OPTIMIZING SHADOW RECOVERY ALGORITHMS

by
Jack Kent

Hector Garcia-Molina
TR-CS-012

October, 1985

OPTIMIZING SHADOW RECOVERY ALGORITHMS

Jack Kent

Hector Garcia-Molina

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, N.J. 08544

ABSTRACT

Experiments conducted on a database testbed at Princeton
indicate excessive page-table I/O is the major performance draw-
back of shadow recovery. In light of this, we propose a method for
parametrizing shadow recovery that minimizes page-table I/O
without sacrificing too much disk utilization. Using a simple model,
we analyze and evaluate our mechanism, comparing it to two con-

ventional ones.

September 20, 1985

OPTIMIZING SHADOW RECOVERY ALGORITHMS

Jack Kent

Hector Garcia-Molina

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, N.J. 08544

1. Introduction

A crash recovery algorithm implements the software precautions a database
management system (DBMS) or a file system must observe to guarantee that
transactions (i.e. user requests) are executed atomically in the presense of failures.
(Henceforth, we refer to the section of code responsible for this task as the crash
recovery manager - CRM.) Different recovery algorithms have been proposed:
among them logging [GRAY][ELH], differential files [SEV] and shadowing
[LORIE}{REUTa4].

As one might expect, no one solution is always preferable; each has some
particular drawback. For example, to perform reasonably, logging recovery
requires a dedicated disk arm or tape unit, differential file recovery demands long

idle periods (to merge differential file and database), and shadow recovery needs

=8 .

enough memory to maintain a very large data-structure (the page-table) in core.
It is not our intent in this paper to compare the three classes of recovery algo-
rithms. Other work has been done in this area [DEW]REUTDb], including a recent
experimental study conducted at Princeton where various mechanisms were

implemented and evaluated [KENTDb].

In this paper we focus exclusively on shadow recovery and how to improve
its performance. One such enhancement was suggested by our experimental
work: we observed that the major performance drawback of shadow recovery is
excessive page-table 1/O. (The page-table maps the location of the database or
file pages to blocks on disk.) Except for small databases, the page-table is too

large for main-memory, and instead must be swapped out to disk.

Our new shadow recovery technique effectively ‘‘shrinks’ the size of the
page-table, while keeping the size of the database fixed. Unlike other schemes
'REUTal, this is achieved without compromising disk utility. Moreover, our
shadow recovery mechanism can be customized for a desired disk utilization and
application. We believe that this mechanism, with its added flexibility and
improved performance, extends the range of applications where shadowing is the

preferred alternative for crash recovery.

Overview of the Paper

We organize the paper as follows: In section two, we review how shadow
recovery works. We also present four metrics to evaluate different shadowing
schemes and discuss how these metrics apply to two specific existing schemes.

Section three follows with a description of our new shadow mechanism, CRMrpy

-3 -
(for Tunable Recovery IMplementation). t

Sections four and five discuss the tradeoffs involved in tuning CRM 7z and
analyze a simple performance model that can be used to evaluate and customize
the mechanism. In section six we extend the model, compare the efficiency of
this new mechanism with conventional ones, and demonstrate how a few
hypothetical applications might use the tuning procedure. Finally, in section

seven, we present our conclusions.

9. A Review of Shadow Recovery Algorithms

A DBMS is comprised of many software components, e.g., access methods,
high-level schema, etc. The crash recovery manager lies at the inner-most layer

of the DBMS software.

CRM communicates with low-level software (a device driver) to read and
write pages to and from disk. The physical database comsists of @ such pages
(called physical pages), By, B,..., Bg. |

Any application e it a file system, a DBMS, 'r a mail server) desiring
recoverable actions is layered on top of CRM. CRM provides these applications
with a ‘virtual disk’, such that designated groups of reads and writes (called iran-
sactions) to this disk are atomic. The virtual disk is broken down into N (NS Q)
logical pages, Ly, Ly, ...L, These N pages comprise the logical database. (Hen-
ceforth, we use the terms database and logical database interchangeably.)

In nautical lingo, ‘trimming’ and ‘tuning’ are synonymous, e.g. 2 yachtsman trims his
sails to optimize for wind speed and angle.

-4-
2.1 The Shadowing Data Structures

The page table (PT) is a linear structure consisting of N entries, py, pa, ...,
py- The ith entry of this structure (p;), is the number of the physical page hold-
ing L; called the global version of L; At all times, the page-table defines a con-

sistent (transaction-wise) logical database.

PT must survive a system crash and for this reason it is maintained in non-
volatile storage, usually disk. On disk, the page-table is broken down into units
of mapping pages (My M, - - - M,); each mapping page fits in a physical page.
(We will say M; cover Lj, if M; contains the number of the physical page holding
L;) To access a mapping page, the system must read it into a memory resident
PT cache. To update a mapping page, it must first be read in, modified in-core,
and then flushed back to the PT on disk.

At any time, a physical page in the physical database is either free or busy.
A physical page is busy if it:

(1) holds the committed version of a logical page

or

(2) holds the local version of a logical page that is being (or has been) updated

by an uncommitted transaction.

Otherwise the physical page is free. CRMgyapow uses a bitmap to record the
availability of physical database physical pages. The bitmap need not be main-
tained in non-volatile memory; it can be reconstructed after a crash by consulting

the page-table.

2.2 Updates with Shadow Recovery

In figure 2-1, we see a portion of the logical and physical database. M; maps

the first three logical pages, M; maps the second three logical pages, etc.

Now, assume 2 transaction T wants to modify logical pages Ly and L;. To
do this, CRMsyipow reserves the once free physical pages B; and B;, as T's
local version of Ly and L, and then copies B, and B, to By and By (refer to figure
3-3b). For the duration of T, any modifications made to Ly and L; are written to
B, and B.

