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ABSTRACT

New methods of concurrency control that utilize the semantics of an applica-
tion to improve performance have been proposed in recent years. In this thesis we
study one of these mechanisms. After presenting the details of the mechanism,
we compare it, via a simulation, to a conventional two phase locking strategy.
The goal of such comparison is to determine the conditions under which the
higher complexity and overhead of the application dependent mechanism pays
off. Although the results presented are specific to the two selected mechanisms,
we believe they provide insight into the operation of other application dependent
mechanisms. The specifics of the semantic knowledge mechanism, and the algo-
rithms used, are based on the original work that appears in [Garc]. We believe
that those algorithms are not optimal, and we therefore also propose and study

some modifications for improvement.

To take full advantage of the ideas in [Gare], it is necessary that we under-
stand when two transactions are semantically compatible, i.e., when are they
allowed to freely interleave their execution steps without violating data con-
sistency. We also study in this thesis different aspects concerning the compatibil-

ity of transactions.

Finally, we present an application of our mechanism that will help to
manage long lived transactions (LLT). This application shows that for the cases
when a large percentage of the transactions in the system are compatible with

the executing LLTs, the performance of the system improves greatly.

t This material is based upon work partially supported by the National Science Foundation
under grants ECS-8303146 and ECS-8351616.
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Chapter 1

INTRODUCTION AND OVERVIEW

A database (DB) is a collection of stored data, maintained for purposes of
facilitating operations and decision making. If all the data is stored at only one
computer we say that the DB is centralized. If the data is stored at several com-
puting nodes, linked by a communication media, we say the that the DB is distri-

buted. Among the requirements a DB must meet are:

1) Data accessibility to different users, even though the data may be stored far

from where it is required.
2) Reliable storage of data for long periods of time.

3)  Accessibility by concurrent users as long as its consistency is preserved. Con-
sistency preservation means that the rules (consistency constraints) that

apply to the stored data (e.g., a + b = ¢) have to be always observed.

4) Have data stored and organized so that queries and updates can be processed
efficiently.
A database management system (DBMS) is an integrated collection of computer

programs that provide the services required to manage a DB.

The means of interaction between users and a DB are transactions. A tran-
saction is a collection of actions (read/write) acting over a portion of the data,
transforming the DB from an old consistent state to a new consistent one. (Note
that transactions that only read data will not transform the DB.) A transaction
has to be atomic, i.e., either all of its actions are executed, and its changes, if
any, reflected in the DB, or none of the effects of its actions are made permanent.

If the changes are made we say that the transaction commits; or else it aborts.
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While it would be easy to execute transactions one by one, i.e., without
interference among them, this is not desirable. A serial execution does not permit
transactions to exploit the advantages of parallel processing. Concurrent process-
ing will permit greater system utilization. This will, in turn, result in a smaller
average turnaround time for the transactions. To be able to maintain data con-
sistency in spite of concurrent access to DB objects, a mechanism that regulates
the access to objects has to exist. It will permit concurrent access, but will always
allow users to have a consistent view of the DB. Such mechanism, which is part
of the collection of programs of the DBMS, is called the concurrency control

manager.

The first DBMSs, developed in the early sixties [Wied], did not have the
notion of concurrency control as we know it now. They used a log (reserved
space in disk) to write the changes made by a transaction to DB objects, in order
to provide an historical record. Their view that concurrently executing transac-
tions would not violate consistency was optimistic. However, if at the end of a
transaction execution, one or more of these changes were found to have violated
consistency, then the transaction had to be backed out (aborted) by installing in
the DB the old values (for those objects) found in the log. Logs are still widely
used today in crash recovery mechanisms [Gray3, Kent], but concurrency control

is not left in the hands of the users.

With the advent of computerization in all areas of industry, business, educa-
tion, and even households, in the past ten years, the demand for on-line data-
bases has increased considerably, and with it the desire for efficient mechanisms
that permit concurrent access to data. Using the log, as in ’old’ times, hinders

throughput if too many transactions have to be rolled back.
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The most widely used general purpose concurrency control mechanisms
today enforce the notion of Serializability. These mechanisms guarantee that the
values of DB objects, after the execution of a schedule of transactions, are going
to be equal to those produced by a schedule that executed each of the transac-
tions sequentially, i.e, without interference from other transactions. Note that
serializable schedules do permit interleavings of transactions, as long as their

actions do not conflict [Eswar].

One common way to achieve serializable schedules is to use locking. It has
been proved [Eswar| that three conditions are sufficient for a schedule of transac-

tions to be serializable:

1) A transaction should never be allowed to access an object without first lock-
ing it;
2) A transaction should never be allowed to access an object that is already

locked by another transaction; and

3) Once the first lock on an object is released, the transaction should never

attempt to lock a new object.

Conditions (1) and (2) are standard among most actual locking concurrency con-
trol mechanisms, since without them, the consistency of the DB would be in con-
stant danger while the system is active. A transaction that follows rule (3) is
called two phased because there is a phase where it only asks for locks and then a
phase where it only releases them. A locking mechanism that follows these rules

is called two phased locking (2PL).

Two phased locking has been shown to produce consistent data, but it has
also been shown that a schedule of transactions does not need to be 2PL to main-

tain DB consistency. In fact, it is well known that for specific applications,
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consistency can be maintained with more flexible mechanisms, that allow higher
concurrency and do not observe two phase locking or even serializability [Eswar,
Kung]. These mechanisms either operate on data with a specific structure (e.g. a
tree) [Silbe]; only allow a set of simple operations on the data (e.g., operations
that maintain a directory or recovery log) [Stron, Lehmal; or may take as input
semantic information that specifies how transactions can be interleaved [Clark,
Fisch, Gare, Lynch].

The objective of this thesis is to study a concurrency control mechanism
that does not observe 2PL, but that uses the semantic information of transac-
tions to allow higher concurrency and still preserve consistency. The original
ideas, and algorithms, for such mechanism, and on which the research presented
in this thesis is based, are described in [Garc]. Under the rules of this mechan-
ism, which we will call a Semantic Knowledge (SK) Mechanism, transactions are
classified into semantic types. Each type will have an associated set, called the
compatibility set. This set will list the types of transactions that are compatible
with transactions of the type defining the set. Compatible transactions are tran-
sactions that due to their semantic construction, can interleave their steps
without violating consistency.

This thesis will be organized as follows:

A brief review of the background ideas on serializable schedules and an
introduction to the concept of Semantic Knowledge (SK) applied to the process-

ing of concurrent executing transactions will be presented in chapter 2. Examples

will be given.

Chapter 3 presents the performance results of an experiment comparing a

SK concurrency control mechanism to a 2PL one. These results are taken from a
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simulation that measured the behavior of transactions in a two site distributed
database. Of special interest are the values obtained for two different system’s
performance predictors. Such values could be very useful to discriminate when a
SK based concurrency control mechanism should be considered for implementa-

tion, instead of a 2PL one.

In chapter 4 we propose two variations of the original SK algorithms
presented in [Gare| and study their performance. The first variation is an algo-
rithm that more effectively processes transactions with an empty compatibility
set. The second variation is based on restricting the class of compatible sets that

the original algorithm processes.

Since it is very important to know when two transactions are compatible, in
chapter 5 we decided to explore the conditions under which some classes of tran-
sactions are compatible, and suggest aids that permit two transactions to become
compatible. Three different classes of transactions are studied here: 1) Transac-
tions whose actions are linear assignments; 2) Transactions executing set opera-
tions; and 3) Transactions where the timestamp (submission time) of the transac-

tion determines the value of an object to be written in the database.

In chapter 6 we adapt the ideas of SK to the processing of long lived tran-
sactions (LLT), transactions whose execution even without interference from
other transactions take a substantial amount of time, possibly on the order of
hours or days. The implementation of a DBMS that relies on a SK based con-

currency control mechanism to process LLTs is described and discussed.

A summary of the thesis, together with some conclusions and problems for

future research appears in chapter 7.
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Chapter 2

SERIALIZABILITY AND SEMANTIC KNOWLEDGE

2.1. Introduction

Schedules of transactions need to obey certain rules in order to transform
the DB from a consistent state to another consistent state. These rules are espe-
cially needed when transactions are allowed to interleave some of their execution
steps in order to obtain good system performance. Different types of concurrency
control mechanisms that achieve this have been used in the past [Bern]. As men-
tioned in the chapter 1, probably the most widely used general purpose (GP) con-
currency control mechanism is two phase locking (2PL). This mechanism is too
restrictive, and for application dependent DBMSs, it may be worth considering a
less restrictive, more flexible, concurrency control mechanism. The purpose of this
chapter is to present some background on serial and serializable schedules (sec-
tion 2.2), and to introduce the reader to the concept of semantic knowledge (SK)
and a SK based concurrency control mechanism, a mechanism that takes as input

the semantic information of the transactions (section 2.3).

2.2. Serializability

We will start this section by stating the concepts of a serial and of a serializ-
able schedule. We assume the reader is familiar with serializability, and present
the most important definitions and results. For those not familiar with these

material we refer them to [Eswar].

Definition 2.2.1 (Serial Schedule):
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Let S be a schedule of T={Tj, .... ,T,, / T;is a transaction}. S is serial iff its
execution is equivalent to executing Tgy), ..., Tg(y), where & is a permutation of
1....n. In other words, a serial schedule executes all the actions of a transaction as

a block, i.e., without interference of any other actions. O

Definition 2.2.2 (Serializable Schedule):

Let S be a schedule of T={T}, ... ,T,}. S is said to be serializable iff there
exists a serial schedule S of T, such that S and S produce the same results. We

will say that S and S are equivalent. O

From our first definition we can conclude that a serial schedule maintains
the consistency of the database. This is because transactions are executed
without interference and because transactions transform a consistent database
into a new consistent one. We then can directly conclude that a serializable
schedule will also maintain DB (database) consistency. It is natural that we now
ask ourselves what the sufficient conditions for serializability are. The next two
theorems will give us this answer. For convenience we will precede them by the

following definition.

Definition 2.2.3 (Dependency Graph):

Let S be a schedule of T={T, ... ,T,}, and T, T; € T. Let o be an object
of the DB. Suppose that T; accesses object o and the next transaction to access o
is T;. If at least one of the accesses intends to write a new value for o we say

that there exist a dependency from 7; to 7. We will represent such dependency

by T; — T; The dependency graph of S, written G(S), is the graph constructed
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from the union of all dependencies produced by S. The nodes of the graph are the

transaction’s identifiers and the edges the dependencies between the transactions.

O

Theorem 2.2.1:

Let S be schedule of T={T), ... ,T,} and G(S) its dependency graph. If

G(S) is acyclic then S is serializable. [Eswar|

Sketeh of proof: Topologically sort G(S) assigning numbers to the nodes.
This new enumeration of the nodes gives us a serial schedule of the transactions.
This is equivalent to S since the dependencies between the transactions have been

preserved. O

Definition 2.2.4 (Well formed transaction):

A transaction is said to be well formed iff it locks a DB object before it

accesses the object. O

Definition 2.2.5 (Two phase transaction):

A transaction is said to be two phase iff it does not ask for a new lock once it

has already released a lock. O

Definition 2.2.6 (Legal schedule):

A schedule S of transactions is said to be legal iff every transaction 7 in S

does not access any object locked by a different transaction. O

Theorem 2.2.2: [Eswar]
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Let S be a schedule of T={Ty, ... ,T,} . If T}, ..., T, are well formed and

two phase, and S is legal then G(S) is acyclic.

Note: We will omit the proof of this theorem and refer the reader to [Eswar]. O

Having stated the previous definitions and theorems, we see that acyclicity
of G(9), is all we need for schedule S to maintain DB consistency. This is, in fact,
a positive point for serializability, since it is not difficult to implement a DB
schedule manager that enforces the conditions of theorem 2.2.2, and therefore
forces the dependency graph of the schedule to be acyclic. On the other hand, we
can see that acyclicity is too strong a sufficient condition for consistency (see
example below). This leads to inflexibility in the scheduling of transactions,
decreasing the degree of transaction’s concurrency and therefore increasing

response times.

Example 2.2.1:

Let A be an object of the DB. Let T; and T, be two transactions such that
T].: 4. A+— A+ 200

012:A+—A*2 ;and

T5: ay. A+— A *3

Gyy. A — A + 300

Consider now the following execution schedule, S:
(T4 .4 + 200
(T5) A— A *3
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(T,) A — A + 300

S is a serializable schedule since the serial schedule &' = T, Ty = (¢yy, @49,
g1, G90) Would have produced the same results, for whatever initial value of A.
However, G(S) is not acyclic, since we have the dependencies T; — T, and
I = Tj.

The previous example showed how a schedule S could be serializable, even
though its dependency graph had a cycle. This was the case because the multipli-
cation operation has the commutative property. Such kind of properties can lead
us to the discovery of many types of transactions that allow for serializable
schedules with cyclic dependency graphs. Exploring more, we will also be able to
show that even serializability is not necessary to achieve schedules that maintain
DB consistency. The next section will introduce the reader to a concurrency con-
trol mechanism that guarantees DB consistency, but where the schedules are not

forced to be serializable.

2.3. Semantic Knowledge

In this section we briefly discuss a strategy for using semantic or application
knowledge in transaction processing, and illustrate how it may increase parallel-
ism. (We refer the interested reader to [Gare| for a detailed explanation of these
ideas). This method, which we call SK, is based on the nature (semantics) of the

different transactions that a given DBMS processes.

Under the SK strategy, transactions are divided into steps. Each step is a
collection of conventional database operations (e.g., read or write a record) that

will be performed as an atomic unit at a single node in a distributed system. If
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two transactions are compatible, it is possible to interleave their steps in any
fashion without violating database consistency. The users of the database define
what transactions are compatible by classifying them into semantic types; and for

each type, the compatible types are given.

For example, consider an application where there are three warehouses and
each one keeps its inventory on a computer. Suppose there is a transaction T}
that examines all inventories and produces a report for the management. This
transaction does not need a consistent, up to date view of the data, as long as
each local inventory it examines is valid. Then T can be interleaved with other
transactions that update the inventory. That is, users would define semantic
types “Monthly Report” (with T as an instance) and “Inventory Update,” and

for each would give the other type as its compatible type.

The parallelism induced by the compatible sets will be especially useful in a
distributed DBMS. Recall that in distributed systems, it is common for a tran-
saction, like T, to visit several nodes in order to complete its required processing.
In such cases, the transaction may leave locks on objects at a node NN until it
completes. The locks could remain for a substantial time, due to communication
delays. A second transaction, Ty, requiring the object locked by T, will have to
wait a long time. However, if T; and 7, are transactions of compatible types,
then with a SK concurrency control mechanism, 7, will be able to access the

object as soon as T finishes processing at N, without violating consistency.

To allow compatible transactions, like 77 and 7, to share objects, the
scheduler utilizes two types of locks: (a) Local, to ensure atomicity of steps; and
(b)Global, to allow compatible transactions to run concurrently, i.e., to allow

valid interleavings. Local locks are released when a step finishes; global ones are



= [

kept at least until the transaction finishes, possibly longer. To simplify matters
we will not return to discuss global lock release until after the presentation of the
next set of definitions and the examples that will follow them. This set of

definitions will describe our SK notions more precisely.

