TWO STREAMLINED DEPTH-FIRST SEARCH ALGORITHMS

Robert Endre Tarjan

Computer Science Department
Princeton University
Princeton, NJ 08544

and

AT&T Bell Laboratories
Murray Hill, NJ 07974

July, 1985
CS-TR-013-86

Two Streamlined Depth-First Search Algorithms

Robert Endre Tarjan

Computer Science Department
Princeton University
Princeton, NJ 08544

and

AT&T Bell Laboratories
Murray Hill, NJ 07974

July, 1985

ABSTRACT

Many linear-time graph algorithms using depth-first search have been invented. We propose
simplified versions of two such algorithms, for computing a bipolar orientation or st-numbering of an

undirected graph and for finding all: feedback vertices of a directed graph.

Two Streamlined Depth-First Search Algorithms

1. Introduction

Depth-first search is a well-known graph exploration method that has been used to obtain
efficient algorithms for a variety of graph problems [3,4,5,6,7,8,11,14,15,16,17]. Some of these
algorithms, though linear-time and thus asymptotically optimal, can be simplified and thereby made
easier to use and faster in practice.- Our purpose in this paper is to provide two such simplified
algorithms. These are for the problem of computing a bipolar orientation or an st-numbering of an
undirected graph, and for finding all feedback vertices of a directed graph. In our discussion we

shall assume some familiarity with the properties of depth-first search (see [1,14,15]).

2. Computing an st-Numbering

Let G = (V, E) be an undirected graph with |V| =n and |E| = m. G is biconnected if there
is no vertex whose removal disconnects G. Suppose G has two distinguished vertices, s and #. A
bipolar orientation of G is an orientation of the edges of G that produces a directed acyclic graph
such that s is the unique source (vertex with no entering edges) and ¢ is the unique sink (vertex
with no exiting edges). An st-numbering is a numbering of the vertices of G by the integers 1
through n such that s is vertex 1, is vertex n, and every other vertex is adjacent both to a lower-

numbered and to a higher-numbered vertex.

G has a bipolar orientation if and only if it has an st-numbering, and we can compute either
from the other in O(n+m) time, as follows. Given a bipolar orientation, we number the vertices of
G in topological order using either Knuth’s algorithm [9] or depth-first search [15]. This produces
an st-numbering. Given an st-numbering, we orient each edge from its lower-numbered to its

higher-numbered endpoint. This produces a bipolar orientation.

The concept of an st-numbering was introduced by Lempel, Even, and Cederbaum [10], who
used it in an efficient planetary-testing algorithm. Bipolar orientations and st-numberings have also

been used in planar layout algorithms [12,13,19]. Lempel, Even, and Cederbaum proved that an

st-numbering exists if and only if the graph G* = (V,E U {{s,#}}) is biconnected. Even and
Tarjan [4] devised an O (n+m)-time algorithm for finding an st-numbering. Ebert [3] proposed a
simplified version of the algorithm. Both of these methods first decompose G* into a collection of
edge-disjoint paths and then process the paths to produce an st-numbering. We shall propose an

even simpler algorithm that bypasses the path decomposition phase.

In order to develop the algorithm, we need to review some of the properties of depth-first search
on undirected graphs and its use in biconnectivity testing [1,14]. Assume G* is connected. Suppose
we carry out a depth-first search of G*, starting at vertex s and first traversing the edge {s,2}. The
search traverses every edge of G™, orienting it in the direction along which the search advances.
The resulting directed edges are of two types: tree edges, which define a spanning tree rooted at s
and containing paths from s to every vertex, and back edges, each of which leads from a vertex to

one of its proper ancestors in the spanning tree.