Handling transaction failures is easy with shadows. To recover the database
from a failed transaction T, CRMgyspow simply releases T's local versions.
Remember, though 7T might have changed the physical database, it has not

affected the logical database.

CRMcyspow commits T as follows. First-, it guarantees that T's two local
versions have been flushed from the cache to the database. Then, CRMggipow
modifies M, accordingly and flushes My back to the page-table (refer to figure 2-
1c). In this case, the process is easy since a single mapping page covers both logi-

cal pages that T modified.

Unfortunately, if the changes instigated by T span multiple mapping pages
the process is non-trivial. The reason is that PT must be updated atomically.
Nevertheless, we can still solve the problem by ‘‘recursively” treating PT as a
database and maintaining a higher level page-table for it. Thus, we have a tree of
page-tables, each level being much smaller than the previous one. At the highest

level is a table that resides on a single disk block and can be updated atomically

-6 -

[LAMP]. As another option, the page-table can be atomically modified using log-

ging [DEW|[GRAY].

2.3 Evaluating Different Shadowing Schemes

We believe a shadow recovery scheme should be evaluated on the basis of
four (interdependent) metrics: Disk ulility, memory costjscramblin-g cost, and I/ O

cost.

Disk Utility is the ratio of the logical database size to the physical database

size. Computing disk utility is trivial, e.g. if a database is configured with NN logi-
cal pages and Q physical pages, then database disk utility is Yo} For this metric,

we ignore the page-table disk space, since it is many orders magnitude smaller

than the database.

Memory Cost accounts for the extra memory that CRMgyspow reserves for
data-structures, most significantly (by far) the page-table. We measure this cost
in bits.

Serambling Coost accounts for the decrease in database disk throughput
resulting from CRMgyapow's physical scrambling of the logical database. Think
of scrambling cost as any extra movement of the database disk arm or additional

rotations of the database disk that were caused by not updating in-place.

I/O Cost accounts for the additional I/O burden imposed by the shadow
recovery mechanism. This cost has two components. The first one is page-table
I/O, and can be measured by the number of mapping pages that must be read

into memory or written to disk per transaction executed. The second component

o
represents the overhead of storing the page-table itself reliably. If PT updates are

logged, it is the cost of writing to the log. If PT is accessed via a tree, it is the

cost of reading and writing the non-leaf pages of the tree.

We will focus exclusively on the first component of I/O cost for the following

reasons:

(1) In most applications, the first component dominates the second. The page-
table is much smaller than the database, so managing it is cheaper. If a tree
is used, usually two levels are sufficient, and a significant fraction of the
non-leaf nodes can fit in memory. This reduces the number of disk reads
further. When updating the higher levels of the tree, it is likely that con-
current transactions will modify the same page (this is especially true of the
root) and the I/O cost is amortized. Similarly, if logging is used, many tran-
sactions can write their page-table modifications in a single write to the
page-table log.

The second component depends on the particulars of the shadowing scheme

—
(8]
St

(e.g. tree of logging), so it is difficult to study in general. However, if it were
necessary to study these costs, they could be examined independently of the
first component. For example, if a tree were used, the I/O cost of managing
the non-leaf levels could be computed in the same way we will compute -

page-table (i.e. leaf level) I/O cost.

In the next two sections, we will briefly summarize the page-table strategy of
two shadow recovery methods and will discuss how they fare with respect to the

above metrics. One such mechanism is called TWIST' REUTal; the other has

We are actually describing 2 variant of TWIST.

-8-
been proposed by Lorie [LORIE]. We will refer to them as CRMry s and

2.4 TWIST Shadow Recovery

CRMry;st allocates two contiguous physical pages for every logical page.
For all 7, L; will (always) map to either Bys; or Bys,y, so p; (the mapping for L;)
will require only a single bit.

Since the TWIST page-table is very small, it quite possibly could fit in a
very small page-table cache without swapping. Thus, both TWIST I/O cost and
memory cost should be small.

CRM 7y s maintains continuity between the logical and physical database.
Adjacent logical pages are separated by at most two physical pages. Thus,
TWIST scrambling cost should be negligible.

Of course, CRMpyq7 does have its drawbacks, it wastes disk space. At any

time, no more than half the database contains ‘real’ information; disk utility is a

low % And this may be unacceptable for many applications where the data is

-

relatively static.

Lorie’s mechanism increases disk utility at the expense of more page-table

[/O and a slightly more muddled logical to physical mapping.

2.5 LORIE’S Shadow Recovery

Under CRM; opp, shadow disk locality is maintained on disk in units of

logical clusters. A logical cluster associates a region of localized reference in the

0 &

logical database, with localized access in the physiéal database. For example, a
logical cluster might hold a number of consecutive logical pages that upper level
software regards as a file or a relation. This cluster, in turn, might reside on
adjacent cylinders, to ensure that successive references within a file can be
satisfied quickly. We assume C such clusters are allocated across the physical
database. Each cluster will house L logical pages, and L + F physical pages where
(L)C= Nand (L+ F)C= Q.

During an update (of L;) CRM;op/r tries to shadow L; on its logical clustef.
Failing this, the nearest logical cluster with a free physical page is used. Thus, a
.logical page can be shadowed to any physical page and so each page-table map-
ping for L; (p;) requires [log, @] bits.

How does Lorie's shadow scheme compare to TWIST? First, note the

. . - N
increase in disk utility. So long as F < L, then — > % ¢

Q

CRM; prs scrambling cost should also be small as information that will be

referenced together is kept in a region of fast access on the disk.

What about I/O cost? This could be a problem, as the page table requires
N T log,@ 7 bits. And unless large amount of memory are allocated to'the PT
cache (which will increase memory cost), this may cause an I/O operation for

many of the logical to physical mappings.