Definition 2.3.1 (Step):

The actions of each transaction T are grouped (by the users) into a series of
steps s+ - 8,(n>1). Each step will be atomic and executed at just one

node.O

Definition 2.3.2 (Step-Wise Serial Schedule):

All schedules where the steps of transactions are executed as atomic units,

will be called step-wise serial O

Definition 2.3.3 (Semantic Type):

According to the nature (i.e., semantics) of the transactions users will clas-

sify them into semantic types. That is, each transaction, 7, will have its own

type ty{ T) € TYPES, where TYPES is the set of all semantic types.O

Definition 2.3.4 (Compatibility Set):

Each semantic type Y € TYPES defines a compatibility set, cs(Y), whose ele-

ments are interleaving descriptor sets as defined below.O

Definition 2.3.5 (Interleaving Descriptor set):

An interleaving descriptor set of a compatibility set e¢s(Y), A,

(h € es(Y), Y€ TYPES), must have the following properties:
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(i) hC TYPES
(ii) For all transactions Ty, T, such that i 1)), ty T5) € h, any interleaving of

the steps of the two transactions will not violate database consistency O

Example 2.3.1:

Let Y,, Y,, ... be semantic types and consider the following compatibility

sets:
1) es(Y)={{Yy, Yo, Ys}, { ¥y, Y7}}

2)  es( Yg)={{Yy Yio}}-
These sets illustrate two different aspects of compatibility. The first set states
that transactions of type Y, can run concurrently with transactions of type Y,
and Y3, or they can run concurrently with those of type Y;. However transactions
of types Y, and Y; will not be allowed to interleave their steps since they do not
belong to the same interleaving descriptor. The second set illustrates the fact
that a transaction of a certain type may not be allowed to interleave its steps
with the ones of other transactions of its same type. Note, however, that in prac-
tice we expect most transactions to be compatible with transactions of their same
typeO

The following example will illustrate the use of compatibility sets in a simple

application.
Example 2.3.2:

Suppose that we have a bank with three accounts: A, B and C. Accounts A
and B will be customer accounts that are charged a 10 dollar penalty fee if they
ever go below 1500 during a month. C will serve for the bank’s internal account-

ing, and records the total penalties collected. The only restriction on accounts
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will be that money be accounted for, 1.e.,
Bal(A) + Bal(B) + Bal(C) = Tot,

where Tot is a variable that records the total amount of money in the bank, and
Bal(X) 1is the balance of account X. The remaining two variables,
PENA_COLL(A) and PENA_COLL(B) are flags that insure that the penalty fee
is collected just once a month. It will, in fact, be collected the first time the
account goes below 1500. A special transaction, of type RST (see below), that
resets both flags to their initial value (‘False’), will be run at the bank’s closing
time on the last day of the month. Note that this has to be the last transaction,

with access to the flags, submitted to the DBMS during the course of any month.
For this DBMS we will define the following three types of transactions:
a) D2(x)(deposit in accounts A and B the amount x). Its steps are:
1) Bal(A) « Bal(A) +x; Tot « Tot + x
2) Bal(B) « Bal(B) + x; Tot « Tot + x
b)  W2(y)(withdraw from accounts A and B the amount y). Its steps are:
1) Bal(A) « Bal(A)-y; Tot + Tot-y;
If Bal(A) < 1500 and not PENA_COLL(A) then
Bal(A) « Bal(A) - 10;
Bal(C) « Bal(C) + 10;
PENA_COLL(A) « ‘True’

Endif
2) Bal(B) « Bal(B)-y; Tot « Tot -y;
If Bal(B) < 1500 and not PENA_COLL(B) then

Bal(B) — Bal(B) - 10;
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Bal(C) « Bal(C) + 10;
PENA_COLL(B) « ‘True’

Endif
¢) RST. Its only step is:

PENA-COLL(A) « ‘False’; PENA_COLL(B) « TFalse’

Since the addition operation is commutative (i.e., x - y = -y + x), and
account C will be credited 10 dollars every time the penalty is charged, then it is
clear that interleavings of the steps of transactions of types D2 and W2 will not
violate the restriction Bal(A) + Bal(B) + Bal(C) = Tot. Based on these facts we
can define es(W2)={{D2, W2}}. By these same facts and since transactions of
type D2 do not access the variables PENA_COLL(A) and PENA_COLL(B), then
the compatibility set of D2 can be defined as cs(D2)={{D2, W2}, {D2, RST}}.
Running transactions of types W2 and RST concurrently could result in collect-

ing a penalty fee twice and providing the incorrect flag value for the beginning of

the next month. For this reason we define ¢s(RST)={{D2, RST}}.

Suppose now that we initially have Bal(A)=Bal(B)=2000 and Bal(C)=0,
and that T; and T, are of types D2(500) and W2(800) respectively. Consider then
the following execution schedule S:

Ty step 1
T, step 1
T, step 2

T, step 2

Schedule S is a valid interleaving of the steps, since D2 and W2 are compati-

ble. To check we can see that at the end of the execution Bal(A)=1700,



<« I8 =

Bal(B)=1690, Bal(C)=10 and Tot=3400, which fulfills the restriction that
Bal(A) + Bal(B) + Bal(C) = 3400 = Tot. Observe now, that any serial schedule
of this two transactions would either have produced Bal(A)=Bal(B)=1700 or
Bal(A)=Bal(B)=1690. We have thus shown in a simple example and via a simple

use of the SK strategy, how non-serializable, consistent schedule may arise.

As discussed earlier, not having to enforce serializability could be an advan-
tage. In the schedule above, 7, can access the funds it needs without waiting for

T, to finish. With a 2PL mechanism, 7, would have had to wait. O

Even though the example we have presented is extremely simple, we believe
that compatibility sets can be defined in many real applications, including bank-
ing systems, airline reservation systems, system of libraries databases, and
insurance company databases. However, the question remains whether the per-
formance gains illustrated above will be significant. This is precisely the issue we

intend to address in the next chapter.

Before finishing this section we return to discuss global lock release. As we
can recall, local locks can be released as soon as a step finishes, but to enforce
consistency, the global locks must be held until all transactions being interleaved
are completed. To see this, consider two transactions T; and 7, such that
ty(Ty)=Yy, ty(T)=Y5, and cs(Yy)=cs(Yo)={Y; Yo} After T, accesses o, T,
also accesses it and goes on to lock and access object 0,. Suppose that T, finishes
before T does. If the global lock on object o, is released when T finishes, a third
transaction T3, incompatible with T; and T, could produce a value read by T
and could read a value produced by T,. The interleaving of the three transac-
tions could violate consistency (i.e., there would be a cycle Ty — T} — Ty, — T

in the dependency graph). Therefore, the global lock on 05 can only be released
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when both T and T, finish.

To accomplish this, each globally locked object o has a “release set” Rel(o)
associated with it. Rel(o) contains the names of the transactions that have
accessed object o. As a transaction T executes each step, it accumulates in a
“wait set” WAIT(T) the release sets of the objects it has accessed during the
step. The names in WAIT(T) will, in turn, at the end of each step, be accumu-
lated in a ‘“‘total wait set” T _WAIT(T). Transaction T reaches its termination
point when it has finished and all the transactions in 7_WAIT(T) have reached
their termination point. The global locks on the objects accessed by T can be
released only when T reaches its termination point. To insure this (see [Gare| for
details), then for every object, o, such that T € Rel(o), T_WAIT(T) gets added
to the Rel(o), and T's name is removed from Re{(o) when T finishes execution.

The global lock of o will be released only when Rel(o) is empty.

The release sets, as we have seen, play a very important role in the releasing
of global locks, but their emptiness is not a sufficient condition to release the
mentioned locks. We also have to make sure that the global lock on an object o
is not released if there is still a transaction 7 in the system that holds a global
lock on o, but has not yet accessed it. (Note that in such case, since T has not
accessed o, it could easily happen that Rello) = 0.) To met this requirement, the
algorithms will use for each object o a set call Pre(o). This is the set of transac-
tions that have obtained a global lock on o but have not yet accessed it. The glo-
bal lock cannot be safely released until this set becomes empty. To summarize,
we can now say that to release the global lock on o, we need to have Rel(o) = 0

and Pre(o) = 0.
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Chapter 3

THE SIMULATION

3.1. Introduction

A semantic knowledge (SK) based concurrency control mechanism is
designed to perform better than a general purpose (GP) mechanism for a specific
range of database applications. To verify this, one constructs examples where a
GP scheduler produces larger delays than the SK mechanism does. However, the
examples by themselves do not guarantee that performance will improve. For
improvement, the number of times the ‘‘examples’ arise in practice must be
significant. Furthermore, the cost of running the SK mechanism must not
outweigh the gains. Specifically, the SK mechanism may have one or both of

these drawbacks:

(1) The overhead of the mechanism may be higher than that of an efficient GP

one (e.g., two phase locking).

(2) Transactions outside the specific range of applicability (e.g., those that do
not access the data in a structured fashion or that perform operations out-
side the allowed set) may not be able to access the data at all, or if they can,

may encounter long delays (e.g., all the application transactions may have to

be flushed first).

The objective of this chapter is to investigate these performance questions in
more detail. We are not trying to show that one strategy is superior to another;
our goal is simply to identify the conditions under which it may be advantageous

to use an SK mechanism.
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This is, of course, a very difficult task, given the large number of available
strategies, applications, and hardware parameters. Thus, in this chapter we only
study a relatively narrow portion of the spectrum, and compare this mechanism
with the conventional two-phase locking (2PL) [Eswar|. The latter, as already
said, is the most common GP concurrency control mechanism and is generally
perceived to be efficient. We compare these mechanisms in a distributed data-
base since the SK mechanism may be most applicable in this environment. We
evaluate the strategies by postulating a relatively simple performance model and
simulating it.

In section 2 we describe the simulation model and our results are presented
in section 3. Finally, in section 4 we argue that the trends discovered in our case

study may also be applicable in other contexts.

3.2. The simulation model

Reference [Garc] (see Appendix A) presents a concrete example of semantic
knowledge concurrency control algorithms for a distributed DBMS. We use these
algorithms to test the efficiency of the SK strategy in different situations, and to
compare it to a GP, two phase locking (2PL) strategy [Eswar]. Our evaluations
are based on a simulation model that is presented in this section. We feel that
simulation is the correct approach here, since it would be difficult to capture the
intricacies of the locking protocols with a mathematical analysis |Grayl], and

since an implementation was not appropriate at this stage.
Although the simulation model is simple, we believe that takes into con-

sideration the main features and parameters involved in the running of a distri-

buted DBMS. In our search for a simple model, we made many assumptions, but
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in each case we believe that they preserve the essence of the system and its per-
formance. For instance, we only consider a system with two processing nodes
because we think that this number is sufficient to model the transmission delays

that transactions may encounter.
Following are the assumptions made in designing the simulation:

e There are two computing nodes interconnected via a reliable transmission
line.

e Each node has its own local database. The databases are different, but of the
same size.

o Transactions are of four different types: Local and nonlocal compatible (LC,
NLC), and local and nonlocal incompatible (LI, NLI). Local transactions will
execute just one step at the node at which they are submitted, whereas non-

local will execute one step at each node.

e The compatibility sets are defined as follows: es(LI)=cs(NLI)={} (i.e. no
compatibility at all); and es(L.C)=cs(NLC)={{L.C,NLC}}.

e The arrival of transactions to the system forms a Poisson process.

e The node that receives the transaction, and the objects it will access at each
node are randomly chosen.

e  The transaction’s type is randomly chosen too, but it follows the distribution
of probabilities for the different types given by the input parameter Miz (see

below).

e Each step’s computing time is fixed, but the locking time for the SK

mechanism is larger than for the 2PL one.

e Read locks are not implemented. All locks in 2PL, and all local locks in SK,
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are exclusive.

Next we present the input parameters; in parenthesis are the range of values

for the variable, and the most frequently ({ypical) used value in a simulation

run.

M:

T

Ie:

i B

Timeout:

Nexzttime:

Mix:

the size of the database (100 - 700 objects (half at each node);
200 objects). These are relatively small databases, but can be

thought of as the high traffic portions of larger databases.

the number of objects to be accessed by each transaction’s step
(1-8;5)

the internode transmission time (5 -125 msec; 100 msec)

the mean interarrival time of transactions (100 - 400 msec; 150

msec)

the computing time of each step (held fixed at 100 msec)

the locking time of each step (held fixed at 10 msec for the SK
mechanism, and at 8 msec for the 2PL one) }

time after which a transaction waiting for a locked object will be

aborted (usually set to 300 msec)

time that an aborted transaction has to wait to be resubmitted

for processing (usually set to 300 msec)

A four  dimensional probability  distribution  vector,
(P, Pyon Pros Pnrc), where Py is the probability of a transac-
tion being of type X. Note that this parameter allows us to

modify the degree of locality and/or compatibility of the

1'}A discussion of these values will be found in section 3.3.
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transactions. (Any combination of values, as long as the sum of
the probabilities equals 1; most frequently used vector was (.25,

25, .25, .25))
We now describe, in a simplified manner, how the simulation proceeds:

Local transactions:

Upon submission of the transaction to the local node, it immediately
tries to lock, first globally and then locally, the objects needed for the step.
Once all required objects have been locally locked, simulation of the locking
and computing time (7L + TC) of a step takes place. The transaction then
releases the local locks and tries to release the global locks. (When the tran-
saction is being interleaved with another compatible transaction, the global
locks may have to remain set even after the transaction that set them com-
pletes. More on this later.) The transaction’s processing is now finished. (To
make local transaction processing simple, we decided to avoid local deadlock
situations by requesting the locks of objects by ascending identification

number.)

Nonlocal transactions:

Immediately after being submitted, the transaction tries to globally and
locally lock the required objects at the receiving node. Upon successful exe-
cution of this task, it waits 7L + TC simulated time units and and releases
the local locks. Global locks will remain, to allow valid interleavings of com-
patible transactions. The transaction now waits now T7 (internode
transmission time) units, and then tries to lock the required objects, in the
same manner, at the second node. After obtaining the remote locks, the

transaction waits again 7L + TC units. Permission is then given at the the
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second node to release the local locks, and to try to release the global ones.
(Our previous comment on global lock release also applies here.) The tran-
saction returns, finally, to its node of origin, after a 7T transmission time is
simulated, and tries to release the global locks left here. At this point, the

transaction has finished its execution.

Each time a transaction fails to get a desired lock, it will be placed on one of
two waiting queues for that object, depending on which kind of lock is requested.
When a lock is released, either local or global, the oldest waiting transaction, in
the respective queue, will be reactivated, i.e., it will continue execution at the
point it was suspended. As for deadlock situations, we know that they cannot
occur within a node, but they can arise between nodes. To deal with such situa-
tions we decided to use a timeout mechanism. A timed out transaction is aborted
(following [Garc|’s algorithms) and resubmitted to the system a fixed amount of

time later.

Note that if one defines the compatibility sets of all types of transactions to
be empty, i.e., no compatibility at all, then the semantic knowledge algorithms
will enforce two phase locking. Thus the same simulator was used for both con-
currency control strategies. With 2PL all transactions are made incompatible;
and with SK, the larger step locking time (7L) was used to model the higher
complexity of the algorithms. (The reader should bear in mind this last fact

while examining the results of the simulation in the next section.)

One last important consideration that should be mentioned here: In order to
get accurate statistics, each simulation was run until the results lay in a small
confidence interval. The size of this confidence interval was less than 15%9% of the

value of the mean transaction response time. The response time is the time a
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transaction takes from the moment it is submitted to the moment it finishes exe-
cution, i.e., the moment the transaction completely finishes doing its work at
both nodes. This time does not include the time spent for previous executions,

when the transaction was aborted.

3.3. Results

Our objective in this section is to present some of the results on the use of a
semantic knowledge based concurrency control mechanism. The results we
present were summarized from hundreds of simulation runs using the model
explained in the previous section. They will compare the performances of the SK

and the 2PL methods.

In the early stages of experimenting with the simulator, it became evident
(as we had suspected) that under the proper conditions a SK mechanism would
significantly improve the system’s response time as compared to 2PL. For exam-
ple, Figure 3.3.1 shows the performance improvement of SK as the percentage of
NLC (non-local compatible) transactions increases. This figure plots the average
transaction response time as a quotient 2PL/SK (vertical or y axis), versus the
fraction of NLC transactions simulated (horizontal or z axis). The remaining
transactions were equally distributed among the LI, NLI, and LC types. All other
input parameters were set to their typical values. (See Section 3.2) (In the follow-
ing graphs all input parameters will be “typical,” unless otherwise noted.) In Fig-
ure 3.3.1, as well as in Figures 3.3.2, 3.3.4, 3.3.5, 3.3.7 and 3.3.8, we have drawn a
line at y =1. This line marks the boundary between the regions where each stra-
tegy performs best. Since the average transaction response time is given as the

quotient 2PL/SK, then for any value on the z axis whose image is above the
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y = 1 axis, SK performs better, else 2PL is faster.