Suppose we number the vertices from 1 to n in the order they are first visited during the search.
This numbering is a preorder numbering [9] of the spanning tree. We shall denote the number of a
vertex v by pre(v). For each vertex v, let low(v) be the vertex of smallest number reachable from
v by a path consisting of zero or more tree edges followed by at most one back edge. The vertex
low(v) is guaranteed to be an ancestor of v in the spanning tree. (See Figure 1.) The vertex
numbers and the low values can be computed in linear time in a single depth-first search; to
compute the low values, we use the fact that low(v) is the vertex of minimum number in the set
v} U loww)|(v,w) is a tree edge} |J {w|(v,w) is a back edge}. The following lemma relates

low values to biconnectivity:

Lemma 1 [14]. G* is biconnected if and only if (s,¢) is the only tree edge leaving s and

pre(low(w)) < pre(v) for every tree edge (v, w).

[Figure 1]

The st-numbering algorithm consists of two passes. The first pass is a depth-first search during

which vertex numbers and Jow values are computed, as well as the parent p (v) of each vertex v in
the spanning tree. The first pass can if necessary check that G* is biconnected. The second pass
constructs a list L of the vertices, such that if the vertices are numbered in the order they occur in
L, an st-numbering results. The second pass is a preorder traversal of the spanning tree. During
the traversal, each vertex u that is a proper ancestor of the current vertex v has a sign that is minus
if u precedes v in L and plus if u follows v in L. Initially L = [s,¢] and s has sign minus. The
second pass consists of repeating the following step for each vertex v ¢ {s,t} in preorder (see Figure

2):

Add a vertex. If sign(low(v)) = plus, insert w after v in L and set sign(p (v)) = minus; if

sign(low (v)) = minus, insert w before v in L and set sign(p (v)) = plus.
[Figure 2]

Theorem 1. The st-numbering is correct.

Proof. Consider the second pass of the algorithm. We must show that (i) the signs assigned to
vertices have the claimed meaning, and (ii) if vertices are numbered in the order they occur in L, an

st-numbering results.

To prove (i), let s = xq, ¢ = x1,X2, ..., X; be the tree path from s to the vertex x; most
recently added to L, and let v with parent x; be the next vertex to be added to L. Assume as an
induction hypothesis that for all 0 < i < j < /, sign(x;) = plus if and only if x; follows x; in L.
The tree path from s to v is § = X, ¢ = Xy, ..., Xk , v. Since sign(x;) is set to minus if v is
inserted after x; in L and to plus if v is inserted before x; in L, the induction hypothesis holds
after v is added. (For any vertex x; for which 0 < i < k, x; and v are on the same side of x; in

L.) By induction, (i) holds.

To prove (i), let v € {s,2}. If (v, low (v)) is a back edge, the insertion of v between p (v) and
low(v) in L guarantees that in the numbering corresponding to L, v is adjacent to both a lower-

numbered and a higher-numbered vertex. Otherwise, there must be a vertex w such that p(w) = v

and low (w) = low(v). Lemma 1 guarantees that Jow(v) is a proper ancestor of v, which means
that sign(low (v)) remains constant during the time that v and w are added to L. It follows that v
appears between p(v) and w in the completed list L. This implies that, in the numbering
corresponding to L, v is adjacent to both a lower-numbered and a higher-numbered vertex. Thus

(i) holds. O

It is obvious that the st-numbering algorithm runs in linear time. The following program,
written in a variant [18] of Dijkstra’s guarded command language [2], implements the algorithm.
The function st-number is the main program, which computes and returns an st-numbering. Input
to st-number is the vertex set ¥ and the distinguished vertices s and ¢. Each vertex v is assumed to
have a precomputed set adj(v) of its adjacent vertices. The recursive procedure dfs carries out the
depth-first search of the first pass. In addition to computing pre, low, and p, it constructs a list
preorder of the vertices other than s and ¢ in preorder for use by the second pass. In the program

the empty list is denoted by "[1".