In the next section, we describe an alternative way to maintain the page-

: Note that, by allocating fewer free pages than TWIST, fewer ‘simultaneous’ updates can
be tolerated. However, in most real applications, only a fraction of the database will be
updated at any given time.

= 185

table. This new method (CRMggp,) will provide I/O cost comparable to

TWIST and disk utility comparable to LORIE.

3. Our Shadow Recovery Scheme

As in Lorie’s strategy, we divide the logical database into clusters, each hav-
ing L logical pages and L+F physical pages. We refer to the logical cluster hous-
ing L; as CLUSTER(3).

The main problem with Lorie’s page allocation scheme is that, to better
allow sharing of free pages, each PT entry p; is large. We will address this prob-
lem by maintaining two page-tables, S and P. In P, each entry p; is small and
can only map a logical page to a small subset of physical pages. If the logical
page is not found in this subset, then a secondary page table S, with full size
entries s; can map the logical page to any location. Intuitively, P serves as a
filter and (ideally) maps the majority of the logical page requests. As we will
later see, in order to properly “‘tune” this mechanism, we must optimize the size

of the filter (i.e., the size of a p; entry) to minimize page table I/O.

Specifically, each s; entry contains by = [logs R] bits, enough to map any
logical page L; to any physical page. Each P entry consists of b; bits where
by<bs. And so, each p; can take on values from 0 to b _ 1. Associated with P
is a function ¢ that maps the value p; (for page L;) onto a CLUSTER(:) page. In
the case where p; = 2% _ 1 = CODE, ¢ is undefined and s; contains the address
of L.

Two main memory caches are maintained by CRMyp), the primary cache

=¥l =

for P and the secondary cache for S. Mapping pages are swapped exclusively from
their respective.caches. Although page-table P is smaller than S, the primary
cache should dwarf the secondary cache since P (by itself) will map the majority
of the logical page requests. (It would also be possible to treat P and S as two

parts of a single table with a single cache. We do not discuss this option here.)

Let’s see how CRMypy), recovery works via a simple example.

Example 3-1

Assume that we are working on cluster 0; henceforth we refer to this as C. Also,
assume that C holds 8 physical pages and 6 logical pages, and that by = 2 (so
CODE = 3). Of course, this is only an example. In reality, we would expect
clusters to be much larger. Finally, we define ¢(f,p;) = ¢ + p; mod 8.

At system initiation, the database is configured so that logical page 1 (L)
resides on page ¢ (B;) of C. (refer to figure 3-1) We see this by looking at page-
table P. Since none of the p; = CODE, all of the logical pages on C are
addressed using P. In this example, CRM 1z, forms the physical page address of
L; by adding p; to 1.

Now, assume that a transaction T wishes to update Ly and Lg. First,
CRM gy must find the physical locations of these pages. So the P mapping
page that covers Ly and Lg is read into the page-table cache (if it is not already

there). Then, CRMyp s must acquire free pages (shadows) for these pages.

Checking L, first, CRMrp;), examines the (availability of the) three pages

that can be addressed from p,; they are By,B; and B, (obtained by setting

-12L

po = 0,1 or 2 respectively). Block 0 holds the ‘old’ copy of L, so it cannot be
used for a shadow. Blocks 2 and 3 contain L, and L; they also cannot be used.
So, finding no primary mapped shadow, CRMyp s searches for the first free page
it can find on C; in this case it’s B;. The L, information at B is then copied to

B; and this page functions as Ly’s shadow.

Next, CRMyp s must shadow Lg. After examining By and B; (two of the
pages that can be addressed from pg) and finding both are busy, CRMrg, finds
Bg is free and copies By to Bg.

Before committing T, CRM g, must record the new locations of Ly and Lg.
Recording the latter’s new location requires only a simple modification; pg must
be changed from 0 to 2 (6+2=8). Changing ILy’s locations requires two
modifications. First, CRM7g;s sets py to CODE, and then sy to 7. Next, the
modified P and S mapping pages are flushed to disk. T T is now éommitted (refer

to figure 3-2). O

The above example is only one specific implementation of CRMyz;y
Below, we give a general description of this recovery scheme. Let a be a logical
page number on a cluster C (0<ae<L), b be the value of a non-CODE entry in P
(0<b€w = 2% _ 9), and ¢ be the number of a physical page on C (0< c< L+F).
CRM g uses a special function ¢, combined with page-table P to map logical

pages to physical pages, ¢(e,b) = c. We will say that physical page ¢

i We assume a bit-map is maintained in core for this purpose. See section 2.1.
t Remember, there are different ways to guarantee that the page-table is atomically
flushed.

-5 -
primary maps logical page q, if 3 b such that ¢(a,b) = c¢. And we refer to the
primary mapping set, PMS, of L, as { ¢: b such that ¢(a,b) = ¢ }.

CRM gy uses P (in conjunction with ¢), and S to map any logical page L,

to a physical page. The algorithm is described below.

If p, = CODE
Physical location of L, is 8,
Else

Physical Jocation of L, is ¢(a,p,)

During a mapping, it's possible that p, will not be in-core (in the primary
cache), and this will cause a page-table I/O; CRM gy, must bring in the P map-
ping page covering a. We say CRM gy primary foults on a. An additional I/O
may be necessary if P does not contain the location of the physical page housing

L, (ie., p, = CODE). In this case, we say CRM gy secondary faults on a.

The above fragment adequately describes how reads are performed, but how
does an update of L, proceed? As in a read (of L,), CRMypy), first finds the phy-
sical location of L, (using the above code)‘. Then, by probing the free-page bit
map, CRMrgs checks if there is a free physical page available (call it ¢;) that
primary maps L, If there is, ¢; is used to shadow L, and we say L, is
primary shadowed. If no primary mapping of L, is free, CRM gy, searches for
another free page on-cluster, and failing this, a free page on a nearby cluster.
Either way, we say L, is secondary shadowed. Note that if logical page L, goes

from a primary mapping to a secondary mapping after an update, then both p,

- Td

and s, must be modified. As in Lorie’s mechanism, a logical page that is stored
off-cluster will remain there until the next time it is updated, at which time

another effort will be made to primary map it, or at least move it on cluster.