The reason for the improved SK performance as Ppy grows is, of course,
the parallelism induced by compatible transactions, as illustrated in Section 2.
The increase in the percentage of NLC transactions implies an increase in the
average size (number of objects accessed) of transactions. (Remember that non
local transactions access twice as many objects as locals do.) When using 2PL
this size increase implies a quadratic increase in the probability that a transaction
will ever have to wait (find an object locked) [Grayl]. When using SK, the
increase in the percentage of NLC transactions implies, not only an average tran-
saction size increase but also an increase in the number of sharable objects,
avoiding then many ”waits” that would have occurred with 2PL. Therefore, we
intuitively do not expect the number of "waits” to go up in this case. In sum-
mary, we expect that as the percentage of NLC transactions increases, the
transaction’s response time with 2PL will increase with the second power of the
transaction’s size, but we do not expect this to happen when using SK. It
should therefore, be no surprise that the 2PL/SK transaction response time,
which shows the better performance of SK over 2PL, increases approximately in a

quadratic fashion as the percentage of NLC transactions increases.

The same behavior was observed as the mean interarrival time of the tran-
sactions (A\) was varied (See Figure 3.3.2). As the value of X\ decreases, a higher
load is placed on the system, and SK pays off. However, for light loads, the

smaller locking time of 2PL outweights the increased parallelism of SK.

From our understanding of semantic knowledge, it also seemed reasonable to
expect the other parameters, especially the internode transmission time (TT), the

size of the database (M), and of the number of objects to be locked by each
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transaction’s step (K), to have similar effects on performance. That is, increasing
TT, decreasing M or increasing K, should show the same performance improve-
ments (of SK over 2PL) as decreasing X\, because changing these variables in the
mentioned directions will increase transaction ‘‘traffic” in the system: decreasing
M or increasing K, increases the number of objects locked at any moment relative
to the size of the database; increasing TT causes objects accessed by non-local
transactions to remain locked for longer periods of time. These ideas were
confirmed by running additional tests and obtaining graphs (not shown here)
similar to the one of Figure 3.3.2. (Another result not shown here, is that with
high ““traflic” the number of aborted transactions was less with SK than with

2PL.)

An increase in the relative number of database objects locked, or an increase
in the average period that an object remains locked, represents a higher probabil-
ity that an object is locked when a requesting transaction tries to access it. It
then seems reasonable that we express our performance results in terms of this
variable. This probability, P, can be computed by the simulator simply by
counting the number of conflicts (i.e., times a requested lock is not immediately
available) and dividing by the total number of lock requests made during a 2PL

simulation run.

In a moment we will see that P is indeed a good predictor of system perfor-
mance. However, we first present a simple way of estimating P without having

to resort to a complete simulation. If
{= average transaction response time in normal 2PL processing, and

A= mean interarrival time of transactions,
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then the expected number of transactions in the system is A/f (Little’s result
[Klein]). The fraction of locked objects at any instant of time, that is P, can

therefore be approximated by

_ (N K
PRE = 12—

where
M= number of objects in the database; and

K*—average number of objects that a transaction is holding locked during its
lifetime. Local transactions, we already know, access K objects, whereas non
locals will access 2K objects (K at each node), but they will not hold locks
during their complete lifetime. K has to be, therefore, a function of K and

the probability vector Miz. Its calculation follows.

Our simulation model forces a local transaction to have locked all its needed
objects during its lifetime. Non local ones hold locks in the first node for all their
execution time, whereas the objects in the second node are locked just during the
time that the transaction is processing in that node. Let 6, and 0, be the proba-
bilities that an object required by a local, or a non local, transaction be locked at

any moment of the transaction’s lifetime. Certainly 8,=1.

To calculate the value of 0,, we take the typical values (see section 3.2) for
TT, TC, and TL (TL for the 2PL case since we want to estimate the number of
conflicts in a non application dependent environment). Due to our simulation
design, a non local transaction will hold locks on its first node for all of its life-
time, i..e., for 416 msecs. (416 msecs is the total of the locking and computing
times (TL + TC) at the first node, the transmission time (TT) to the second

node, the locking and computing times at the second node, and the transmission
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time back to the first node.) The locks on the second node will remain just for
108 msecs (locking and computing times at second node). Therefore, half of a non
local transaction’s required objects will be locked for 416 msecs and the other half

for just 108. This implies that,

(% *416) + (% *108)
B == ~ 0.629
416

Having the values for 6, and 6,; we can now calculate K"

K* = (fraction of locals) *0,*K + (fraction of nonlocals)*_,*2K
= (Pro+ Pr)*0,*K + (Pypo + Py *0n*2K

= K*[(PLG + Pr)*0, + (Pnpo + Pagy) ”‘anz*Q]
= K(Pro+ P+ (1~ (Py + Py)0.620%]
- K*[(PLC + Pp) +1.258 - 1.258 Py + PL,)]

— K*[I.QSS - 0.258 { Py + PL;)] O

The advantage of the formula for PRE over the one for P is that it involves
system parameters that can be estimated for a given application. If the applica-
tion is already implemented on a 2PL system (and we are considering switching
to a SK mechanism), the value of ¢ can be easily measured without having to
imstrument concurrency control, as would be necessary if P were measured. Of
course, PRE is only a approximation to P, but Figure 3.3.3 shows that (at least

for our model) it is a fairly good one.
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To confirm our hypothesis that P and PRE are good predictors of perfor-
mance, we graphed our previous results as a function of PRE. (Since P and PRE
are roughly equivalent we will only deal with PRE.) Figure 3.3.4 exhibits four
different curves, each of them showing the system’s performance as four parame-
ters (N, K, TT, and M) were varied. The fact that the performance curves for the
different parameters varied follow almost the same path shows that the perfor-
mance of the system depends very much on PRE and not so much on the param-
eter varied. This an indication that PRE is a good system predictor. This figure
is for the case when all types of transactions are equally distributed. Similar
graphs, that reenforce our hypothesis, can be obtained for different transaction

mixes.

A graph like the one in Figure 3.3.4 can be useful for determining, for a
given transaction mix, the cases where the use of semantic knowledge pays off.
For instance, in the particular case of Figure 3.3.4, if the probability of an object
causing a conflict is less than roughly 0.02, then 2PL is a good choice, but if PRE
is greater than about 0.035, then SK works better. If PRE is between the two
values, we are unable to predict (without more detailed information) which
mechanism is superior, since the curves cut the y = 1 axis at different places in

this range.

For a given transaction mix the relative performance of SK over 2PL is
driven by the probability that a requested object is locked. But how does the mix
affect this performance? If we have very few conflicts, 2PL should be superior,
regardless of the mix. However, if we have a high number of conflicts, and if
there are sufficient compatible transactions, the SK may save enough conflicts

and be worthwhile. These considerations led us to consider a second predictor,
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the probability of saved conflicts or PSC. Predictor PSC will estimate the proba-
bility, when using SK, that a requested object is locked by a transaction compati-
ble with the requesting transaction, i.e., the probability of ‘‘saving a conflict”.

Intuitively we would expect SK to outperform 2PL as PSC grows.
To calculate PSC we proceed as follows:

Let T, be any transaction that holds a lock on an object;
T, a transaction wanting to access the object locked by Tj; and

P(X): Probability of event X;

then

PSC= PRE * P(T; and T, are compatible)
= PRE * P(T, and T, are both of type LC or NLC)
= PRE * {P(T) of type LC) + P(T] of type NLC)}
* {P(T, of type LC) + P(T, of type NLC)}

Since the transaction probabilities are given by the input parameter

Miz = (Pp;, Pypp Pro, Prpc), then:

PSC = PRE* (Pyo+ Pnpo) *(Pro+ Paro)

= PRE * (Pyo + Pypo)?

Figure 3.3.5 exhibits four curves that show the compared performance of
2PL and SK as a function of PSC. Each different curve shows the system’s per-
formance as the percentage of the given transaction type is changing. The curves
were obtained by varying from zero to one the probability of the given type, and

distributing equally the remaining probability to the other types. The fifth curve
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is the same curve that appeared in Figure 3.3.4 showing how M influences the
system’s performance, but here it is plotted versus PSC. It is included for com-

parison purposes.

The curves of this figure do not bunch together as the ones of Figure 3.3.4,
since for almost every value of PSC, the transaction mix for each curve is
different. (In Figure 3.3.4, PRE was predicting the system’s performance, but
only for a fixed transaction mix.) However, the curves of Figure 3.3.5 cross the
y = 1 axis in a relatively small interval, and this means that PSC may be useful,
as we suspected, to decide if SK is advisable. Specifically, if PSC is greater than
0.02, we can be fairly confident that SK will outperform 2PL. Similarly, if PSC is
less than 0.005, chances are SK is not advisable. For intermediate values, a more
detailed analysis is necessary. We discuss the implications of these results in the

conclusions section.

Now that the significance and potential value of the two predictors, PRE
and PSC; is well understood, we are going to present one more result that com-
pares the performances of the two different locking mechanisms. This result refers
to the system’s total throughput, i.e., the number of transactions that are fully
processed by the system per unit of time. Figure 3.3.6 shows the total throughput
as a function of PRE and of PSC at the same time. To make this possible we
have drawn just one curve, but two scales, corresponding to the two different
predictors, on the z axis. The y axis gives the the total throughput as a ratio
SK/2PL. We have again drawn a line at y=1 to tell us when SK performs better
than 2PL. The graph shows clearly how SK outperforms 2PL as the values of
PRE and PSC increase. It is interesting to notice that again the performance

curve cuts the 1-axis at values in the intervals already established in figures 3.3.4
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and 3.3.5 ([0.02, 0.035] for PRE, and [0.005, 0.02] for PSC).

Our next result, supported by figures 3.3.7 and 3.3.8, addresses the choice of
SK/2PL locking ratio in our simulation. This ratio was taken as 10/8 because we
estimate (from studying the code) that the time complexity of SK is about 25%
higher than that of 2PL. The value of 8 msecs for 2PL locking time, or 8% of
the CPU processing time for a step, roughly agrees with published values [Gray3].
(Incidentally, it is because the SK overhead is not much larger than the 2PL
overhead that 2PL does not beat SK by a wide margin when the load is light in

figure 3.3.2.)

However, our results are not highly sensitive to actual locking time values
used, as figures 3.3.7 and 3.3.8 show. Both figures show how little the system’s
performance, as a function of A and PRE, changes when the locking ratio is
changed to 16/8 and to 40/20 (This last being an extreme case). The curves for
these last two values are not as steep as for the 10/8 ratio, meaning that the per-
formance of SK degrades a little compared to that of 2PL, but their behavior is
certainly similar. Specifically, note that in figure 3.3.8, the curve for the 40/20
ratio cuts the y—1 axis just 19 to the right of the curve for the 10/8 ratio. This
means that our prediction of when it is worth considering the use of semantic
knowledge varies little, even in the case when there is quite a difference in the

locking ratios.

We now turn our attention to the second potential drawback of an applica-
tion dependent concurrency control mechanism: it may delay transactions outside
the intended application. (See Section 3.1.) In the case of a SK mechanism, the

problem arises when a string of interleaved compatible transactions prevent an
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incompatible transaction from accessing the data it needs. To fully understand
this potential problem, we ask the reader to review the details of the global lock

release mechanism in section 2.3.

From the discussion of global lock release in section 2.3, it is not difficult to
see why incompatible transactions could suffer significant delays: a long string of
compatible transactions could cause the release sets to grow and the global lock
release could be postponed indefinitely. The compatible transactions (i.e., those
within the application) are not affected, and if there are many of them, the aver-
age system performance could still be good. We should point out in passing that,
even though the details given are specific to the SK mechanism, the problem of
delayed transactions is not. In any application dependent (AD) system, transac-
tions that cannot cope with the non-2PL interleavings, must be postponed until

they can be executed in a conventional way.

To study the seriousness of this problem, we can study the response time of
incompatible transactions, or more directly, the size of the release sets. In both
cases, we discovered that the problem is not serious, even when the degree of
compatibility, i.e., the percentage of compatible transactions ( P;o+ Pnpc), is

large. Evidently, the probability that a large release set forms is negligible.

Some of our results on release sets are shown in Figure 3.3.9. They show
that (a) the average size of the release sets grows very slowly as PRE increases;
and (b) the average size of these sets is relatively independent of the degree of
compatibility. The figure exhibits three different curves plotting the average size
of the release sets versus the degree of compatibility. All other input parameters
are typical, but each curve has a different value of A. Varying A\, as we already

know, varies the value of PRE, whose influence in the size of the release sets we
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wanted to measure. Therefore each curve has a different mean value of PRE.
Note in the graph that the mean sizes of the release sets increase, but very
slowly, as PRE increases. (For a value of PRE of 0.218, representing a very large

number of conflicts, the release sets are still very small.)

Even though these results are positive, it may still be advisable to place a
limit on the number of compatible transactions that can be interleaved at a time
to avoid very rare but intolerable delays on incompatible transactions. These
limits are easy to implement, and as our results show, will rarely affect the per-
formance of compatible transactions. Similar limits can be placed on other AD

mechanisms.

Before closing this section we will summarize results that show how semantic
knowledge can aid in processing Long Lived Transactions (LLT) [Gray2]. We con-
sider the subject of LLTs, and the use of a SK concurrency control mechanism to
help manage LLTs, to be very relevant to this thesis. We will therefore devote a
full chapter (chapter 7) to the discussion of this subject. For the purpose of this
section we will limit the discussion of LLTs to a very simplified overview. A
LLT, as its name indicates, will take a very long time to process because it uses
considerably more distributed DBMS resources and/or accesses many more data-
base objects than normal transactions. This can result in long delays for transac-
tions trying to access objects already locked by the LLT. However, if a LLT is
compatible with many other transactions, then a SK mechanism could reduce the

delays.

In figure 3.3.10 we have considered a case where half of the transactions are
compatible and where all transactions have one step, except for the compatible

LLT’s that have two very large steps (they will access ten times as many objects
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as normal steps). These LLT’s arrive every 500 normal ones. The graph exhibits
the average response time of transactions, averaged over very short time intervals
(every 20 transactions). Most of the time, these averages fall within a small
range, and this is indicated by the two horizontal lines. Every 500 transactions,
a LLT arrives and the average response time for the next period is outside the
normal range. These values appear as dots (for 2PL) and asterisks (for SK)
above the horizontal lines. Note that in most of those cases, the system

responded better when using SK than when using 2PL.

3.4. Conclusions

In this chapter we have studied a specific instance of an application depen-
dent (AD) transaction processing mechanism and compared it to conventional
two-phase locking. We observed that the probability of conflict (P, PRE) was
the dominant performance factor, and that the probability of saved conflict
(PSC) could be useful in identifying the situations where the SK mechanism was
advisable. We found that large release sets (caused by long strings of interleaved
compatible transactions) did not represent a problem for non-compatible transac-
tions. Finally, we found that even if the AD mechanism does not improve aver-
age performance, it may improve the performance when long lived transactions

appear.

Strictly speaking, our results are only valid for the model and algorithms
used. However, since PSC appears to be so good in determining the usefulness of
the SK mechanism, and since it has intuitive appeal, we conjecture that PSC will
also be a good predictor in many other cases. That is, we hypothesize that if

PSC (i.e., the probability that a requested object is locked, but a wait is avoided)
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for any AD mechanism in a given application is on the order of magnitude of 0.01
or more, then the mechanism may outperform a conventional mechanism; if it is
less than this value, in all likelyhood one should use the conventional strategy.
(PSC can be estimated, as we did here, from the probability of conflict and the
transaction mix.) The intuitive reason behind our statement, as discussed earlier,
is quite natural: if less than roughly one percent of the conflicts are avoided, the
gains will be insignificant. This rule is only applicable to average performance;
an AD mechanism may still be advantageous for certain transactions (e.g., LLTs).

Our conjecture will have to be tested for other mechanisms.