map function st-number (set V, vertex s,1);
map pre, low, p, sign;
list L, preorder,
integer current;
logical plus , minus;
for v e V — pre (v):=0 rof;
pre(s):= current:=1;
preorder=1[1,
dfs(t);
L =I[s,1];
plus , minus:= true , false;
sign(S):= minus,
for v e preorder—
if sign(ow (v)) = minus—
insert v before p (v) in L; sign(p (v)):= plus
| signlow (v)) = plus—

insert v after p (v) in L; sign(p (v)):= minus

rof;
current:= 0;
for v ¢ L — stnumber(v):= current:= current + 1 rof

end stnumber;

procedure dfs (vertex v);
pre(v):= current:= current + 1;
low(v):=v;
for w eadj(v)—
if pre(w) =0—
dfs(w);
pw)=v;
preorder:= preorder & [wl;
if pre(low (w)) < pre (low (v)) — low (v):= low (w) fi
| pre(w) = 0 and pre (w) < pre(low (v)) — low W)=w
fi
rof

end df5;

We close this section with a few remarks. Our algorithm, in addition to being conceptually
simpler than Ebert’s, uses less auxiliary storage space, roughly 6n words instead of roughly 8n
words. (The list L must be doubly linked to facilitate insertions both before and after given items.)

Though a test for biconnectivity has been omitted, it could easily be added.

3. Finding All Feedback Vertices

Let G = (V,E) be a directed graph with |V| =n and |E| = m. Suppose n > 2 and G is
strongly connected; that is, every vertex is reachable from every other. A feedback vertex is a
vertex that lies on every cycle of G. Garey and Tarjan [5] discovered how to find all feedback
vertices in O (n+m) time using depth-first search. Their algorithm has four passes and is somewhat

involved. We shall describe a simplified algorithm that takes only two passes.

We begin by reviewing some properties of depth-first search on directed graphs [14,15]. Suppose
we carry out a depth-first search of G starting from any vertex s, numbering the vertices in the

order they are last visited during the search. The search partitions the edges of G into four classes:

6)) tree edges, which define a spanning tree rooted at s containing a path from s to every
vertex.

(ii) back edges, each of which leads from a vertex to one of its ancestors in the spanning tree.

(iii) forward edges, each of which leads from a vertex to one of its proper descendants in the

spanning tree.

(iv) cross edges, each of which leads from a vertex v to a vertex w such that

number (w) < number (v) and v and w are unrelated in the spanning tree.

The vertex numbering is a postorder numbering [9] of the spanning tree. We shall denote the
number of a vertex v by post(v). An edge (v,w) has post(v) < post (w) if and only if (v,w) is a
back edge. The nonexistence of any edge (v,w) such that v and w are unrelated in the tree and

post (v) < post (w) implies the following lemma:

Lemma 2 [14]. Any path from a vertex v to a vertex w such that post (v) < post (w) contains a

common ancestor of v and w in the spanning tree.

We can characterize feedback vertices in terms of post and a second function on vertices. For
any vertex v, let high (v) = max{post (w) |w is reachable from v by a path consisting of zero or

more non-back edges followed by at most one back edgel.

Theorem 2. A vertex x is a feedback vertex if and only if
@ for every back edge (v, w), post (v) < post (x) < post (w), and

(i) for every non-back edge (v,w) such that high(w) > post (), post (x) < post(w) or
post (x) > post (v).

Proof. Let x be a feedback vertex. A back edge (v,w) defines a cycle consisting of (v,w)

followed by the tree path from v to w; every vertex on this cycle has number between post (v} and

post (w) (inclusive). Thus (i) holds. Let (v, w) be a non-back edge and let u be the vertex whose

number is high(w). There is a path p from v to u containing only u,v,w, and vertices with

number less than post (w). If high(w) > post(v), u is an ancestor of v by Lemma 2, and the

cycle consisting of p followed by the tree path from u to v contains only vertices with numbers

either greater than post (w) or no less than post (v). Thus (i) holds.