How should ¢ be constructed? First, it should be a simple function (i.e. easy

to compute). And also, ¢ should satisfy the below conditions.

(1) If b; % by, then ¢(a,b)) # ¢(a,bs).
(2) Let SIZE(c) = |{ a where b such that ¢(a,b) = c }|.

|SIZE(¢;) - SIZE(¢;) | < 1 for all physical pages ¢;, ¢; (i£7) on a cluster.
Intuitively, condition (1) says that ¢ shouldn’t waste a coding by allowing two
ways to map a given logical page to a given physical page. And condition (2)
says that ¢ should distribute the physical pages in a cluster evenly among the

logical pages as candidates for primary mappings. The motivation behind (2) is

analogous to the construction of a good hashing function. f

4. ANALYZING AND TUNING CRMp

In the remainder of this paper, we will develop and analyze a performance
model of CRMyg . Our goal is to quantify the advantages of CRMrppy, while at

the same time providing tools for tuning the algorithm to a specific application.

4.1 A General Description of the Model

Condition (2) presumes uniform access across a cluster.

< 15 =

The DBA specifies a CRMrpys configuration by adjusting the following
main system parameters: N - the number of logical pages in the database, F -
the number of free pages in a cluster, L - the number of logical pages in a cluster,
b, - the size of a P mapping, and M - the size of the primary cache (specified in
bits). Of course, there are trade-offs involved in tweaking each parameter.

For example, by increasing F (or decreasing L), keeping all other parameters
fixed, more logical pages become primary mapped. Thus, there are fewer secon-
dary faults and so I/O cost decreases. On the minus side, increasing F' decreases
disk utility.

Likewise, increasing the size of the primary cache (M) allows more of P to fit
in core (resulting in fewer primary faults) and I/O cost again decreases. Of
course, performance picks up at the expense of memory cost.

Increasing b; affects only I/O cost, but it’s unclear in which direction. For
example, by increasing b;, P grows, so a smaller percentage of P fits in-core and
there will be more primary faults. On the other hand, as b; increases, more logi-

cal pages become primary mapped and so there will be fewer secondary faults.

Our objective in the next section will be to develop a model that quantifies
the aforementioned tradeoffs. Using this model, the DBA can optimize b; (i.e.
minimize page-table I/O) for a given L,F,N,M configuration. Or he can assess

the reductions in I/O cost afforded by extra memory or additional free pages.

4.2 Assumptions Relating to the Model

Implicit in our model, are several assumptions about the CRMpp s environ-

ment

- 1Baa

that serve to simplify the analysis. These assumptions are listed below:

(A1)

(A3)

(A4)

We assume that the probability two transactions are working within
the same cluster simultaneously is small. (In fact, if transactions lock
large granules, this assumption is incidentally satisfied.) This means
that if a transaction T is working on cluster C, T will be the only
transaction vying for free pages (for use as shadows) on C. (Note that
the effect of concurrent transactions within a cluster can be approxi-

mated by a single transaction accessing more pages.)

We assume that when a transaction starts accessing cluster C, the clus-
ter will have L busy physical pages and F free ones. In reality, a cluster
may have fewer free pages (if a foreign logical page was shadowed here)
or more (if a cluster page was shadowed off-cluster). However, it is rea-
sonable to assume there will be F free pages, since F'is the average or

expected value, and deviations should be small.

We assume that ¢ is chosen randomly from all possible ¢’s satisfying
condition (1). Since condition (2) is relaxed, our analysis will estimate
the worst case performance of CRMygps.

We assume the secondary cache is very small compared to the size of
the logical database. That is, on a transaction’s first secondary fault
to a given cluster, it will never find the needed mapping page in the

secondary cache.

« 37 =
5. Analyzing a Simple Model

In this section, we describe how to ‘tune’ CRMrp)s by analyzing a simple
model. This presentation should also motivate the need for a more general

model, which we later develop in section 6.

We start by assuming the parameters L (the number of loé,’ical pages in a
cluster), F (the number of free physical pages in a cluster), N (the number of logi-
cal pages in the database) and M (the size of the primary cache) are all given.
Further, we assume that all transactions read and update a stngle logical page
within a cluster. We - will compute the average amount of page-table I/O gen-
erated per transaction. Or, more formally, let 4 be a random variable that
represents the amount of page-table I/O performed on behalf of a transaction.

We will compute A.

5.1 Computing the Page-Table I/O Cost per Transaction

Consider an arbitrary update transaction T about to access logical page L;
on cluster C. For now, let’s assume C is configured such that V of its logical
pages are primary mapped, and L - V are secondary mapped. (We will compute
V later)

We will compute the following .cost components of E with respect to ’T.
Each component corresponds to the probability CRMrpp, performs a specific

type of page-table I/O.

(1) ng - the probability transaction T reads a primary mapping page.

-18-
(2) WE -+ ° writes ¢’
(3) RZ - the probability transaction T reads a secondary mapping page.

(4) W& - ¢ writes ¢’

First, let’'s compute R}J;. This is simply the probability that T primary faults.

RP—lw———-ﬁ for M < b N

= 0 otherwise

Computing W}; is slightly more difficult. To do so, we must consider all those
scenarios where p; is modified (and thus the mapping page covering L; is
updated).

Clearly, if L; is primary shadowed, then p; is modified. Also, if L; is primary
mapped and secondary shadowed, then p; is changed to CODE. On the other
hand, if L; is secondary mapped and secondary shadowed, p; doesn’t change;
p; = CODE before and after T commits. Thus, the probability WE that
CRM7ps updates a primary mapping page on behalf of T is the probability that

L; is not both secondary mapped and secondary shadowed.