If this conjecture holds (as it does for SK), what does it say about AD
mechanisms in general? For many large databases, references are so dispersed
that the probability of conflict (and consequently PSC) will be much less than
0.01. Clearly, for these systems a conventional mechanism is best. However, if
the database is small or if there are frequently accessed portions (e.g., the root of
a B-tree), and if the transaction rate is high, then an AD mechanism may be

worthwhile.
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Chapter 4

ALGORITHMIC VARIATIONS

4.1. Introduction

Results of the simulation comparing two different concurrency control
mechanisms, one enforcing two phase locking (2PL) and the other based on the
concept of semantic knowledge (SK), showed that considering the use of SK is
advisable just under certain conditions. One of the reasons SK is not always a
better algorithm than 2PL resides in its higher CPU overhead. Another reason is
the potential it has to make a transaction wait for long periods of time when its
type is outside the interleaving descriptor used to lock the object it desires. Such
waiting, as we know, is caused by our algorithm, since it has to ensure that only
compatible transactions are interleaved. We remind the reader that our algorithm
is based on Appendix A of [Gare|, a replica of which appears in Appendix A of

this thesis.

In this chapter we propose variations on Garcia-Molina’s algorithms. Such
variations will be based on the knowledge of the problems mentioned above. Sec-
tion 2 will propose how to process more effectively transactions whose types have
an empty compatibility set. This new algorithm will make use of only a subset of
the facilities (variables) of the SK algorithm. This property will allow us to com-
bine both algorithms into a new and general concurrency control algorithm, that
will take advantage of the semantics of the transactions more fully than the
current SK algorithm. A brief example will illustrate the improvement that this
variation can achieve. In section 3 we will report about another variation of the

algorithm. This variation was originally suggested by Garcia-Molina, and is
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based on restricting the compatible sets to hold only local transactions. Section 4

will point out some conclusions very briefly.

4.2, First Variation

Several graphs based on the simulation results have shown that for a low
degree, percentage, of compatible transactions submitted to the DBMS, our SK
based concurrency control mechanism is easily outperformed by one which is
based on 2PL. If there is a low degree of compatibility then there is a high proba-
bility that many transactions have an empty compatibility set. Now, there is no
need for transactions with empty compatibility sets to be processed by our origi-
nal SK algorithm (see Appendix A) (Algorithm 1), as their incompatibility with
other transactions does not allow them to take advantage of that algorithm.
Transactions in this class, which will henceforth be known as class E, could there-
fore run under a variation of our concurrency control mechanism, that resembles
a 2PL type of mechanism. We are, of course, not suggesting that there will be
two different concurrency control mechanisms in our DBMS. Transactions with
an empty compatibility set can bypass the burdensome bookkeeping of algorithm
1 whose purpose is to guarantee that only compatible transactions will run
together, making it impossible for data inconsistencies to occur. A new algo-

rithm, Algorithm 2, considering these factors follows:

Algorithm 2:

0. When transaction T enters the DBMS

If cs(ty(T)) % 0 then
call Algorithm 1
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Else

call Algorithm1* (see below)

Algorithm 1"
<< This is an algorithm to effectively process transactions with an empty

compatibility set. For simplicity we follow here the conventions on variable nam-

ing and algorithm’s steps numbering, set forth in algorithm 1 > >

I. Before a transaction T starts

LL_SET(T) « 0

I1. Before transaction T starts a step
”This step is not needed in this algorithm since no global locking will be neces-

sary, as is the case for algorithm 1.”

II1. Before a step of transaction T is allowed to access object o
IF =GIL{o) AND -LI{o) THEN
LI o) + true

ELSE ”wait and try locking later”;

LL_SENT) «+ LL_SET(T) UJ {o};

IV. When a transaction T completes a step at node X

IV.AIF T is a local transaction
<< T has completed its only step. >>
FOR pe€ LL_SET(T) DO

BEGIN < < release locks > >
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LI{p) « false;
END;
LL SET(T)+ 0

IV.BIF T is a non local transaction completing a revocable step, or a
counterstep
<< In this algorithm there are no revocable or countersteps, therefore this

step is not needed > >

IV.C If T is non-local completing a step (except its last step)

““do nothing”

V. If transaction T must be aborted
<< T should not be aborted if it is in the process of releasing locks > >
FOR all p € LL_SET(T) in executing node DO
BEGIN
“Restore object p to its original value (e.g., using log)’’;
LL(p) « false
END;

”Send message to other nodes and undo all steps in the same way”

VI. When non-local transaction T completes all its steps

“send to all nodes a completion message indicating that T has finished.”

VII. When a node X receives a completion message for T
FOR “‘all p in this node such that p € LL_SET\ T)” DO
BEGIN

LI{p) — ’false’
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LL_SET(p) « LL_SETp) - {p}

END;

(End of Algorithm 17)

To get a better understanding of how helpful it will be to use algorithm 2,
instead of our original algorithm 1, let us informally try to estimate its time

benefits by assuming the following average times:
Locking time (TL) for each step with algorithm 1 = 40 msec.
Locking time (TL) for each step with algorithm 1° = 20 msec.

Computing time (TC) for each step with algorithm 1 or 1° = 100 msec.

Note: These are the values used in our previous simulation. TC has its typ-
ical value (see section 3.2). The values for TL in algorithm 1 and
algorithm 17 are the extreme values used in our simulation when
comparing the SK based algorithm to a 2PL based one. (Remember
that algorithm 1 is our original SK algorithm, and note that algo-
rithm 1% is a 2PL based algorithm.) The purpose of taking such
values for TL here, is to amplify the advantages of using algorithm

2.

Suppose now that half of the transactions submitted to our DBMS are going
to have an empty compatibility set, and the remaining half a non empty one, i.e.
one half of the transactions are going to be processed by Algorithm 1° and the
other by Algorithm 1. If such is the case then, not counting delays due to waiting

for locked objects to become unlocked, each transaction step with algorithm 1°
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will take 120 msec. and with algorithm 1 it will take 140 msec. In average, then
each transaction step will take 130 msec. with our new algorithm 2, which com-
bines the processing advantages of the two above mentioned algorithms. This

means an improvement of

140 - 130 1009 — 10 100% =~ 7.14%
140 140

per step, over algorithm 1, our original algorithm, outlined in Appendix 1 of
(Gare|.

Estimating from our simulation statistics, locking and computing of steps’
objects will take anywhere from a third to a half of all the needed time for the
transaction execution. The remaining time will be utilized in waiting for locked
objects and transmitting information among nodes of the distributed system.
Therefore our 7.14% per step improvement of algorithm 2 over algorithm 1, in an
environment where 509 of the transactions have an empty compatibility set,

represents a 2.38% to a 3.57% total improvement in transactions’ response time.

4.3. Second Variation

During normal processing, the requirement that interleaving of the steps of
transactions take place only between those transactions in the same interleaving
descriptor set has a significant influence on how long objects remain with global
locks. If two transactions, T} and T,, in the same interleaving descriptor, h, run
together, and T, finishes before T does, then the global locks on objects accessed
by T, will have to remain set until T finishes. Failure to do so can result in a
third transaction, Tj, outside of h, accessing one free object, released by Ty, and
therefore eventually causing an inconsistency. A precise scenario for such a case

leading to a inconsistency has already been shown in section 2.3. The use of the
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release sets (see below) was also explained in that section. The time duration of
the global lock on an object directly depends of the size of the release set (REL)
of the object: The global lock on an object cannot be released until that set is
empty.

The release set of an object, which contains the identifiers of a series of com-
patible transactions being interleaved, could, on occasions, become very large,
and delay a transaction outside the interleaving descriptor set for long period of
time. If these events occur with a high frequency, they could eliminate the advan-
tage of processing a transaction with our SK based mechanism. To avoid such
scenarios, |Garc| suggests a modification in the rules of the interleaving descriptor

sets. Our original SK algorithms are based on assumption 4.4 of [Gare]:

"Let h be an interleaving descriptor set, and Y a transaction type. If

h € cs(Y) and h 5~ @ then Y € A

This means that if a transaction 7 can be interleaved with transactions of other
types, then it can be interleaved with transactions of its same type. Later, in the
same reference, Garcia-Molina suggests that assumption 4.4 be modified to hold
only in the case of local transactions, restricting all non local types so that their
interleaving descriptor sets will not contain its own transaction’s type. Such
modification is just a part of his complete suggestion requiring non local transac-
tions to be interleaved just with local ones. The purpose of this idea is to allow
the global locks of the objects accessed by interleaving transactions to be released
as soon as the the nonlocal transaction being interleaved finishes. (Remember
that local transactions have just one step, and steps are assumed to be atomic,

therefore the release set of an object only needs to accumulate the identifiers of
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nonlocal interleaving transactions.)

To measure the impact that the suggested modification could have on the
performance of a DBMS using our SK based concurrency control mechanism we
decided to rely again on simulation results. These results showed that restricting
the interleaving descriptors in the suggested way does not pay off; enabling com-
patible transactions not to build large release sets did not compensate for the
decrease in compatibility of nonlocal transactions, and therefore the original SK
algorithms still performed better in most cases. This happened even in the case
where the degree (percentage) of nonlocal transactions submitted to the system
was very small. Such results confirm, as a byproduct, that the size of release sets
does not hinder the performance of the original SK algorithms. For a full expla-

nation of the results, including some illustrative graphs, the reader is refered to

[Cord].

4.4 Conclusions

The algorithms in Appendix A are a first attempt to fully use the concept of
SK in processing transactions in a distributed environment. Therefore, it is argu-
able if such algorithm construction is the best in terms of time and space com-
plexity. The modification in Section 4.2 led to an immediate improvement, but
the one in section 4.3 did not. It is still an open question for future research to
propose an algorithm that fully uses all the advantages of SK, and that can be

proven to have an optimal time and space complexity.
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Chapter 5

FINDING COMPATIBLE TRANSACTIONS

5.1. Introduction

The previous simulation, based on a simple, two site distributed computing
system, allowed us to compare the performance of two different concurrency con-
trol mechanisms: A general purpose (GP) one, based on two phase locking (2PL),
and an application dependent (AD) one, based on semantic knowledge (SK) of the
transactions. The results recommended, for certain system configurations the use

of SK over 2PL.

If compatibility among transactions is going to play an important role in
deciding if SK is worth using, then we ought to investigate the conditions under
which transactions are compatible, and to be able to suggest aids that will facili-
tate the design of compatible transactions. To achieve the latter two purposes
we assume that the data consistency constraints are known at transaction design
time. Of utmost importance will be the cases when the different steps of the
transaction are executed at different computing sites, since, as we know, the long
transmission time between nodes will force database objects to be locked for

extended periods, therefore blocking the access of non compatible transactions.

This chapter will be organized as follows: In section 5.2 we investigate the
compatibility among different types of linear transactions. A linear transaction is
a transaction whose actions are assignments of linear combinations of DB objects.
Section 5.3 will study some properties of transactions executing set operations.
Section 5.4 analyzes the compatibility among transactions where the decision on

what value is written to the DB is based on the timestamp of the transaction.
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Finally section 5.5 will present a short conclusion.

5.2. Constraints, Linear Constraints, and Linear Assignments

Consistency of the database is partly maintained by observing the con-
sistency constraints (rules, restrictions) that are imposed by the database
administrator (DBA). lLe., transactions have to make sure that they do not
violate these constraints. These constraints are usually expressed in the form of
equations or inequalities, and are the integrity restrictions observed by the real
life processes that the transactions represent. The next example presents some

common types of consistency constraints.

Example 5.2.1:

1)  Money in a bank with four branches must be accounted for:
Bal,+Baly+ Baly+Baly;— Tot, where Bal; = balance at branch “i"’, and Tot

= total bank’s money.

2) Suppose there is a company with three different working locations, L. is the
list of employees at each location, and L the complete list of employees. If
we want every employee to appears in L and no employee to work at two
different sites at the same time, then the constraints should be:

a) Ly| JLo| JLs=L; and
b) L L;="0 for all ¢j€{1,2,3} such that i5£;j.
3) A flight (plane’s capacity =—200) should not be overbooked:

#RS5<200, where #RS — number of reserved seats

4)  Mechanical equations of a robot must always be observed.

E.g.: Measured from its normal, resting state, the robot’s arm
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should not move more than 90° in any direction.

5) The age of an employee in a company should not exceed 65 and his salary
should be at least 10000 dollars:
Emp#.age<65
Emp#.salary>10000, where Emp# is the employees’ identification number.
O

Definition 5.2.1 (Balancing action(s)):

The balancing action(s) of an action @; of a transaction T; are those actions
that will balance the disparity in the consistency constraints created by action a;,

thereby enabling T} to preserve consistency. O

Example 5.2.2:

Let a,b and ¢ be objects of the database and "a + & = 2¢” be a consistency
constraint. Consider the following transaction, T}, whose steps are:

Tira—a+x;xER

T12:c<—c+%x

Action Ty, is the balancing action of T); since it enables T) to balance the

disparity of a + b = ¢ caused by action T;;. O

Example 5.2.3:

Let U be the universal set of available elements in a database. Let A,B and

C' be subsets of U, and 7A| JB=C” be a consistency constraint. Let x € U. Con-
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sider now transaction T; with steps numbered on the left side:
I)A+—A-x
2) If x¢B then C + C - x

Observe again that action T, balances Ty; O

Linear constraints are common in many databases, thus we will characterize

them first.

Notation:

The objects of the database model we will be using in the theorems in this
section will be denoted by oy, oys, oys , where y could be any letter, but will be
usually a ¢ for objects in consistency constraints and a for objects in assignment
statements. The coefficient of these objects will be real numbers, unless other-

wise specified.

Theorem 5.2.1:

If all constraints are linear combinations of database objects, i.e. the con-
straints are of the form djoc; + dyocy + ....=0, and all of the actions of two
transactions 7 and T, are of the form on « on + x, where z € R, then T;, T,
are compatible. (Note: ot, besides being the representation of an object, will also

represent its numerical value).

Proof:

Let T, T, be two transactions. Let a;;, . .., a;, be the actions of T}, and

sy, - - -, Gy, those of Ty. Let By, ..., By, and By, ..., B;, be the respec-
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tive sets of balancing actions. Suppose now that for many actions those sets are
included in different steps. (If an action and its balancing action(s) are in the
same step, then, due to the atomicity of the step, no inconsistency problem will
be caused by that action.) By the statement of the theorem we know that each
action must be of the form oc¢; + oc; + z;, where z; € R and therefore the set of

balancing actions is {oc; < oc; + ;| k=1 to n;}, such that
n,
d".’lf; -+ E d;i'.l','k =0 (qu)
k=1

Due to the commutative and associative properties of the group (R, +) it does
not matter what order we add all the d;z; products in an algebraic expression
like equation 1. The result will always be the same; the sums will always add to

zero, and therefore djoc; + dyocy + ...=0 will always be true.

We can now conclude that no matter how we interleave the steps of such
transactions, the consistency will always hold, which implies that T, T, are com-

patible. O

We shall now expand on the property of the previous theorem. The property
allowed us to declare, that two transactions, obeying concurrency constraints of
the form mentioned in the theorem are compatible. Prior to carrying out that

purpose, let us define a simple concept for a better understanding of the proof.

Definition 5.2.2 (action tail):

Given an action that is a linear assignment, we call the fa:il of the action,
that part of the right hand side of the assignment statement that does not
include the assigned object. (E.g.: in oj—o0j+ z+ y + 2z, the action tail is

z + y + 2). For notational purposes we will call the tail of the #* action of tran-



- 60 -

saction T}, the ki_tail. O

Theorem 5.2.2:

Let all constraints be linear combinations of database objects (i.e.,
dyocy + dyocy + ....=0, where d;, d,,...€ R). If transactions are a series of assign-
ments of the form oc, « oc, + fioa; + .... + floq; (f, f5,-..€ R)), where
oay 7 oc; for all objects og; in assignment statements and oc; in consistency con-

straints, then the transactions are compatible.

Proof:

Let

dyocy + dyocy + ....=0 (Equation 1)

be a consistency constraint. Without loss of generality we will assume here that
each action has exactly one balancing action. ( The extension of this proof for
transactions with actions having more than one balancing action is immediate
and straightforward.) Let oc,, oc,, oc, be part of the consistency constraint in
equation 1. Consider now the following two transactions (Note that we will be
treating here only the problems provoked by object oc,. Problems of other

objects, due to the nature of the transactions are resolved in the same way):

TI:

v)oc, + oc, + fioa; + ...+ froa,



=B} =

w)oe,, < 0¢,, — (dn/dm)[floal F s P fkoak]

z)oc, «— 0¢, + fri 1004, q + oot S04y

ocy = ¢, ~ (dy/ )| fis1004,1 + ot fis1004,

Note that action (1w) is the balancing action of (1v), and (2y) the balancing

action of (2x), and that the oq; objects need not all be different.

