16 M bytes main memory 8 M bytes

128 byte blocks 512 byte blocks
main memory 4 G bytes disk 500 M bytes

64 K blocks -

disk 16 G bytes

The registers for both machines look similar. Of course the IMMM has many more of them, but this is
keeping in line with recently demonstrated performance benefits of register windowing techniques
[2].

At the second level the IMMM has a set of massive registers that differs dramatically from caching
on the VAX. Data motion at this level is compiler optimized while on the VAX, blocks are fetched on
demand. Details of this will be discussed further.

At the third level, the 16 M byte IMMM cache doesn’t differ dramatically from the main memory
system of the VAX (which can be thought of as a cache for disk pages). The IMMM system is highly
interleaved to support high throughput rates to the processor while the VAX only supports two way
interleaving.

Fourth level memory for the VAX is 500 M bytes of disk drive while the IMMM has a 4 G byte
semiconductor memory. On problems requiring random access to large data sets the VAX will thrash,
and while the IMMM proceeds at full CPU speeds! Note that the disk drive for the IMMM is only



several times larger than its core memory space. Most data will permanently reside in core on the
IMMM, and the disk will primarily be used as a backup device.

Massive Register Sets

The massive register set is an innovative component of the IMMM memory hierarchy. Development
of this subsystem is motivated by demonstrated performance gains through the use of large
numbers of registers [2][3]. The trend toward larger register sets is outlined below.

PDP11/70 -> VAX11/780 -> RISC -> IMMM
32 bytes 64 bytes 512 bytes 64 K bytes

Present day computing systems typically maintain a cache as the 64 K byte store in the memory
hierarchy while the IMMM maintains a massive register set. These two alternatives differ in one
critical aspect. This is the notion of memory fetches “On Demand” versus “By Command”. In a
caching system, memory blocks are pulled in as they are referenced "By Demand”. In a register
organization, memory blocks are pulled in "By Command”. The register organization offers several
important advantages.

1. Simple Hardware
2. Code Density
3. Better Performance

The massive register set will not require all of the complicated associative mapping hardware of a
cache. So not only will the hardware be cheaper, but the memory references will be faster by
eliminating associative tag lookups during each fetch. Code density will be increased by not using
long pointers for most CPU operations. Only sixteen bits will be required to reference data items in
the massive register set, instead of the 32 + bits of virtual address available on the massive memory
system.

Perhaps the most important advantage of the massive register set is the performance gains that can
be realized by using compiler optimized data motion commands. On many applications programs
data motion patterns are known in advance. This knowledge can be utilized by an intelligent
compiler to make efficient data motion decisions.

Register Implementation Issues

Several important issues have to be resolved before a massive register system is implemented.



1. What do we store in the registers?

2. Compiler Intelligence

3. How are process/context switches implemented?
4. High Speed Block Transfers

A judicious choice of objects to store in the registers is the most critical factor in massive register set
performance. Architects of the CRISP project at Bell Labs have shown advantages in storing the top
of the system stack with its associated local variables in registers [3]. The RISC project has
demonstrated the advantages of storing function call state in registers [2]. These both fit into a
more general theme of explicitly storing important state in registers “on command” versus
retrieving this state in "on demand”. The merits of storing various types of state information will
have to be investigated further.

The task of identifying the critical state information is intimately tied to development of a
sophisticated compiler for the system. Compilers already do this type of allocation for smaller
register sets, but allocating thousands of registers may introduce incredible compiler complexity.
How far can compilers be pushed?

Process and context switches usually require the operating system to save and restore the entire
register set. This will simply not be practical for thousands of registers. Swapping at some level will
probably be required, but not for each individual process switch. Perhaps sets of processes can be
swapped in and out of the register set. The proper granularity of state to be swapped will have to
be ascertained.

Because of the large amounts of state that will have to be moved during process/context switches,
high speed block transfers will be a requirement to extract performance from a massive register
system. Interleaving and separate /O processors to perform high speed block transfers are being
investigated.

Massive Cache

The next level of the memory hierarchy is the 16 M byte massive cache. This looks very much like a
VAX's 8 M byte main memory. The VAX's main memory essentially acts as a cache for disk pages. A
massive cache performs the same function for blocks brought in from the 4 G byte main memory.
The basic difference between these two systems is the interleaved nature of the IMMM massive
cache which allows for high rates of data throughput. The “by command” data fetch policy was not
extended to this level of hierarchy because allocation is presently not well understood for the 64 K
register set, and extensions of these concepts to megabytes are premature at this point.

The caching scheme maintains all of the temporal locality benefits of caching while allowing for
high rates of interleaving to facilitate the following.

1. State Swapping
2. Block Moves
3. Cold Start



High throughput will allow fast state swapping into and out of the massive register set. This will be
essential for efficient performance of the massive register system.

The interleaved organization will make possible a block move facility which bypasses the CPU. These
block moves will allow rapid data transfers between buffers and files without burdening the CPU.

Cold start is a problem which hampers a large memory hierarchy. To start a new program/process, it
will be necessary to move a lot of state from the lower levels of the memory hierarchy into the cache
and massive register set. This can incur a large program initiation overhead if the hierarchy is deep
enough. A high throughput interleaved organization will increase the speed of this program
initiation task.

Operating System Issues

The architecture of the IMMM won't impact significantly on current operating system technologies.
The most complicated part of an IMMM operating system will be the process/context state
management for the massive register set. This will require non-trivial but manageable extensions of
existing operating system components. Aside from process management, disk control for this
interleaved system will differ greatly from UNIX control structures. Operating systems for such
interleaved architectures already exist so this can be considered a solved problem.
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Two Board Implementation

This section of the paper describes a two board implementation for the IMMM which does not
include all of the features of the comprehensive design, but it can be realistically built in the next
two years with manageable amounts of hardware and software development.

The design uses: VME card cages; standard CPU and memory cards; along with two custom interface
boards to implement a high throughput massive memory system. The first board contains a special
one M byte cache with a separate data channel to main memory. Sixteen of these boards fit in the
same VME box to form a single 16 M byte cache. Each cache board connects to a custom interface
board in a separate VME memory box, These separate VME boxes each contain sixteen 4 M byte
Memory boards and a disk drive/DMA controller. The total memory in the sixteen secondary
memory boxesis 1 G byte.

Software

Minimal operating system alterations will be necessary to port UNIX to this system. Disk drivers will
have to be rewritten to support interleaved disks, and data spaces along with system buffers will
have to be enlarged.

The basic organization and high level features of the Two Board implementation are illustrated in
the following pages.
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Extended Bus Design

This section of the paper describes a simple extended bus design for a massive memory system. It
supports no intermediate level caching or interleaving, but is composed of strictly off the shelf
components and can be implemented immediately.

The design also uses standard VME cages and memory boards. The cages are connected together
with electrically buffered extender cards to form one large logical bus. No operating system
modifications will be required, but a processor board with thirty two bits of address has yet to be
found.

The system is illustrated in the following pages.
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Conclusion

The architecture described in this paper incorporates the advantages of caching, interleaving, and
large register sets into a design that can be implemented during the next two years with realistic
amounts of hardware and operating system development.
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