WE=1-6,.°06

sec Ysec_sec

Let's first compute the probability 6., that L; is secondary mapped:

V
=1 - —
658C L

-19 -
And for future reference, we also compute &,

Oprim = =

v
prim L
Now, given that L, is secondary mapped, what is the probability é,,. ,. that

CRM rp cannot shadow L; to a primary mapping?

L+F-1
Since L; is currently secondary mapped, there arei ») ways to choose

the PMS for L; To see this, note that any of the are L+F-1 cluster address (all

except §;) can form L;s PMS.

Now, CRMggy can primary shadow L;, so long as L/s PMS contains at

least one free page. Since F of the L+F physical pages on C are free, of all the

(-1}
possible PMS’s for L;, there a.rel o } different PMS (for L,) that contain no

free pages. And so, given that each ¢ is equally likely:

(7-1)
_)
T

Lo

From the above, we can compute WZ. However, for future reference we also com-

4

pute & the probability that CRMrppy can primary shadow a secondary

gec_prim !

mapped L;.

5sec_pﬂ'm S B 6866_56:

- 920 -

And also for future reference, we compute 8,y ,, the probability that T
cannot shadow L, to a primary mapping, given that L; is primary mapped. Note
that in this case, CRMps cannot shadow L; to é(p;,L;); L; is already there. So,
if L; is to be primary shadowed, one of its other w -1 primary mappings must

_ L+F-1) 1
be free. In this case, there are i§asq possible ways to construct ¢, bk of

which will force CRMyps to secondary shadow L,

{ 1g44
l-1)

~ (L)

o1}

6pﬂ'm_aec

And similarly:
6prim__prim == 1§ 6pr:'m_uec

Example 5-1

Given L=101,F=10 and ;=2 (so w=3), we compute by prim 204 b,ec_prim-

{100)
§ e (P oy lz} 0.17
prim_prim — primsee = 1= - = 0
{2}
floo)
13 — 0.25

By oim = 1~8 =1-
sec_prim sec_sec 110
3

From the above, we can see that, if a logical page L; is already secondary

.91 -
mapped, it's likelier that it will be primary shadowed. O

Let's return to our analysis, and compute RZ - the probability that T reads
in a secondary mapping page. Such will be be the case if L; is secondary mapped
(since CRM gy must read the S mapping page covering L;) or secondary sha-
dowed (since CRM g must modify and therefore read in this same mapping

page). In that case:

T =
RS - 6sec £ 5pr='m. éprim_aec

Finally, we must compute WZ. This is the probability that CRMrppy
updates a secondary mapping page; alternatively it's the probability that L, is

secondary shadowed.

WI=26,¢6 + 8 rim 6

sec Ysec_sec 7 Yprim Yprim_sec

And so , the expected amount of page-table I/O generated by a single read /write

transaction (A4)is RE - Wi + R + wi.

5.2 Computing the Steady State of a Cluster - simple case

In the previous sub-section, we assumed that when ‘a transaction T entered
the system ready to update C, it would ‘see’ the cluster with F free pages, V pri-
mary mapped pages (L-V secondary mapped pages) where F;V and L were fixed.
In truth however, V is non-deterministic (0< V<L). When T enters the system ,
it might see any of L+1 different ‘states’ of C. We refer to a possible state

of C (STATE(C)) as Sy meaning that C contains V primary mapped logical

-99 .

pages.

An update transaction T can cause a cluster to change state. For example,
assume that STATE(C) = Sy immediately before T enters the system. Now,
assume that T secondary shadows a logical page that was primary mapped. It

should be clear that, after T has completed, STATE(C) = Sy.,.

Our intent is to compute the steady state probabilities for each S;. In this
way, we can compute the ‘true’ value of A—, by summing up the respective A’s
for each cluster state, weighted by the probability of being in that state. Of
course, computing the steady state probabilities is no problem provided we con-
struct the transition matrix, i.e. the probabilities of going from state to state.

This is our next task.

Let us compute the transitions out of an arbitrary cluster in state Sy To do
this, we consider four possible scenarios (refer to figure 5-1) that may occur when
a transaction T updates a logical page from this cluster. In scenario (1), T secon-
dary shadows a primary mapped logical page. In the next scenario, T secondary
shadows a secondary mapped logical page. In scenario (3), T primary shadows a
primary mapped logical page. And in the last scenario, T primary shadows a
secondary mapped logical page. The transition probabilities &,.im primr Oprim_sec:

) and &, .. were computed earlier.

sec_prim

From the state diagram, we see that in the first (fourth) scenario, T causes a
net-loss (net-gain) of one primary mapped page on C. The two other cases result
in no net-loss or gain of primary mapped pages, and thus take cluster C from Sy

to SV‘

-93-

In the top of figure 5-1, we show explicitly how the two dimensional S tran-
~ sition matrix Is constructed from the state diagram. The V* row in S

represents the flow out of Sy

In this way, we evaluate the transition probabilities from other states. Then,

we can compute the steady state probabilities and the true value of A.

Example 5-2

GENERIC SAVINGS BANK clusters its database information alphabetically on
140 physical page clusters, with 20 free physical pages per- cluster. Their logical
database consists of N=128,000 pages and a 256K bit primary cache. (When
b, = 2, the cache holds precisely the entire P table.) Most of the G'SB transac-

tions read and update a single logical page.

We use our model to evaluate A for each possible value of b;. In theory,
1 < _4_— < 4 since a transaction must (at least) write out a primary or secondary
mapping page and possibly could read in an_d update both a pr;mary and secon-
dary mapping page. Graph 5-1 describes the actual results. From the graph, we

can see that b{7 (the optimal value of b;) equals five.