Since (R, +) is an abelian group (i.e, ”+” is commutative and associative),
then no matter in what order we add d,(1v_tail), d, (1w _tail), d (2 tail), and
d2y_ta:l), the sum will always be zero. In this case, since oc,, oc,, and oc, are

not multiplied by any coefficient, it is immediate to see that the balance con-
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sistency constraint, equation 1, will be satisfied. Therefore we can say that steps
containing actions 1v, 1w, 2x, and 2y can be interleaved in any way without

violating the consistency constraint, which implies that T; T, are compatible.

O

The previous characterization of two compatible transactions was somewhat
too restrictive, in the sense that only the assigned object in the assignment could
be an object of the consistency constraints. We can relax that condition in some

ways, if we take the necessary precautions.

Theorem 5.2.3:

Given the same conditions as in theorem 5.2.2, with the difference that an
o0ay object can equal some oc; This means that an object in the linear assign-
ment aside from the assigned one, can also be part of the linear constraint). If
that action and its set of balancing actions are strictly grouped (i.e., just those

actions, no others) into the same step then the two transactions T; and T, are

compatible.

Proof:

If an action and its set of balancing actions are strictly grouped together into
the same step, then it is obvious that at the end of the step, since steps are
atomic units, that it will cause no disparity in the consistency constraint equa-
tion. The remaining problems that these kind of transactions can present are the
same as the ones in the previously expressed theorem 5.2.2, therefore, T; and T,

are compatible. O
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Example 5.2.4:
Let "a+ b+ ¢ =d+ €” be a consistency constraint, and consider the fol-

lowing transactions:
T
1) a<« a-+2c

2) d«—d+ 2c

1) c+—c+e

2) d«—d+e

Consider now the following schedule, S: Ty, Ts;, Tos, T1o. After the execution of
S we can find the that a + b + ¢ = d - e, which clearly violates the restriction
imposed by the above consistency constraint. We should note the constraint vio-
lation could have been avoided if we had followed the conditions of the previous

theorem and executed actions 1 and 2 of T in one single step. O

Another way of relaxing the conditions of Theorem 5.2.2 is now apparent,

but we shall again have to take the right precautions.

Theorem 5.2.4:

Given the conditions of Theorem 5.2.2, with the only difference that an oq,

object can equal some oc; (i.e., we can have an object, aside from the assigned

one, take part in the linear constraint). Suppose then that one of the actions in

Ty is ocye—oc, + -+ + oc;+ ---, where oc; is part of a consistency con-

straint, and that 7, has an action of the form ocj—oc; + ...... If in every such

case, the oc; - action does not come in between the on - action and its set of
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balancing actions, then both transactions 7} and T are compatible.

Proof:

Since no actions of T, will come between the action
oc,—oc, + ... +doc; + - - - and its set of balancing actions, there exists no pos-
sibility that the oc, - action can cause any disparity in the consistency constraint.
We have then reduced the problems of this formulation to those of Theorem

5.2.2, and therefore, Ty and T, are compatible. O

Observation 5.2.1:

The provision needed for compatibility of 7} and 7, in theorem 5.2.4 can
easily be implemented by setting an indicator, a special type of temporary lock,
for the problem object (oc; in the formulation of theorem 5.2.4). This indicator
will force any action of T, causing a new assignment to ocj, to delay execution
until the indicator has been unset. This unsetting will occur at the end of the last

balancing action of on.

Even though this indicator setting implies some sort of locking, we should
point out that some differences do exist. Normal locking is usually done by the
concurrency control manager, whereas the setting and unsetting of the indicators
1s done by the transaction itself, which therefore relieves the system of having to
take care of such locks. This is a real advantage, since not all transactions need
that mechanism. On the other hand, this type of lock remains only for a specified
time (from the beginning of an action to the end of its last balancing action),
thereby permitting free access to the object by compatible transactions at all
other times. A system managed lock would have forced the object to remain

locked until the end of the transaction, as is the case in two phase locking. O
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Observation 5.2.2:

Note in example 5.2.4 that if no action of T, had come between action
a—a + 2¢, and its balancing action d«d + 2¢, assigning a new value to object ¢
(part of the consistency constraint), as theorem 5.2.4 suggests, then no incon-

sistency would have been caused. O

Corollary 5.2.1:

Given the same conditions of theorem 5.2.2, allow T to have actions of the
form oc, «+ r{oc,) + bjoa; + bgoay + - - -, where r5£0. (Le., we are for the first
time permitting the assigned object to get a new value, that includes a multiple
of its own value.) If this action and its set of balancing actions are strictly
grouped together, or if no action of the second transaction, T,, come in between
such an action and its set of balancing actions, then both transactions are compa-

tible.

Proof:
Since we can write oc, «— noc,) + - - - as oc, + oc, + (r-1)oc, + ..., it is
easy to see that applying the principles of theorem 5.2.3 or of theorem 5.2.4

respectively, will show the compatibility of T; and T,. O

Example 5.2.5:

Let "a + b = ¢” be a consistency constraint, and consider the following two

transactions:
4

1) a«3a+x
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2) c—c+2a+x

1) a«—a+y

2) c—c+y

Suppose now that we run the following schedule: Ty, T5, Tja, Ts9, then we will
end up with a + 2y + b = ¢. If y7£0 consistency will not hold. If we had followed
the conditions in the previous corollary 5.2.1 this would not have happened.
Thus, we have shown that disobeying corollary 5.2.1 will not guarantee compati-

bility of transactions like those formulated in the corollary. O

5.3. Set Operations and Set Constraints

Database applications where transactions perform set operations and where
constraints are set based abound in real applications. This section will present a
simple way of checking if two such transactions are compatible, and will give
suggestions on how to make them compatible if they are not. The method for
checking compatibility is based on the propositional calculus and it is readily
implemented in a computer, although in worst cases it can be exponentially time

complex.

We know that every set equality or inequality can uniquely be represented
by a boolean expression. The validity of such equality or inequality can be easily

checked by evaluating the corresponding boolean expression.

Notation and conventions:
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1) Given a set A such that A = {2 € U| a(z)}, we will call U the universal set,
i.e., the set from where the elements of our database are drawn. a is called
the predicate or condition defining the set, and a(z) is true iff z € A. Gen-
erally sets will be denoted with upper case letters and the predicate or condi-

tion defining the set will be denoted with the respective lower case letter.

2) ”Transaction T access a consistency constraint C” means that at least one of

the variables in C will be modified by T.

Example 5.3.1:

Let U be the universal set and L; C U for all i=1...4, where
L; = {z € U| I{x)is true}. Le., set L; comprises all those elements of our univer-
sal set U such that the condition [; applied to z is true. E.g.: If U={persons on
earth} then I{z) could mean z is a woman, or z lives in the US, or z is older than

30 years,....

Let us consider the following set equality: Ly () Ly = L3 — Ly There will
only be a finite number of instances of membership of an element in the different
sets that make this equality hold. To find such instances one can evaluate the
respective boolean expression ¢: lj /\ I == I3 /\ —l;, and check which combina-
tions of true(l) (element in set), false(0) (element not in set) values satisfy ¢. In

our special case such combinations are:



110 |1 |1
1 [0 |0 |1
1 ({0 |0 |0
0|1 |11
0 |1 |0 |1
0|1 [0 (0

With this table in hand we can see, for example (row 1 in table), that when an
element is in Ly, L, and L3, but not in L4, then our original equality is fulfilled.

The other rows show all the other valid cases of the equation. O

In the same way as the previous example, if we have some set based con-
sistency constraints, these can be represented with boolean expressions. At the
end of the execution of a schedule we can test the validity of the boolean expres-
sions representing the consistency constraints related to the transactions involved
in the schedule. These boolean expressions have to be evaluated for each member
of a set, which was accessed during the course of the schedule. If all evaluations
of every boolean expression be true, we can say that no consistency constraint

was violated, and therefore that the consistency was preserved.
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Following the ideas of the previous paragraphs, we now find it easy to test if
two transactions T and T,, doing set operations, are compatible. After the exe-
cution of a schedule that interleaves the steps of the two transactions, one or
more elements (members) of our universal set will have been accessed (inserted,
deleted, transferred, etc.). Since transactions are consistency preserving then we
will focus our attention on those elements that were accessed by both transac-
tions. (If an element, say z, was accessed just by one transaction, then due to the
consistency preserving property of the of the transaction, we know that z will
surely not disrupt the database consistency.) For each element accessed by both
transactions, a true(1l) or false(0) value can be assigned to the predicate (condi-
tion) defining each set that is part of at least one consistency constraint, depend-
ing if the element is or is not in the set. The consistency constraints accessed by
both transactions could or could not have been violated after the execution of the
schedule that interleaved the steps of 7; and T,. To test that simply plug the
respective 0,1 values of each “potential trouble” element into each boolean
expression, representing a consistency constraint, and evaluate them. If these
tests turn out to be true, for every permitted interleaving of T and T, i.e., that
satisfy each boolean expression representing a consistency constraint, then we can

say that the two transactions are compatible.

Example 5.3.2:

Let U be our universal set from which the elements of our database are
drawn, and L,,...., Ly C U, such that L; = {z € U| I{z)} for all i=1...6. (Note
that in database operations [{z) true if and only if z € L;.) Let C; and Cj be con-

sistency constraints, and ¢; and ¢, be the respective boolean expressions:



s« Wil
Cp by Ly = Ly

021 L4 U L5 — Lﬁ

Cy: l] /\ 12 = 13

Co: [4 \/ l5 —— lﬁ

Consider the following transactions (numbers refer to steps) T}, T, and T3, and

schedules S, and S, (z € U):

Ty(=):
1) Ly—L-{z}
2)  Ly—Lz{z}
Ty(=):
1) Ly=LyYl=}
2)  Ly—L| J{2}
3)  Lg—Lg| Jiz}
Ty(2)

1) Ly—Ly| J{z}

2)  Le—Lg| i}

Si: Ty, Ty, Tygy T

Soi Toy, Ty, Togy Tis, Tog

Suppose now that initially element z is in every set, ie., I[{z)=1 for all

t—1...6. We will consider here, for simplicity, just this one initial database state.
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Fortunately, as we will learn later, for transactions of the type in this example, it
suffices to use any initial consistent database state to prove compatibility of two
transactions. Let us then see what happens after running the two different

schedules.

1) After S; is run the condition of each set evaluates to: [j(z) = l(z) = 0 and
l(z) = l(z) = I5(2) = {g(z) = 1. This combination of 1,0 assignments
satisfies both ¢; and ¢y, which in turn implies that constraints €} and C,
were not violated. As a matter of fact, since 7| and 75 access completely
different sets then we can see that no matter how we interleave the two
transactions, we are always going to obtain the same result, i.e., consistency
will always be maintained and therefore we can conclude that T} and Tj are

compatible.

2) Given the same initial setting of our database, we will analyze now the
result of running S;. At its end we will have /(z)=0, and [{z)=1 for all
other conditions. Since [(z)=0 and L(z) = l(z) = 1 do not satisfy ¢;, we
know that consistency constraint C; has been violated. In other words, T
and T should not be interleaved as in S, if we want to maintain database

consistency. We then conclude that Ty and T, are not compatible. O

Observation 5.3.1:

The past two examples were composed solely of transactions whose steps
were of the form L « L [ J {z} or L « L - {z}. We would expect insertions and
deletions to be very common set operations in a real DBMS. There are, of
course, plenty of cases when a step is comprised of operations that involve more

than one element on both operands. For the moment let us consider the analysis
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of only insertions and deletions. O

In example 5.3.2 we talked about an initial setting of the database. In that
special case z € L; for all +=1...6, i.e., for all ¢, I{z) = 1. Fortunately, we will see
later in this section, that testing the compatibility of transactions of the type in
example 5.3.2 is independent of the initial 0,1 values of the set’s conditions, as
long as these initial values satisfy the given consistency constraints. There are,
however, cases where that is not true, as the following example will show. There-
fore, it is important to take into account, when designing a general algorithm to
test compatibility of transactions, the different initial values of the set’s condi-

tions.

Example 5.3.3:

Let Li={z € U| I{2)} for i=1,2, where U is our universal set of elements of
the database. Let "L; = Ly,” be our sole consistency constraint. The respective
boolean expression is "/;(z) = L(z)”, and therefore it will be satisfied only if both
set conditions have the same value. Let us consider the following two transac-

tions, where the numbers on the left side correspond to steps:

T\(=):
1) Temp«— (L, | {2}) - L,
Ly—Ly | J Temp

Loy—Ly | ) Temp
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1) Ly—Ly{z}

2) Ly—L{z}

The only possible way to interleave the two transactions in a non serializable
fashion is by running the following schedule: Ty, Ty;, T5y. Let us see then what
happens when we run this schedule starting with the two different valid initial
conditions.

a) l(x) = l(z) = 0. Since in this case z & L; then Temp = {z} and transac-
tion 77 will add z to both sets. We will end up with [,(z) = 0, but

lL(z) = 1, therefore violating the database consistency.

b) l(z) = L(z) = 1. Here z € L, implies that Temp — @ and therefore z is not
added to any set. Our end result is l;(z) = L(z) = 0, which holds the data-

base consistency.

We can now see that the consistency of our data at the end of the same
schedule depended on what initial valid combination of 0,1 values we started
with. As this was the only possible way of interleaving the two transactions we
can then conclude, that in this case, determining the compatibility of the transac-

tions is dependent on the initial values of the set conditions. O

The intuition behind our idea, on how to prove that two transactions doing
set operations are compatible, should by now be clear, and therefore we think it
is proper now to outline our desired algorithm. Before doing that, we want the

reader to take note of the following two observations.
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Observation 5.3.2:

Often transactions include conditional statements. The value of the condi-
tion inside the statement will determine the execution path of the transaction.
Since the actions to be performed by a transaction depend on the execution path,
it will be necessary in our next algorithm to consider all the possible execution

paths that both transactions could take. O

Observation 5.3.3:

It is interesting and important to notice that by using boolean expressions to
test preservation of set based consistency constraints, we are not introducing a
different type of structure. We are just introducing a new representation of set
equalities or inequalities that is easier to operate and evaluate than the equalities

themselves. This statements applies to computer implementations as well. O

Algorithm 5.3.1:
Given: a) Two transactions 7} and T,; and

b) N set based consistency constraints, Cj, - - - ,Cp, such that T

and T, access at least one set in each of the constraints.
Result: Determine if T} and T, are compatible.

1) For each of the N consistency constraints let the respective boolean
expressions be ¢;, - jep, and let ¢ = ¢; /\ .... /\ ¢y. (Note that

satisfying ¢” is equivalent to satisfying all of the ¢/’s)

INote that if there is no common consistency constraint being accessed by both transac-
tions, i.e., if V=0, then Tl and T2 are automatically compatible.



2)

3)

- R
Let PI;={all possible interleavings of the steps of Tj and 7,}.

Let VALID=/{initial 0,1 combinations that satisfy ¢"}
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4) Begin(*Test*)
For each element z; accessed by both transactions do

For each initial combination in VALID do

For each schedule of T; and T, in Pl}, do
For each different execution path of 7| and T, do
Evaluate ¢ ‘(z) (* are all constraints satisfied? *)
If ¢’ is not satisfied then Ty, T, are not compatible
STOP
Endif
Endfor
Endfor
Endfor
Endfor
T,, Ty are compatible (* ¢”s value was always true *)

End(*Test*) O

Observation 5.3.4:

It is important to understand the significance of the statement of the first
For loop in the previous algorithm:

For each element z; accessed by both transactions do.

The input to a transaction will often be an n-tuple (n > 1) of elements belonging
to our universal set U, and not just one as in examples 5.3.1 and 5.3.2. In these
cases any element in the n-tuple input to 7 could match any element in the n-
tuple input to T, and therefore it is necessary when running algorithm 5.3.1 to

consider all those possibilities. (E.g.: If we have T\(x,25) and T5(y,%,s), then z;
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could be the same element as y;,y, or y3. The same goes for z,, We have then

here six different possibilities to consider.) O

It is desirable to establish the complexity of any algorithm. It is particularly
desirable for algorithm 5.3.1, since we propose to show later that for certain types

of transactions its complexity can be reduced.