Conversely, let x be a non-feedback vertex such that (i) holds, let ¢ be a simple cycle not
containing x, and let z be the vertex of largest number on c. The edge on ¢ entering z, say (y,z),
is a back edge, and post (y) < post (x) < post (z) by (i). There must be a nonback edge (v,w) on
¢ such that post (w) < post(x) < post(v). Consider the last such edge preceding (y,z) on c.
The choice of (v, w) guarantees that the path on ¢ from w to y contains only non-back edges; thus

high(w) > post (z) > post (v) and (ii) fails. O

Theorem 2 leads to an O (n+m)-time algorithm for finding feedback vertices. The first pass of
the algorithm consists of a depth-first search that computes the number of each vertex (see Figure

3)

[Figure 3]

The second pass is a postorder traversal of the spanning tree. It computes the high function and
the integer lowest, defined to be the lowest number of a vertex entered by a back edge.
Simultaneously, it manipulates a stack of candidate feedback vertices. The second pass consists of
initializing lowest = oo, initializing high(v) = post(v) for each vertex v, and repeating the

following step for each vertex v in postorder (see Figure 4):

Scan a vertex. Process each edge (v,w) out of v as follows. Replace high (v) by
max{high v), high(w)}. If (v,w) is a back edge, replace lowest by min{lowest, post (w)} and
empty the stack. If (v,w) is a non-back edge such that high (w) > post(v), pop from the stack
every vertex with number greater than post (w). After processing all edges out of v, push v onto

the stack if post (v) < lowest.
[Figure 4]

Theorem 3. The vertices left on the stack at the end of the algorithm are exactly the feedback

vertices.

Proof. Consider the second pass of the algorithm. Obviously lowest is computed correctly. That
the computation of high is correct follows from the observation that for any vertex v, the value of
high (v) maintained by the algorithm is post (v) until v is processed in postorder. Every vertex on
the stack when a vertex v is processed has number less than that of v, and the numbers of stacked
vertices increase from the bottom of the stack to the top. Let x be a feedback vertex. By Theorem
2 (i), x is placed on the stack; by Theorem 2 (i), x remains on the stack until the end of the
algorithm. Conversely, let x be a non-feedback vertex, and let (v, w) be the earliest-processed edge
for which x fails the test of Theorem 2. If (v,w) is a back edge, then either post (x) < post(v)
and x will be popped from the stack when (v, w) is processed, or post (x) > post(w) and x will
never be pushed onto the stack. If (v, w) is a non-back edge, then x will be popped when (v,w) is

processed. O

An implementation of this algorithm appears below. The main program is the function
feedback, which returns a list of the feedback vertices. Input to feedback is the vertex set V. For
any vertex v, succ(v) is a precomputed set of the vertices w such that (v,w) is an edge. The
recursive procedure dfs carries out the depth-first search of the first pass. All vertex numbers are
initialized to zero. When a vertex is first visited, its number is set to one; when last visited, it is
numbered in postorder. The first pass constructs a list of the vertices in postorder and initializes

high. The second pass is a loop over the postorder list.

-10 -

list function feedback (set V);
list postorder;
map high;
integer lowest , current,
current:= 0,
dfs(any (1");
for v € postorder —
for w € succ(v)—
high(v):= max{high (v), high W)}
if post (w) > post v)—
Jowest := min{lowest ,post (w)}; feedback:=[]
| post (w) < post (v) < high(w)—
do feedback = [1 and post (top (feedback)) > post w)—

pop (feedback)

rof;
if post (v) < lowest— push v onto feedback fi
rof

end feedback;

=11 -

procedure dfs (vertex v);
post(v):=1;
for w ¢ succ (v)— if post (w) = 0— dfs(w) fi rof;
post (v):= high (v):= current:= current + 1

end dfs;

Remarks. The function any returns any element of a set. The function top returns the top element

of a stack. The procedure pop removes the top element of a stack. The procedure push onto pushes

a new element onto a stack. O

(1]

[2]

[31

[4]

(5l

(6]

(71

[8]

[91

[10]

[11]

[12]

<18 &

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA, 1974.
E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
J. Ebert, “st-ordering the vertices of biconnected graphs,” Computing 30 (1983), 19-33.