6. Extending the Model

The simple model, while enlightening, 1s lacking in two respects. It handles
only one ‘type’ of transaction {a single record update) and provides us with only
one metric relating to disk cost (recovery I/O per transaction). To offset these
limitations, we extend the model to allow different transaction types and extend

the analysis to include another, sometimes more relevant metric.

- D44
8.1 The Transaction Environment

We generalize our description of transaction behavior as follows. A transac-
tion of type T(;; reads i (i<F) pages within a single logical cluster and updates
j (j<1) of these pages. We also assume that a single primary and a single secon-
dary mapping page cover an entire cluster. For this reason, each transaction will

‘pay’ no more than four page-table I/O’s.
We let 7(ij) represent the probability transaction 7i;, will be run by the
application. Accordingly, we require that the DBA specify the composition of his

transaction environment, in terms of the transaction types that we provide.

Transactions are still restricted to accessing a single cluster, one transaction
at a time. Transactions that access multiple clusters can be studied by consider-
ing them as a group of single cluster ltransactions- Similarly, concurrent access to
a cluster by several transactions can be approximated by a single transaction that
accesses more than one page. For these reasons, we believe the new model is not

unduly restrictive.

6.2 Two Metrics for Evaluating Mapping Speed

In sub-section 5-1, we computed A, the average amount of recovery 1/O per
transaction. Given our new generalization of transaction types, we extend this

notation by letting Ar be a random variable, representing the amount of
recovery I/O caused by transaction T(; .

As before, one way that we can evaluate CRMyp;\/s mapping speed is by

the average amount of recovery I/O generated per transaction or

-95-

=L j=: s ; : : .
v = Ni,y) ATM. This metric seems especially appropriate for environ-
0 ;=0

-

ments geared to throughput (batch applications) since it treats all transactions

equally, without regard to transaction size.

In an interactive environment, minimizing response time is the goal, so v
may not be the most appropriate metric. Rather, we want a metric that penal-
izes the shorter transactions more than the long ones for recovery 1/O. After all,
from the perspective of time added as a percentage of total transaction time,
small traﬁsactions are more aflected by a single recovery I/O. In light of this, we

propose another metric - the average amount of recovery I/O per database I/O

i=L j=1 ﬂ‘l',]')
orp=3 Y == Ary
i=0 ;=0 ™J

6.3 General Analysis

We refer the reader to [KENTD] for details of the general analysis. In it, we
show how to compute Ag | for a given cluster state Sy. And we also describe
how the steady state probabilities can be computed efficiently, using dynamic

programming.

8.4 Using the Extended Model

In this section, we go through a few sample applications that show how to

apply the analysis and tune CRMrpps

Example 8-1

Again, we use the GENERIC SAVINGS BANK example, but we now con-

- 26 -
sider more low-level implementation details.

In reality, a GSB transaction works as follows: The system first accesses a
special ‘customer to cluster’ directory that is maintained in core. Then within the
selected cluster at logical page Ly, the database system reads in the logical page
directory; this maps customers to logical pages within the cluster. Finally, the

database system reads in the appropriate logical page from the cluster.
The majority of transactions at GSB fall into one of two categories.

(1) Debit-Credit: Most of these transactions change only the leaf page and not
the cluster directory. We model D-C transactions as type T{s;) (95%) and

Ti2.9) (2.5%)

(2) Query: Retrieve customer’s balance for inspgction. We model these transac-

tions as type Tjz) (2.5%).

As stated earlier, each GSB cluster holds 140 physical pages and there is a
956I< bit primary cache. We tried three different cluster configurations, F=20
and L=120, F=40 and L=100, and F=60 and L=30. t In graph 6-1, we plot
mapping speed as a function of b, and F. For example, the triangled graph

represents a configuration with F=20 and E=1240.

Tt’s interesting to note how the optimal value of b; decreases as F increases
(from bP* = 5 at F=40 to b{?* = 3 at F=60). This stands to reason; with more

free pages on a cluster, fewer bits are needed for a primary mapping address. We

can also see from the graph that, by decreasing file utility from ——iig to __18400,

{ We assume that changing the cluster configuration won’t affect transaction behavior as
transactions are very small.

w B

I/O cost decreases about 17%. Compare the low points on the triangled curve

and the pentagonaled curve.

In figure 6-1, we see the recovery 1/O for the F=40/L=100 configuration
broken down into its components cost for each value of b;. P1 (P3) represents
the overall probability that a transaction primary (secondary) faults. P2 (P4)
represents the overall probability that a transaction writes out a primary (secon-
dary) mapping page. Also shown is the average number of primary mapped
pages in the steady state. Looking at this fable, it's easy to see why C’RMTR.IM
performs so poorly with b; = 2; on average, only 56 of 100 pages are primary
mapped. So an average transaction will almost certainly secondary fault
(P3 = 0.843).

In graph 6-2, we vary the memory size for an F=40/L=100 configuration.
When m=;i, the primary cache can fully hold P with b, set to i The graph’s
tree-like structure can be explained by the fact that, at low &), extra memory
can't be used. For example, with b, = 2 P fits in core at m=2, so adding
memory won't affect this configuration’s performance. And looking at this same
graph, we see that increasing m to more than 4 is probably not wise. After all,
bi?* decreases by less than 5% from m=4 to m=8.

In graph 6-3, we compare the I/O costs of CRM;op;z, CRMrpp and
CRMry st as 2 function of disk utility. We fixed m at 2. The triangled curve
represents the minimal 1/O cost for different CRMrpyys configurations as meas-
ured by the analysis. The hexagonaled horizontal line is CRMogp 1/O cost;

note that this mechanism is unaffected (from the perspective of page-table I/O)

- 9% -
by changes in disk utility as each logical page can address any physical page
(addressing a disk page requires 13 bits). The pentagonaled point measures
CRM st 1/O cost; as TWIST requires 2 physical pages for every logical page,
it’s defined only at a single point.
Comparing the three mechanisms, we see for example, that CRMypp, (as

expected) is especially useful when the disk should be around three quarters util-

ized. In this case, CRMyy;q7 is unacceptable and CRM|op/p wastes bits.