Theorem 5.3.1:

The time complexity of algorithm 5.3.1 is exponential in the size of the tran-
sactions, the number of different sets involved in the constraints accessed by T

and T5, and the number of conditional statements of the transactions.

Proof:

The complexity of algorithm 5.3.1 depends on the maximum number of
times that the inner For loop statement must be executed. (The time for the
statement itself can easily be bounded by a real number, say M.) Such a number
will be the product of the number of repetitions of each of the four different For
loops. Assuming that r elements will be accessed by both transactions, then
exactly r repetitions will be performed be the outermost loop. (Usually r will be
assumed to be very small, and therefore negligible.) The second loop will be exe-
cuted for as many different valid 0,1 combinations as there are in set VALID. Let
NDS be the number of different sets involved in the consistency constraints, then
there will be at the most 2VP% different combinations. As for the third loop, its
number of repetitions depends on the number of permitted interleavings that
there are in PI,. In the worst case, when the transactions are compatible, the

number of iterations of the third loop will be equal to the size of PI,. Let us
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then calculate the cardinality of PIj,.

Let n; be the number of steps in T}, and n, the number in 75. It is not too
difficult to see that the number of different permitted interleavings is equal to
choosing n; (or ny) steps out of n; + n,. Since steps have to be ordered, then such

a number is

(o 2 ) inlw\

R e A

This expression is maximal when

17

n = Elnl I ‘n»z-ll,

l.e., when n; = ny = n. This being the case, and using Stirling’s approximation

4 nl” - .
(n! ~ \/27r7l —] ), the cardinality of PI}, is
e

#er —| " ) =(2)

(2n)! ~(2n)
 n!*2n-n)! nl#al
( 2?1] 2n
|
("

We are now missing only the number of paths that can be taken by each
transaction. This will give us the total number of repetitions by the innermost

loop. Each conditional statement allows two different directions for the
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transaction’s execution flow. Assuming that T; and T, have {; and { conditional
statements respectively, then each transaction will have 2 and 2% different exe-

cution paths. This brings the total number of repetitions of the innermost loop to

oft 4ots _ ottt

The complexity of the algorithm is then, in the worst case,

O(T # oNDS 4 2(”1 +ng) 2(*1 + 52]) _ O(r * 2NDS+ (ny + no) + (8 + tz)) O

The reader should observe, that although algorithm 5.3.1 is easy to under-
stand, it may not be practical to implement because of its exponential time com-
plexity. However, taking the following two aspects into account, its implementa-

tion might be worth considering.

1) This is the first attempt at giving the DBMS the tools for the self determina-
tion of two transactions compatibility, relieving therefore the DBA of this

burden.

2)  This algorithm will have to be executed for any two transactions just once,
and if the time complexity poses a problem in the implementation of the
algorithm, we can drastically cut its complexity by restricting the type of
the transactions that it will take as input. Two examples of such types of

transactions, along with proofs of their reduced complexity follow.

Definition 5.3.1 (NC Transactions):

A transaction of type NC (Not Conditional) is a transaction where all the
actions are simple insert or delete assignment statements, and the value that an
actlon assigns is always independent of the database state. (E.g.: The transac-

tions in examples 5.3.1 and 5.3.2 are of this type; transaction 7; in example 5.3.3
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is not.) O

Theorem 5.3.2:

Testing the compatibility of two transactions 7} and T, of type NC, in the
previous algorithm 5.3.1, is independent of the initial assignments of 1’s and 0’s
satisfying ¢ = ¢; /\ .... /\ ¢y, where c; is the boolean expression representing the

consistency constraint C; for i—=1,...,N.

Proof:

Suppose by contradiction that such a dependency exists. If so, there must
exist two different initial conditions (1,0 assignments) [C; and IC,, such that,
given a valid interleaving (schedule) of transactions Ty and T, say I, then exe-
cuting it with I/C| as initial condition does not violate consistency, but executing

it with ICs initially does violate consistency.

Given the scenario of the previous paragraph, there must exist at least one

¢;, without loss of generality say exactly one, such that its initial value deter-

1
mines the outcome of ¢* when running schedule I with IC; and IC, as initial
assignments of 1's and 0's satisfying ¢”. Let ¢;, representing constraint ), be the

problematic boolean expression. Then the initial value of one of the predicates in

C:

;» must determine our result. Let this predicate be c¢;, representing the set L.

This implies that the membership of an element, say z, in set Lj; has an influence
in the violation or non-violation of consistency constraint C; (E.g.: If at the
beginning of the schedule execution z € Lj, then we have initial condition IC
and consistency will hold at the end of I's execution. Else we have IC, and con-

sistency will not be maintained). We can infer from the last statement that the
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status of the membership of z in Ly is not altered when running I Considering
that T} and T, are NC transactions, i.e., their execution does not depend on the
database state, and therefore neither does I's execution, we can conclude that if
schedule /is to maintain consistency at the end of its execution, then it is missing
an action, a simple delete or insert (remember this characteristic of NC transac-
tions), that properly alters the status of the membership of z in L. This implies
that a balancing action, with the responsibility for this set is missing. If this is
the case then either T} and/or T, is missing such a balancing action, and there-
fore one or both of the transactions are missing such balancing action, i.e, one of
the transactions, or both, is (are) inconsistent. But this last is certainly a con-
tradiction, since we were assuming that 7; and 7, are transactions in the full

sense of the transaction definition, i.e., they are consistency preserving units.

Due to the contradiction arrived in the previous paragraph, we can conclude

that the assumed dependency on initial conditions does not exist. g.e.d. O

Corollary 5.3.1:

Algorithm 5.3.1 can be modified for NC transactions and its time complexity

reduced to O(r * olm + "2)) (variables are as defined in theorem 5.3.2).

Proof:

The independence of NC transactions on the initial conditions when testing
for compatibility allows us to remove from algorithm 5.3.1 the second and fourth
For loops. As we know, these loops would have been executed, in the worst case,
O0(2"P5)  and O(Q(t1 L tZ)) times. Removing these loops leaves us with a

O(r * glm + nz)) time complexity for the algorithm. O
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In DBMSs where transactions performing set operations play an important
role, transactions of the type NC can account for a large percentage of the daily
load. The previous reduction in time complexity of algorithm 5.3.1 for NC tran-
sactions is an important result and we think that for such systems its implemen-

tation will pay off.

Example 5.3.4:

Let U be the universal set from which the elements of our database are
drawn. Let L;, Ly, LyC U such that for all i=1,2,3 L,={2€U | I{2) is true}. The
following consistency constraint, ', relates these sets ”L;MLo=L3". Suppose
now that we define the following transaction types (the numbers denote the
steps):

Ti(z): Add element z to Ls.
1) Ly=Lyj iz}
2)  Ly—Ly| iz}

3)  Lg—Lg| iz}

Ty(z): Delete element x from L.
1) Ly—L-{z}

2) Ly—Ls—{z}

Ty(z): Delete element z from L.

1) Ly—Ly{z}

2)  Ly—Ly-{z}



- 83 «

We want to know now which transaction types are compatible. Following
the algorithm we have to first produce the respective boolean expression for con-
sistency constraint C). This is ¢; = (l; /\ L)<=1I. Therefore ¢ = ¢;. The true

(1), false (0) values that satisfy ¢” are the following:

L | & 1k
000
0o [1 |0
1 (0o
11 |1

We are first going to test if 77 and T, are compatible types. Since if £y
and running 7y(z) and Ty(y) interleaved in any way will always produce con-
sistent results as they do not interfere in their actions, then we will concentrate
in both transactions on the same element, say z. (Note that this is always the

case in transactions that deal with set operations.)

For simplicity we will agree from now on that in the context of schedules the
number zy denotes the action 7,, ie., the the y™ action of transaction T,. Our
first schedule is Sp: 21, 11, 22, 12, 13. This produces l(z) = b(z) = k(z) = 1,
that satisfies ¢’. We have to continue to our next schedule Sy 11, 21, 22, 12, 13.

This last schedule produces [;(z) = 0 and L(z) = L(z) = 1. This assignment cer-

tainly does not satisfy ¢” and therefore T; and T, are not compatible.
In a similar way we can show that 7 and 73 are not compatible.

For the case of T and Tj, every permitted interleaving of the two transac-

tions will produce a 0 value for each I{z) (i=1,2,3). Such an assignment satisfies
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¢” and therefore these two types of transactions are compatible.

With equal ease it can be proved that a transaction of type T; is compatible

with itself. The same case occurs for T, transactions and Tj transactions.

Our conclusion is then that, es(T)={{Ty}}, and

es( To)=cs(T3)={{ T2, T3}}. o

Definition 5.3.2 (/F transactions):

An [F| transaction is a transaction that includes at least one statement of

the form

If x € A then

Endif ;
where set A is part of a consistency constraint, and S; and S, are assignment

statements of the sort that appear in NC transactions. O

Note: We have decided to call the previous type of transactions [Fj, since
there are other types of conditional transactions. Those other types will

not be considered in this thesis.

Notation:

Let Ly,...,L, be subsets of our universal set U such that

L;={z€ U/ l{z)}. Let V= {(l(2),..., I,(z))} be a set of possible initial condi-

tions, and M= {(/(2),..., [;(2)) / r < n}. We will say that a member
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m = (1;(2),..., ;(z)) of M is "included’ in a member v = (}(2),..., [,(2)) of V iff m

is the projection of v on coordinates j;, ..., 7. E.g.: Suppose we have sets
A, B, C and V = {(a(z), b(2), c(2))} = {(0,0,0), (0,1,1)}, and M = {(a(2), b(x))}
= {(0,0), (0,1), (1,1)} then only (0,0) and (0,1) are inecluded in members of V.

Note that there is no 3-tuple of V that can include the 2-tuple (1,1)of M. O

Corollary 5.3.2:
1) Let T, and T, be two transactions of type IF}

2) Let X={z, ... ,z,} be the set of common elements accessed by T; and T,
and {z;, ... ,z,} (m < r) be the set of elements that participate in ”If”

statement’s conditions (If z; € A then ....).

3) Let z;(1 <j< m) be the element that participates the most in ”If”

statement’s conditions, and let @ be the number of times it participates.

Algorithm 5.3.1 can be modified to test compatibility of IF| transactions,

and its complexity reduced to

O(?‘ * 2(”1 + mg) + 0’)

Proof:

IF| transactions are NC' transactions with the only difference that the inser-
tion of the "If” statements present alternatives in the flow of the transaction’s
processing, depending on the value of the conditions to evaluate. Such values are
based on whether an z; (1 < ¢ < m), is a member of a set or not. Since indepen-
dent of the processing flow, an [F; transaction, as well as any other transaction,

will maintain consistency, then testing compatibility of two IF| transactions is
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equal to testing compatibility of two NC' transactions with the only difference
that we now have to consider all the possible flow routes of each transaction.
Each flow route can be thought of as a combination of 0,1 values representing the
predicates of the different sets involved in the "If” statements. (E.g.: Suppose we
have the statement "If z € A then....”. If 2 € A then a(2)=1 and the flow takes
the then path; if £ & A then ¢(z)=0 and flow is directed to the else path, if

there is such an alternative.)

Let R(z;) (1 < ¢ < m) be the set of the 0,1 combinations giving the different
flow routes determined by element z; (E.g.: If z; participates in 2 ”If” statements
with sets A and B, then R(z,) = {(0,0), (0,1), (1,0), (1,1)}.) The previous con-
siderations amount to having to test for compatibility not just for any one valid
initial condition, as theorem 5.3.2 proved for NC transactions, but for for all the
different initial conditions that represent the different permissible flow routes as
determined by the participations of 2; in "If” statements. What flow routes are
permissible depends on the initial valid combinations of zeros and ones in set
VALID. Therefore the valid flow routes for z; will be the combinations of zeros
and ones that can be included in at least one combination of VALID. Other flow
routes should not be permissible, since then we would be testing compatibility
with inconsistent initial conditions. Such considerations about flow routes forces
us to use a modified set VALID in algorithm 5.3.1, that we will call
MOD_VALID(z;). For each z;, it will be the smallest set containing the valid ini-
tial combinations of zeros and ones that can include each of the flow routes as
given by set R(z;). In the case that ¢ > m, i.e., when z; does not participate in
any "If” statement condition, as stated in hypothesis # 2, then the flow of the

transactions will be fixed, i.e., transactions T} and T, will behave on input z; as if
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they were NC transactions, and MOD_VALID(z,) will contain just any one valid
initial combination of zeros and ones. Algorithm 5.3.1 can now be modified:

change VALID for MOD_VALID(z;) in the second For loop.

Since z;, the element that participates the most in ”If” statement conditions,
does so for a number « of times, then obviously |R(z;) < 2% for all
z; € {z;, .. .,z,}. Therefore the second loop, whose number of repetitions
depends on the cardinality of set MOD_VALID(z;) (calculated with the help of
sets VALID and R(z;) for all 7), will be executed at the most 2% times. Clearly

2% < 2MP%gince @ < NDS. The time complexity has now been reduced to

O(2* #p #olmt )ttty

Considering that no conditional statements, but just the class mentioned in
definition 5.3.2 are allowed to take part in /F; transactions, then the complexity

reduces further by the factor gt + tz}, t

(0]
022 #r +o(m+ m)

_ Or gm0

The next example allows the reader to get more acquainted with the
mechanism of the algorithm, and allows us to show and discuss how some special

type of aids can help in achieving more compatibility among transactions.

Example 5.3.5:

Suppose that a company has factories at two different locations B, and B,.
The list of employees in site B; is L; (i=1,2). A separate list, L, of the employees
at both factories is kept at the company headquarters, and therefore our first

consistency constraint, C'y, is L=L,|_JLs. The company’s directors do not want an
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employee to work at the two different places concurrently, and here we have our
second consistency constraint (C5), LM Ly=0

Since the company is normally in the process of firing old employees, of hir-
ing new ones, and of transferring one employee from one working site to another,
three main transaction types will be defined to operate on the company’s distri-

buted database (numbers correspond to steps):

a) Del(L;, E): Delete employee F from list L,. Steps are:
1) Li~L - {E}
2)  Ly—Ly - {E}

3) LeL-{E}

b) Add(L,;, E): Add employee E to list L; Steps are:
1) Li=L; J{E}
2) L~L;-{E} (j=1if i=2, else j=2)

3) L—L|y{E}

b) Tran(L;, L; E): Transfer employee E from L; to L;. Steps are:
1) Li(_Li - {E}
2) Li=L;|y{E} (=11if =2, else j=2)
3) L<L|J{L£}
Please note that some steps in the definition of the transactions may seem

awkward, but they are needed to guarantee that transactions can maintain con-

sistency if they are run to completion without interference. These provisions
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were taken due to our desire to make all transactions of type NC, so that we can
show later on how to increase compatibility of transactions with the introduction
of conditional statements.

Our goal now is to find out which transactions are compatible. We will not
go into detail through the steps of the algorithm, because then we would have to
enumerate too many trivial instances. Instead, we are just going to point out the

instances of interest.
Recall that the consistency constraints are:
Cit LyJLy=L
Cor Ly Le=0
Assume that L={E€U | I{E) is true}, where [{F) = employee E works at site i
(i=1,2). This implies that
e (L Vi) =1;and
et (h\b) =0,
therefore ¢* = ¢; \ ¢p is [(;, \/ &) == I /\ [(§; /\ k) <= 0] , and the combina-

. . . *
tions of values satisfying ¢ are:

1 10 |1
0 |1 |1
0 {0 |0

Are Del and Add types compatible?

Let T, = Del(L;, E) and T, = Add(L, E) and run the following schedule:
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11, 12, 21, 22, 23, 15.3. The final values will be ,(E)=1, L(E)={FE)=0 which do

not satisfy ¢”. This makes Del and Add incompatible types.

Are Del and Tran types compatible?

Let T, = DellL;, ) and Ty = Tran(L,, Ly, F) and run the following
schedule: 11, 12, 21, 22, 23, 15.3. The final combination of values
,(E)=0, l(E)=1, [[E)=0 does not satisfy ¢’. Therefore Del and Tran are not

compatible types.