S. Even and R. E. Tarjan, “Computing an st-numbering,” Theoretical Computer Science 2

(1976), 339-344.

M. R. Garey and R. E. Tarjan, “A linear-time algorithm for finding all feedback vertices,”

Info. Proc. Letters 7 (1978), 274-276.

J. E. Hoperoft and R. E. Tarjan, “Algorithm 447: efficient algorithms for graph

manipulation,” Comm. ACM 16 (1973), 372-378.

J. E. Hoperoft and R. E. Tarjan, “Dividing a graph into triconnected components,” SIAM J.

Comput. 2 (1973), 135-158.

J. E. Hopcroft and R. E. Tarjan, “Efficient planarity testing,” J. Assoc. Comput. Mach. 21

(1974), 549-568.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms,

Second Edition, Addison-Wesley, Reading, MA, 1974.

A. Lempel, S. Even, and 1. Cederbaum, “An algorithm for planarity testing of graphs,”
Theory of Graphs: International Symposium, P. Rosenstichl, ed., Gordon and Breach, New

York, NY, 1967, 215-232.

T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in a flow graph,”

ACM Trans. on Programming Languages and Systems 1 (1979), 121-141.

R. H. J. M. Otten and J. G. van Wijk, “Graph representations in interactive layout design,”

Proc. IEEE International Symp. on Circuits and Systems (1978), 914-918.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

15 -

P. Rosenstiehl and R. E. Tarjan, “Rectilinear planar layout of planar graphs and bipolar

orientations,” to appear.

R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J. Comput. 1 (1972),

146-160.
R. E. Tarjan, “Finding dominators in directed graphs,” SIAM J. Comput. 3 (1974), 62-89.

R. E. Tarjan, “Testing flow graph reducibility,” J. Computer and System Sciences 9 (1974),

355-365.

R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,” Acta Informatica 6

(1976), 171-185.

R. E. Tarjan, Data Structures and Network Algorithms, CBMS 44, Society for Industrial

and Applied Mathematics, Philadelphia, PA, 1983.

D. R. Woods, “Drawing planar graphs,” Technical Report No. STAN-CS-82-943, Computer

" Science Dept., Stanford University, Stanford, CA, 1981.

(a)

(b)

Figure 1. The first pass of the st-numbering algorithm.
(a) An example graph G. Note that G is not biconnected, since
removal of vertex g separates it.
(b) The structure imposed by a depth-first search of Gt. Vertices
are numbered in preorder. The letters labeling vertices are
low values. Tree edges are solid, back edges are dashed.

VERTEX
ADDED LIST

s-,t

s-,qg,t+
s-,g-,h,t+
s-,f,g+,h,t+
s-,b,f+,g+,h,t+

O o —+»~ I 4«

s-,a,b+,f+,g+,h,t+

e s-,a-,e,b+,f+, g+, h,t+
c s-,a,e,b,c,f+,g+,h,t+
d

s—,c,e,b,d,c+,f+,g+,h,f+

Figure 2. The list L generated by the second pass of the st-numbering
algorithm. Irrelevant signs are omitted.

(a)

(b)

Figure 3. The first pass of the feedback vertex algorithm.

(a)
(b)

An example graph with the feedback vertices starred.

The structure imposed by a depth-first search starting
from vertex a. To the left of vertices are the postorder
numbers assigned by the search. To the right are the
high values. Tree edges are solid, non-tree edges

are dashed. Back edges, forward edges, and cross edges
are denoted by "B", "F", and "C", respectively.

VERTEX

SCANNED STACK
b b
e e,b
f f,b e POPPED BY EDGE (f,b)
g q,f,b
C c,qg,f,b
h g,f,b ¢ POPPED BY (h, Q)
d f,b g POPPED BY (d,f)
a f,b

Figure 4. The behavior of the stack during the second pass of the
feedback vertex algorithm. The value of lowest is 5.