From the graphs, we can see there is a relatively large difference in I/O cost

between CRMypps (about 1.35 I/O’s per transaction) and CRMry st (about
1.00 1/O per transaction) when disk utility is % We thought the gap might be

due to simplifications in our analysis that result from assumption (3). So we
simulated CRMyg s using a fixed function ¢ that satisfied condition (2) and
measured the minimum page-table I/O cost. The squared curve describes the
results. Note that our analysis was somewhat pessimistic, CRMypy, performs
even better than we predicted.

The difference between the CRM gy, simulation and analysis closes quickly

L*w

T F becomes large. The number p represents the average

as the ratio p =

number of logical pages that primary map to a given physical page. For p = 1,
the difference between simulation and analysis was about 10%, while at p = 4.28
the difference was less than 19. This stands to reason. The larger p becomes, the

less information is lost by relaxing condition (2).

We see that CRMqyp;s underperforms TWIST at 50% utilization In this

= 08 =
case, one bit per P entry would suffice to record the two possible locations of a
page (as in TWIST). However, our mechanism also needs a CODE value

(unnecessary at 50% utilization), so b; must be set to two.

Example 6-2

FLY-BY-NIGHT airlines arranges its data in 60 page clusters, with 20 free pages
and 40 logical pages per cluster. After measurements, it was found that the
majority of transactions were single page queries (7(1,0) = 0.62) with updates
accounting for the remaining transactions. Each update transactions reads and
updates ¢ pages, where ¢ varies from one to fifteen (T{7,7) = 0.025).

In graph 6-4, we plot the values of v and p for each value of b;. (Note that
0< <1 as we pay anywhere from zero to one recovery I/O’s per database I/0O.)
Observe that no choice for b; simultaneously minimizes both 4 and v. For exam-
ple, setting b, =5 minimizes v but causes almost a 20% increase in p over the
optimal value (0.43 to 0.51). The metric g favors a small b;(=2), since shorter
transactions are less likely to primary fault. Granted large transactions now
secondary fault more often, but g amortizes each such fault over many database

1/0s. O

One of the advantages of CRMrps1s that it can exploit information about
the application’s transaction behavior. At the same time, this may be a problem
if CRMpppy is too sensitive to its parameters and is difficult to tune without
knowing the application precisely. Fortunately, in our case, this does not seem to

be the case. For example, if we compare the curve of graph 5-1 to the topmost

- 30 -

one of Graph 6-1 (both for L = 120, F = 20), they appear similar and have the
same bfP! value, even though they are for different types of transactions. This
appears to indicate that b{” is mainly a function of the utilization (which can be
fixed) and not of the type of transaction. To verify this, we decided to test
CRM g /s sensitivity to variations in both transaction size and the type of tran-

saction access (read or write).

In graph 6-5, we varied transaction size (call this variable 1) along the x-axis
and considered three scenarios. In the first scenario (the triangled curves) we
look at an environment with 1009 read/write transactions. A read/write transac-
tion of size i reads and updates ¢ pages in a cluster. In scenario two (the squared
curves), we consider an application with 50% read/write transactions and 509
queries. A query of size i reads ¢ pages from a cluster. In scenario three (the pen-
tagonaled curves), we examine a query-intensive transaction environment. For
each scenario, there are two (partially overlapping) curves. The lower one is for
b¢?!, while the upper one is for a fixed b, = 4. For the optimal curve, the values
of b; that yield the optimum are labeled. Unlabelled points have the same b,
value as the point to their left. Thus, for example, in the query intensive
environment with transaction of size 1, a mechanism with & = 4 produces 2 lit-
tle over 0.5 I/O’s per transaction, while the best possible performance (0.4 I/O’s

per transaction) is obtained with b, = 2.

As expected, the more update transactions in the system, the more recovery
[/O% to be paid per transaction (i.e., the squared curves lie below the triangled

curves and above the pentagonaled curves). From the graph, we also see that

¢ B &

even those applications that cannot precisely describe transaction behavior can
benefit from our tuning procedure. Specifically, note that the value b, = 4 is
optimal for wide ranges of the parameters. In addition, in cases where it is not,
the difference in I/O’s between b; = 4 and the optimal b, is rather small. Thus,
the value b; = 4 appears to be 2 safe one for all the parameter ranges illustrated

in the graph.

7. Conclusions

We have presented a page-table management strategy that can significantly
reduce the amount of I/O overhead of a shadow recovery strategy. Gi_ven that
recovery 1/O is the major cost component of shadowing, this strategy can
dramatically improve overall system performance. And just as irﬁportant, it is

flexible enough to fully exploit different disk utilizations.

There are a number of possible improvements or variations to the basic stra-
tegy. For example, if the two page-tables are intelligently placed on disk, both a
P and S mapping pages might be flushed in a single disk rotation, further
improving performance. We can easily account for such behavior in our analysis
by charging two mapping page writes as a single page-table [/0O.

If a main memory non-volatile buffer is available (implemented in a battery
pack, for example), then recovery I/O’s can be eliminated. In our case, if P
resides in this buffer, only the less likely S I/O will cost. Of course, other stra-
tegies could benefit from this hardware, but note that ours is especially well
suited for it. That is, the smaller P tables which handles most of the requests can

be in the buffer, and the larger S table can still reside on disk.

8. References

[DEW]

[ELH]

[GRAY]

[KENTa]

[KENTDb)
ILAMP]
[LOR]
[REUT4]
[REUTb)

SEV]

Dewitt,D., Agrawal, R. “Integrated Concurrency Control and Recovery
Mechanisms:Design and Performance Evaluation”, Univ of Wisc Tech
Report, Report #497, Feb. 1983.