Are Add and Tran types compatible?

Let Ty, = Add(L, E) and T, = Tran(Ly, L, E) and run the following
schedule: 11, 21, 22, 12, 23, 13, that produces the values
L,(E)=0, l,(E)=0, [[E)=1 which do not satisfy ¢". Therefore Add and Tran are

not compatible types.

In the same way it is possible to show that Add transactions are not compa-
tible among themselves. The same goes for Tran transactions. Del transactions

can be shown to be compatible among themselves. O

If we want more compatibility among the three different transactions in the
previous example, it will be necessary that we reformulate their codes. Since we
want to avoid unwanted (problem causing) interleavings and this happens most
of the time when the deletion of an element from a set is attempted and it is
really not in the set, or inserted into one that he is already in, then it is right to
take the proper precautions. Let us therefore reformulate the transactions as fol-

lows:
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a) Del(L;, E). Delete E from L, Steps are:
1) 1If E€L; then L+—L—-{FE}
Else ABORT

2) L—L-{E}

b) Add(L;, E). Add E to L, Steps are:
1) If E¢L then L —LJ{ J{E}
Else ABORT

2) LeL{J{E}

¢) Tran(L;, L;, E). Transfer E from L; to L; Steps are:

1) If Fel; then L—L—-{FE}
Else ABORT

2) Le=LjiE} (1=2if i=1; else j=1)

Our transactions have been modified and are now of type IF|. To test their
compatibility we can use the modified version of algorithm 5.3.1 for IF; transac-

tions as explained in corollary 5.3.2.

To test if Add and Tran transactions are compatible we will first construct
the set R(F), since F is the only common element that is accessed by both tran-
sactions, and with the help of VALID construct later the set MOD_VALID(E).
The membership of £ in a set is questioned just for the sets L (in Add), and L; (in
Tran), so we have

R(E)y={dll pairs (I{E),(E)) | I{E), (E) € {0, 1}}
={(0,0), (0,1), (1,0), (1,1)}.
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Since

VALID={(I{ E),I{E),((E)) consistent initial combinations of 0,1}
={(1,0,1), (0,1,1), (0,0,0)},
then
MOD_VALID={(I{E),I{E),{E) consistent initial combinations
of 0,1 that include a pair R(E)}
={(1,0,1), (0,1,1), (0,0,0)}

Let A—=Add and T= Tran then

Plio={Ay, Ty, Ay, Ty; Ty, Ay, To, Ag; Ay, Ty, Ty, Ay Ty, Ay, As, To}

Since F is the only element accessed by both transactions and
#MOD_VALID(E))=3 and #(PI;5)=4, then 12 different cases would have to be
considered to test compatibility, but in Add(L;, E), the set L; is an input vari-
able, and therefore our algorithm considers in its analysis the two cases:
Add(L;, E) and Add(L;, E) since Tran is a function of L; and L, This brings the
total number of cases to consider to 24. To analyze each of the 24 different cases
is a straightforward exercise that we will not perform here. The result of such

analysis will demonstrate that Add and Tran are compatible types.

In an analogous way we can analyze the remaining cases and conclude that
cs(Add)={{Add, Tran}},
cs(Del)={{Del, Tran}},
cs(Tran)={{Tran, Del}, {Tran, Add}}.

We should observe at this point that the same compatibility would have

held if we had n sets, such that | J = L and Ly\L; = @ for all &£, i,j=1,...,n.
=1

This happens thanks to testing always at the beginning of a transaction if the
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adequate condition is fulfilled.

In our particular example, the inclusion of the "If...then...else abort” state-
ments as tests for a desired condition, forces the abortion of the transaction if not
fullfilled. This probably adds some complexity to the transaction processing, but
we definitely believe that it allows for an improvement in performance, by mak-
ing the compatibility sets of the different types larger. The added complexity, due
to the ”If...” statements is minor, and will always insure proper management of
the desired elements. Note that this advantage is enhanced as the number of sets
participating in the constraints (see previous paragraph) grows larger. By using
this technique, based on avoiding interleavings leading to possible data incon-
sistencies, we have shown a possible way of increasing the number of compatible

transaction types.

5.4. Latest Value Overwrite Transactions

In the two previous sections we have talked about linear assignments’ tran-
sactions and transactions that perform set operations. In this section we shall talk
about transactions that are frequent in databases where the new values of the
objects are not derived from other values in the database, but are set (imposed)
by decisions of the persons who use the DBMS (e.g.: Salary of employee 324 will
be 45000 dollars). These types of transactions are very common at the creation
or deletion of part or all of the database. Also, most of the time, in this type of
transaction, the modifications to a database object, performed by the latest tran-
saction are those that must be recorded. In this section we will briefly study some

of the properties of this type of transactions.
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Definition 5.4.1 (Transaction’s timestamp):

The timestamp of a transaction is a unique number set by the system to a
transaction at the moment it is submitted. Timestamp numbers are totally

ordered.

Definition 5.4.2 (Object’s timestamp):

The timestamp of an object is the number corresponding to the last transac-

tion that modified it.

Definition 5.4.3 (LVO transaction):

An LVO (Latest Value Overwrites) transaction is one that overwrites a data-

base object if its timestamp is greater than or equal to the object’s timestamp.

Proposition 5.4.1:

An LVO transaction is not guaranteed to be compatible with a non LVO

transaction.

Proof:

Let ”a + b = ¢” be a consistency constraint. Let T, T, be two transactions

such that,
Ty: 1)a+—a+z2

2)e—c+z

Ty 1) b b°

2) ¢+ ¢ (such that b"— b= ¢"— ¢

Let ¢s(7) denote the timestamp of the transaction 7. Assume that
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ts(T;) > ts(Ty). Consider now schedule S = 11, 21, 22, 12. After executing
schedule S the equation of the consistency constraint will look as follows:
(a+ 2)+ b= ¢" If 25 0, then obviously this last equation does not hold, and

therefore consistency is not maintained. O

Theorem 5.4.1:
Let Ty, T be two transactions of type LVO.

Let C,...., C, be the database (DB) consistency constraints.

Let obs( T}, C))={o € DB o is part of C'; and is accessed by T}
If for all i=1,...n

obs( Ty, C)Mobs( T, C) = 0
or
obs( Ty, C;)=0bs( Ty, C))

then T, and T, are compatible.

Proof:

If obs(Ty, C)Mobs(Ty, C}) = @ for an i, then obviously no problem can
arise: the transaction accessing C; will see that consistency of this constraint is
maintained. If obs( T}, C;)=o0bs(T,, C;), then, since the transaction with the larg-
est timestamp, say T,, overwrites, at the end of a schedule, the values of the
objects in C; will be the ones set by T,. Since T, preserves consistency, by tran-
saction definition, then Cj's consistency will not have been violated. To conclude,

consistency will always be maintained at the end of Tj, Tb’s interleaving, and

therefore the two transactions are compatible. O
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Observation 5.4.1:

If the previous theorem’s conditions do not hold, then there is no guarantee
that 7; and T, are compatible. Suppose that e + b = ¢” is a consistency con-
straint, say C, and consider the following two transactions:

Ty: 1) a+—a’

2) ¢« ¢ (such that a"—a=¢" - ¢)

Ty 1) b b

2) ¢ — ¢*; (such that bt - b= ¢ - ¢)

Assume that ts(T5) > ts(T}), and that we will run the schedule S= 11, 21, 22,
12. These assumptions will produce for the variables a, b, ¢ the new values
a’, b*, ¢*, respectively. But do these new values make the consistency constraint
C true? Le., it is true that @’ + b = ¢? Since b* — b = ¢ — ¢ then there exist
a number z, such that % = b + z and ¢* = ¢ + 7. By an analogous reasoning,
there must exist a number y, such that ¢"= a + y and ¢" = ¢ + 3. Our con-
sistency constraint will hold just if (a + y) + (b + z) = (¢ + z). This equation is
mathematically reducible to a + y + b = ¢. If y 20 then C is not fulfilled and
therefore the consistency is immediately violated. We should observe that the
reason for the consistency violation is that obs(T}, C)Mobs( Ty, C) = ¢ # @ and
obs( Ty, C) 74 obs(T,, C). Le., the conditions on the obs sets, as expressed in the

theorem, were not met, and therefore the consistency can not be guaranteed. O

5.5 Conclusions

In this chapter we have studied compatibility properties among three

different types of transactions: 1) Linear transactions; 2) Transactions executing
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set operations; and 3) Latest Value Overwrite Transactions. The conclusions

about these different types are the followings:

1)

The results obtained with the different types of linear transactions can be
helpful in achieving higher concurrency in applications like banking opera-
tions, accounting of companys, etc., if an SK mechanism is used. With more
restrictions, and aids, such as indicators, these results could be expanded.
The expansion would make the use of SK very beneficial in cases such as the

above mentioned examples.

Transactions executing set operations are easy to analyze if we use a boolean
algebra based algorithm, as described in section 5.3. This algorithm has the
possibility of being included as a part of the DBMS, and letting the com-
puter do the work of determining the compatibility of two transactions.
More work needs to be done in this area, especially in the way of specifying

the transactions so that the computer can understand the semantics.

The results in the area of Latest Value Overwrite Transactions are res-
tricted, but can be useful in some applications, e.g., on a database contain-

ing information about the employees of a company.
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Chapter 6

COPING WITH LONG LIVED TRANSACTIONS

6.1. Introduction

As the name indicates, a long lived transaction is a transaction whose execu-
tion, even without interference from other transactions, takes a substantial
amount of time, possibly on the order of hours or days. A long lived transaction,
or LLT, has a long duration compared to the majority of other transactions
either because it accesses many database objects, or because it pauses for inputs
from the users, or a combination of these factors. Examples of LLTs are transac-
tions which produce the monthly account statements at a bank, transactions
which process claims at an insurance company, and transactions which collect

statistics over an entire database [Gray2].

In most cases, LLTs present serious performance problems. Since they are
transactions, the system must execute them as atomic actions, thus preserving
the consistency of the database [Gray2|. To make a transaction atomie, the sys-
tem usually locks the database objects accessed by the transaction until it com-
mits, and this typically occurs at the end of the transaction. As a consequence,
other transactions wishing to access the LLT’s objects are delayed for a substan-

tial amount of time.

Furthermore, the transaction rate of abortion can also be increased by LLTs.
As discussed in [Grayl|, the frequency of deadlock is very sensitive to the “size”
of transactions, that is, to how many objects transactions access. (In the analysis
of [Grayl], the deadlock frequency grows in proportion to the fourth power of the

transaction size.) Hence, since LLL'Ts access many objects, they may cause many
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deadlocks, and correspondingly, many abortions. From the point of view of sys-
tem crashes, LL'Ts have a higher probability of encountering a failure, and are
thus more likely to encounter yet more delays and more likely to be aborted

themselves.

In general, there is no solution that eliminates the problems of LL.Ts. Even
if we use a mechanism different from locking to ensure atomicity of the LLTs, the
long delays and/or the high abort rate will remain. No matter how the mechan-
ism operates, a transaction that needs to access the objects that were accessed by

a LL'T cannot commit until the LL'T commits.

However, for specific applications, it may be possible to alleviate the prob-
lems by relaxing the requirement that an LLT be executed as an atomic action.
In other words, without sacrificing the consistency of the database, it may be pos-
sible for certain LLTs to release their resources before they complete, thus per-

mitting other, waiting transactions to proceed.

To illustrate this idea, consider an airline reservation application. The data-
base (or actually a collection of databases from different airlines) contains reser-
vations for flights, and a transaction T wishes to make a relatively large number
of reservations (for a round-the-world tour, say). For this discussion, let us
assume that 7 is a LLT. In this application it may not be necessary for T to
hold on to all its resources until it completes. For instance, after T reserves a
seat on flight F, it could immediately allow other transactions to reserve seats on
the same flight. In other words, we can view T as a collection of ‘“sub-

transactions” Ty, Ty, ..., T, that reserve the individual seats.

However, we do not wish to submit T to the system simply as a collection of

independent transactions because we still want T to be a unit that is either
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successfully completed or not done at all. That is, we would nof be satisfied with
a system that would allow T to reserve three seats and then (due to a crash) do
nothing more. On the other hand, we would be satisfied with a system that
guaranteed that 7 would make all of its reservations, or would cancel any reser-

vations made if T had to be suspended.

This example shows that a control mechanism that is less rigid than the con-
ventional atomic-transaction ones but still offers some guarantees regarding the
execution of the components of a LLT would be useful. In this chapter we will

present suggestions for such a mechanism.

In the airline example, it seems natural to execute each seat reservation as
an atomic unit and to allow arbitrary interleavings of such sub-transactions. In
other cases, though, it may only be possible to interleave the sub-transactions of
a LLT with other transactions if certain conditions are satisfied. For example,
consider an insurance claim transaction L that is a LLLT. Again, L can be broken
into sub-transactions to enter the original claim information, check the history of
the customer, verify the claim with the police, estimate the replacement value of
the property, and so on. It may very well be possible to interleave these sub-
transactions with those of other concurrent claims, but it may be dangerous to
interleave a claim transaction with a transaction that is changing the table with
which property values are estimated. (If this were allowed, L could record in the
database one value for the settlement and then write a check for a different value

to the customer.)

Thus, in this case we would like to have a system that could take as input
the rules for interleaving LLTs and enforce them. Such a system would let L

observe the partial results of other insurance claims (speeding up execution
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times), but not of the transaction that modifies the property value tables. Simi-

larly, this last transaction could not observe the results of L until L finished.

Two ingredients are necessary to make the ideas we have presented feasible:

system support and properly designed LLTs.

(a)

System support. On a conventional database system there are only two
choices for a LLT. If we submit it as a single transaction, consistency and
atomicity are guaranteed, but at a high cost. If we break up the LLT into a
collection of sub-transactions, performance improves but the system makes
no guarantees about consistency and atomicity. For many LLTs, neither
choice is acceptable. T Therefore, additional facilities within the system, or
on top of an existing system, are needed to define how LLTs can be broken

into components and how these components can be executed.

Properly Designed LLTs. The LLTs (and the database itself) must be
designed in such a way that they can be broken up into smaller units that
can be interleaved. For this, the programmers (and/or users) must under-

stand the application well, and this is not always easy.

In this chapter we will concentrate in discussing the issues in the first

category, and leave the issues in the second one for for future research and dis-

cussion. In section 6.2 we will introduce the reader to the importance of restrict-

ing the interleavings of LLTs, and in section 6.3 a mechanism to serve that pur-

pose will be presented. Such a mechanism is an adaptation to LLTs of the ideas

of Semantic Knowledge (SK) presented in section 2.3. In section 6.4 we will

For some LLTs, like one that collects statisties, no guarantee of consistency may be accept-
able.
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describe some of the relevant components needed to manage LLTs in a DBMS

that incorporates the ideas of SK.

6.2. Restricting Concurrency

In the introduction we argued that some LLTs are composed of sub-
transactions that are not real transactions, i.e., they are not consistency preserv-
ing units and hence need a special execution mechanism. In the example we
used, an insurance claim LLT could be interleaved with other claims that access
the same data, but not with a transaction that modified critical price tables. In
other words, if LLTs L, consisting of sub-transactions Tj,, Tys, Tj3, and L,
consisting of sub-transactions Ty, Ty9, Ty 3, are claims, and T, modifies the crit-

ical tables, then the execution schedules

Ty T, Tvo Tyg Toy Top To3 - (1)
and

Ty Toy T, Tip Top Toz Tyg - (2)
should not be allowed because they may violate consistency. However, the
schedules

Ty The Ty T, Toy Top Tos - (3)
and

Tyi Ly Tig Tys Tog Tis T -, (4)

for this application, are acceptable.

To improve performance, the system needs as much flexibility as possible in
scheduling transactions and sub-transactions. Specifically, it needs more flexibil-
ity than a conventional atomic transaction mechanism which would allow

schedules like (3) but not ones like (4). (Note that in schedule (4), Ly, can be
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started before L; completes.)

How can the system be informed of the allowable interleavings, so it can use
them to improve performance? There are many answers to this question. We
will here describe a strategy that uses compatibility sels to specify the valid inter-
leavings. This strategy is an adaptation to LLTs of one presented in [Garc|.
Here, we will only summarize the main concepts and refer the reader to the men-

tioned reference for details.