Elhardt, K. Bayer, R. “The Database Cache for High Performance and
Fast Restart in Database Systems”, ACM Transactions on
Databases 4,9 (Dec 1984),pp. 503-525

Gray, J.N., McJones, P. “The Recovery Manager of the System R Data-
base Manager”, ACM Computing Surveys,13,2,1981.

Kent,J., Garcia-Molina, H. “An Experimental Evaluation of Two Crash
Recovery Mechanisms”, ACM PODS Proceedings,(March 1984), pp. 113-
423

Kent,J., “Performance and Implementation Issues in Database Crash
Recovery”, Ph.D thesis, Princeton University, (June 1985)

Lampson, B., Sturgis, H. “Crash Recovery in a Distributed Data Storage
System”, XEROX Res. Rep. , Palo Alto, Calif., Submitted for Publication.

Lorie, R.A., “Physical Integrity in a Large Segmented Database”, ACM
Transactions on Database Systems,2,1(March 1977),91-104.

Reuter, A. “A fast transaction-oriented scheme for UNDO recovery” IEEE
Trans. Software Eng. SE-1, 6,(July 1980)

Reuter, A. “Performance Analysis of Recovery Techniques”, ACM Tran-
gactions on Database Systems 9,4, pp.526-559.

Severance, D. “A Practical Guide to the Design of Differential Files for
Recovery of On-Line Databases”, ACM Transactions on Database Sys-
tems,7,4, (Dec 1982),pp. 540-565.

Pagetable Phpsical Batabase

X B,
M
82
M, .
84-
free | B
> B,
M free | B

figure 2-1a

Pagetable Physical Database

X B,
4'__\'— B,
B,
M, |
B;
B,
ocat vers] g
- .
M; Jocal ers| B

figure 2-1b

abase
Phpsical Bat

table

Page

B
free 0
B
free 1
BZ
83
M 84
BS
X
‘ BB
M

-1¢
figure 2

Table P

O|OJO |00 |0

Table P

NIOJIO|IOJ0 |0

figure 3-1

Table S

Don't Care
Don't Care
Don't Care
Don't Care
Don't Care
Don't Care
Don't Care
figure 3-2

Table S

7

Don't Care
Don't Care
Don't Care
Don't Care
Don't Care
Don't Care

Cluster C
o[L,
[L,
2| L,
al Ll
A
s| L
o L
71 free
8| free
Cluster C
0} free
| L,
7l L,
5 L
Jf L,
s| L,
6] free
L,
5| L,

N

L-2

N

L-1

Se S S; 7 Sui Sy Sver1t " SL2 St S

al az2 a3

al = 8prim Sprim-sec
a = BPﬁm 8 prim-prim + 5sec55ecrse_c

a3 = 8sec Ssec-prim

figure 5-1

8prim Sprim-sec- . Osec Ssec-prim

GENERIC SAVINGS BANK

No. | Most Recovery Cost per Transaction

of Likely

bits | State P1 P2 P3 P4 |Total
2 56 | 0.000 | 0.823 | 0.843 | 0.4362.10
3 88 0.333 | 0.964 | 0.324 | 0.120 | 1.74
4 100 0.500 | 0.974 | 0.019 | 0.006 | 1.50
5 100 0.600 | 0.975 | 0.000 | 0.000 | 1.57
6 100 0.667 | 0.975 | 0.000 | 0.000 | 1.64

Figure 6-1

Cluster Configuration: FREE=40/LOGICAL=100

No. of bits = b; = size of p, entry

Most Likely State = average number

of primary mapped pages in steady state

T0t3-1:Pl+P2+P3+P4.p512

Number
of
Page—Table
1/0s
per
transaction

m

Number of bits per mapping

Graph 5-1

B KEY
(clustsr configuration)
~ 2 F=20/L=120 —
i ér’“’“’fpﬂfﬂ#ﬂg]
i_ 1
. —
| l \ |
1.0 2.0 3.0 4.0 5.0 8.0 7.0

Number
of
Page-Table
1/0s
per
transaction

—

i
— KEY
(cluster configuration)

i B F=20/1=120 —
~ U F=40,.=100 —
- 5\ O F=60/L=80 .
L \ —
-

| | | | |
1.0 2.0 3.0 4.0 5.0 5.0 7.0

Number of bits per mapping

Graph 6-1

2.
2
Z
{
!
.
Number
of
Page-Table 1,
1/0°s
per

transaction |,

)

! T i

KEY
(Size of Pl cache)
m=M/N

r_ €§\ = m=2
; m m=3
& m=4

o m=5
O w6

m=

[

&)
| | | | |

1.0 2.0 3.0 4.0 5.0 6.0

Number of bits per mapping

Graph 8-2

7.0

Number
of L
Page-Table
[/0's
per
transaction -

B

KEY
o CRM-rew [/0 cost (predicted)
U cRM-hew 10 cost (simulated)

O ifer 10 vt

O LORIE 10 cost

i E l i |

0.4

0.5 0.6 0.7 0.8 0.9
Disk Utility

Graph 6-3

Number
of
Page-Table
1/0s

ol

(metric used)

Do - (per database 1/0)

= nu - (per transaction)

Graph 6-4

A e
= !
? l ! |
0 2.0 3.0 4.0 5.0 5.0 7.0
Number of bits per mapping

1.8 .

1.7 -

1.6 7

[..D]

1.4]

1.3 I

1.2]

Number]
of 1.1

Page-Table n
1/0's 1.0

per . —

Transaction 0.9

N = =
0.4 Fp1=2 D 100 rw .

0.3 | = 50%rw, 50% queries]

0.2 | © o9y queries 1% ruw]

0.1 []
| | | l i | | | | |

0.0

1.00. 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Transaction Size

Graph 6-5