6.3 Compatibility Sets.

The basic idea here is to break up LLTs into sub-transactions. However, the
sub-transactions in this case are not true transactions, as already mentioned pre-
viously. Therefore, executing the sub-transactions as atomic actions is not

sufficient.

To describe the valid interleavings of sub-transactions (e.g., like the ones in
schedules (3) and (4)), LLTs and regular transactions are classified, say by the
system administrator, into semantic types (e.g., L; above may be of type
“insurance claim”). For each LLT type, a compatibility set is defined. If LLT L,
is of type Y}, and this type has compatibility set CS(Y;) = {Z),...,Z,}, then the
sub-transactions of L; can be interleaved with the sub-transactions of transac-
tions of types Z; through Z, In other words, after a sub-transaction of L; com-
pletes, the data it accessed may be accessed by the specified sub-transactions (or
transactions), even if L; as a whole has not completed. However, each sub-
transaction must still be executed as an atomic action. (Note that regular tran-

sactions do not have compatibility sets since they have no sub-transactions.)

For the insurance claim example, let us call the type of claim LLTs L; and
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Le, IC; the type of the table update tramsaction T7,, TU; and let type CH
represent transactions that simply check the history of a given customer. We can
then define the compatibility set of IC to be

cSIC)={IC, CH}
This would make schedules like (3) and (4) valid, and in addition would allow a
transaction 7T, of type CH to be executed at any point in these schedules.

Schedules like (1) and (2) would not be allowed because TU is not in C:S(IC).

We will say that transaction (either normal or LLT) T is compatible with
LLT L if the type of T is in the compatibility set corresponding to L. In our
example, L; and L, are compatible with each other (since /C'is in CS(IC)), but in
general, the compatible relationship is not reflexive. That is, we could have a
LLT that could not tolerate sub-transactions of another LLT of its same type.
Also note that if no transactions are compatible with some LLT, then that LLT
must be performed as a conventional transaction (i.e., as an atomic unit). At the
other extreme, if all transactions and sub-transactions are compatible with all
LLTs, then no special provisions need to be taken, and transactions and LLTs

can run concurrently with no risk of violating consistency.

In our mechanism each sub-transaction of an LLT is provided with a com-
pensating sub-transaction which reverses the actions performed by it (but does
not necessarily return the database to its original state). If the LLT must be
aborted, the compensating sub-transactions are executed by the system in the

reverse order in which the sub-transactions of the failed LLT were committed.

The definition of compatibility sets must be considered in light of the com-
pensating sub-transactions. That is, when we state that 7T is compatible with

LLT L, it must be possible to interleave T with the sub-transactions or with the
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compensating sub-transactions of L. In our insurance claim example where LLTs

of type IC are compatible, the schedule

Tyy Toy Ty Top Tos Tig Tof T, -, (5)
where T,—;—I is the compensating sub-transaction of 7;, must also be valid. (Con-

trast this schedule with (4).)

6.4. Managing Long Lived Transactions Using SK. A First Approach.

In this section we will describe with little detail some of the relevant com-
ponents needed to manage LLTs in a DBMS that incorporates the adaptation of
the SK ideas set forth in the previous section. We are going to assume here a cen-
tralized system where no two LLTs can be compatible. Considering that most of
the actual DBMSs are centralized and that in the present time most applications
process very few LLTs we think that studying this restricted case is important.
We think too that given that in the future, a distributed environment and an
environment that handles LLTs with unconstrained compatible sets should be
studied, then the knowledge that we can gain from this restricted case will also

be very useful. We will not deal with the latter case here.

For the purposes of this section we will assume a database divided in blocks
stored in secondary memory, usually a disk unit(s), each of them holding one or
more records. Records, the units of locking, will consist of one or more fields.
They will be identified by a specific number, and each time a transaction requires
access to them, the block holding the record will be read into a page in main
memory. To that end a page table will be kept in core to establish the correspon-
dence between pages and blocks. A list of the free blocks will also be in core, to

be used whenever new records are created and a free block is needed. Every time
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a block is freed in secondary memory its identifier will be added to that list.

6.4.1 The transaction manager (TM)

For every transaction submitted to the DBMS, the TM typically: 1) creates a
process that executes the actions of the transaction; 2) calls the crash recovery
manager to take provisions for recovery in the case of a failure, so that transac-
tions may be executed atomically; and 3) uses the services of our concurrency
control mechanism to enforce that access to the DB objects by the transaction is
only done in accordance to the rules of SK. (In the algorithms that appear in
Appendix A we have to think of our normal transactions as being their local tran-
sactions, and our LLTs, their nonlocal ones. Please see the reference for more
details.) In the case of a LL'T the TM will execute the subtransactions one by one

in accordance with the information received from the LLT executor (see Lzlow).

6.4.2 The LLT executor (LEXEC).

The LEXEC calls upon the transaction manager (TM) to execute the
different subtransactions of the LLT. When a LLT is submitted to the system it
will be recognized as such by the information in its header, and passed immedi-
ately to the LEXEC for control. The "executor” then gathers from the code of
the LLT the types and order of execution of the different subtransactions, along
with some or all of their corresponding input data, and safely stores all this infor-
mation in a special relation of the database called the "LLT Agenda”. Since sub-
transactions sometimes depend for their input values on previous
subtransaction(s), not all of them will be known at LLT’s submission time, but

will be placed in the LL'T Agenda, by the LEXEC, as soon as they are produced.
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Together with each subtransaction’s type will also be stored the type of its
corresponding compensating subtransaction, but not all its input data, as this will

be known completely only when the subtransaction finishes execution.

At the scheduled LLT’s processing initiation time the LEXEC will pass the
type and input data of the first subtransaction to the TM. When this subtransac-
tion successfully finishes execution the TM will notify the LEXEC, which in turn
will pass the information concerning the next subtransaction to the TM,.... and
so on, until the last subtransaction has been processed successfully. At this point
in time the LEXEC will signal the commit of the LLT and mark its information

on the LLL'T agenda as ’old’, so that this space can be used for subsequent LLTs.

To conclude our brief introduction to LEXEC we have to say that the infor-
mation written onto the LLT Agenda could be immediately stored in secondary
memory to have it safe and ready after a system crash. But considering that the
Agenda is a relation that is part of the database, we will write the actions of the
transaction that wrote the information onto the Agenda, to the undo/redo log of

our crash recovery manager (see section 6.4.4).

6.4.3 Table of Compatibility (TOC):

This table gives information about transaction types and their compatibility
sets. We can think of it as being organized in the following way: The first
column will have the names of transaction types and the second the compatibility
set of the transaction type in the first column. A third column will have the
identifiers, and submission time timestamps, of in-progress transactions of the
given type. The creation and maintenance of the information in the first two

columns will be the responsibility of the database administrator (DBA). The tran-
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saction identifiers on the third column will be written by the LEXEC and the TM
respectively at LLT’s or normal transaction’s submission time, and erased after
the transactions have successfully finished execution. It will be very useful to
have this table always ready in core, so that when a transaction T starts process-
ing, i.e. when its starts executing step 1 of our concurrency control algorithm,
which appears in Appendix A, the value of /D(7) can immediately be assigned. In
order for this always to be possible we will have to load this table from secondary
memory at every system start or restart. The latter, as we will see in the
description of our crash recovery mechanism, will be necessary after restart from
a failure, in order for the mentioned mechanism to properly recuperate all the

needed information for immediate continuation of normal processing.

6.4.4 The crash recovery manager (CRM)

This 1s the software component in charge of taking enough provisions for
recovery in the case of a computer crash, and of executing the recovery itself.
Such provisions will insure that all modifications done by committed transactions
or subtransactions (of a LLT) will survive a failure, and that those made by
uncommitted ones will not be seen after the recovery stage, i.e., that they can be

undone in the case that they have already migrated to the physical database.

The objective of this subsection is to explain how to modify and use a con-
ventional undo/redo log based CRM [Gray3], to assure reliability of a DBMS of
the type mentioned in the introduction to section 6.4. We will start by explaining
in subsection 6.4.4.1 the generalities of such a CRM, including the added mechan-
isms needed to handle LLTs and their respective subtransactions. In subsection

6.4.4.2 we turn to discuss the special features needed to support the use of a SK
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based concurrency control mechanism as outlined in Appendix A of [Gare].

6.4.4.1 Undo/Redo Logging for transactions and LLTs

Our CRM, as already mentioned, will use an undo/redo log. The log or audit
trail [Kohl, Verho|, as it is also known, is a region of n contiguous blocks of
secondary memory (n to be determined by the DBA) to be used in a circular
buffer fashion. For the sake of reliability in the case of a media failure
(accident/crash causing loss of information stored on disk), we will duplicate the
log onto a second disk. The two disks will be assumed to have independent
failure modes, i.e., that within a short period of time, usually the time needed to
copy the whole information in one log from one disk to the other, both disks will

not fail [Lamp].

To insure full reliability of transaction or subtransaction processing, as
described at the beginning of this subsection, in the case of system crash (partial
or total loss of main memory information) the CRM will use a special protocol
called the Write Ahead Log Protocol (WAL). This protocol implies that before a
database object (DB-object) is modified in the physical DB an entry in the next
available position in the log will be made. Such entry will contain the number of
the transaction that accessed the object, its #d (identification), its old value, and
its new value. Besides that information, each transaction will log a
Begin Transaction entry at processing start, and an End Transaction or Commit
entry together with the transaction number, when its execution has successfully
completed. (Note: For the purposes of our CRM, a transaction or subtransaction
writes its End (Sub)transaction record onto the log just when it is ready to com-

mit, and therefore we will invariably call that record the Commit record also.) In
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the case of a subtransaction the CRM will also log at completion time, before the
End Subtransaction entry, the type of the compensating subtransaction along
with the necessary input data. If this is done, the subtransaction’s modifications
can be compensated for in the case of abortion of the owner LLT, during normal
processing (not failure recovery), due, for example, to deadlock or timeout rea-
sons. It is necessary to point out here that the numbers identifying a subtransac-
tion will have different characteristics than the ones identifying a transaction.
(Eg.: A transaction could easily be identified with a unique natural number, for
example 123. A subtransaction will have a number like L.456.7, where 1456 is the
number of the LLT (the L before the digits recognizes it as a LLT), say 7, and
the 7 refers to the seventh subtransaction of T). It is important that the CRM
knows about it so that in the case of an abortion the proper information can be
handed to the TM, and also because apart from the information concerning com-
pensating transactions, some more information, to be discussed later on, might be

necessary to log for subtransactions.

To recover from a system crash is easy. Knowing the address of the last
record written to the log, the CRM just needs to read the log backwards, and as
it goes, reinstate the old values of records modified by transactions or subtransac-
tions still in progress at the time of the crash, and accumulate in a set the
identifiers of transactions or subtransactions for which a Commit record is found
(i.e., of transactions or subtransactions that already successfully finished execu-
tion). The committed transactions and subtransactions will then be redone by
reading the log forward from the beginning to the end, and for every object that
appears in the log as having been modified by a transaction or subtransaction in

the mentioned set, reinstate the new value in the database.
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Reading the complete log backwards, and then forwards, often might be
unnecessary and time consuming. Therefore periodic checkpoints, complete
flushes of main memory information to disk, will be made, and a record of such
action written to the log. Now at system failure’s recovery time the same, already
explained process of undo, and collection of the identifiers of committed transac-
tions and subtransactions, will take place all the way from the end of the log
backwards to the checkpoint entry. Thereafter just the old values of records
accessed by uncommitted transactions at crash time, and in progress at the time
of the checkpoint (UIP), will have to be put back in their respective places. And
more, the log will be read backwards just until the Begin Transaction entry of
the oldest UIP transaction is read. The recovery will continue now, as expected,
redoing the committed transactions from the checkpoint onwards. The recovery
will finalize by taking a checkpoint, so that we can be sure of having our
recovered data safely in disk. Please note that the undo process can in some
cases go backwards not just past the last checkpoint entry, but past previous
checkpoints until the earliest submitted UIP transaction has been completely

undone.

The log could of course grow very large and therefore a mechanism to move
the beginning of the log forward, will be utilized from time to time. This mechan-
ism is sometimes called firewalling [Kent|. We suggest the interested reader refer

to the mentioned paper for details.

To backout a LLT will also be easy. Upon decision to do so, by the user or
by the system (see sections 6.4.5 and 6.4.6 on deadlocks and timeouts), the fol-

lowing two steps will be taken:
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The CRM reads the log backwards wuntil encountering the
Begin Subtransaction record for the subtransaction in progress, if any, and
as it does this, it replaces the values of records modified by the subtransac-

tion by the old values that appear in the log.

The CRM continues reading the log backwards until hitting the Begin LLT
record and as it does this, it passes one by one to the TM, the encountered
information of the compensating subtransactions. Such compensating sub-
transactions will be executed in the reverse order that the subtransactions
were executed. But this is no problem, since as we already know, that is
exactly the order in which they will be found in the log when reading it
backwards. Note that these compensating subtransactions will be executed
by the TM as if they are normal transactions (but not consistency preserv-
ing). The CRM will therefore write onto the log the proper information
(old/new values), so that the LLT backout’s modifications will not be lost in

the case of a system crash.

6.4.4.2 Adding SK to the CRM

Are the features mentioned in the previous subsection enough for our CRM

to handle the intricacies of SK applied to the management of LLTs? No, our

CRM as 1t stands now is not complete, there are still small important additions

to be made. To better understand the specifics of such additions it will be neces-

sary to review some facts about SK and to go through some explanations. The

important matter will be that our CRM closely cooperates with the concurrency

control manager, in order for transactions and LLTs to obey DB consistency. Its

responsibility will therefore consist of making available after a crash all the neces-
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sary information needed by the concurrency control manager to carry out its

duties with no problem.

As we know, even though subtransactions are not consistency preserving
units, they are handled as transactions by the TM, and their modifications, as we
have already seen, are recovered after a system crash in the same way that
transaction’s modifications are recovered. This implies that LLTs could not be
finished at the time of a system crash, and will not be undone completely at
recovery. Therefore they will be restarted at the start of their subtransaction in
progress at the crash (note that this subtransaction was already undone by the
CRM), or at the start of the subtransaction which is next to be processed, if there
was no subtransaction running when the computer crashed. This gives us the
advantage of not losing the already processed parts of the LLT, but in order to
continue processing the LL'T after the crash, the SK based concurrency control
mechanism will have to be supplied, as already said, with the SK accounting
information. A normal concurrency control mechanism, such as a two phase lock-

ing (2PL) one, will not need this information.

From our knowledge about the SK concurrency control mechanisms, we
already know what the needed accounting information from LLTs will be, when
normal processing restarts after a crash: For every object o accessed by a LLT L
in progress at the time of the system failure, the values of GL(0), SW o), PRE(o0)
and Rel(0); and for every such LLT L, Wait(L) and T_Wait(L). Note that we will
not have to worry about in progress normal transactions. At crash recuperation
all uncommitted transactions at failure time are completely undone, so that when
normal processing restarts there will be no such transaction that is halfway

through its processing and needs to be terminated. We will need, however, some
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information about objects accessed by committed, normal transactions compati-
ble with a non terminated LLT L, and that participated in an interleaving with

L. We will come back later to discuss this.

To see why it is necessary to have all that LL'T’s information handy at nor-
mal processing restart let us view the following scenario. Suppose that the data-
base is checkpointed at time £, and that LLT L,, composed of subtransactions
Sy v+ Sg(we say Ly = {S; - - - Sg}), is submitted to the system at time ¢,
(t; > ty). At time ¢, ({5 > t;) subtransaction S; accesses object o, and success-
fully finishes computation before the next system crash, that occurs while sub-
transaction S; is being executed. Since S; had already committed, then at
recovery all its actions will be redone, but with our original CRM, its accessed
objects, including o, will be left with no locks. After the system restarts normal
processing, transaction T5, incompatible with L, is submitted. T, accesses object
o and successfully finishes execution before the last subtransaction of I;, Sg,
starts processing. Finally Sg also accesses o and finishes successfully, thereby com-
mitting L;. Object o was then accessed first by L,, then by T,, and finally again
by L, forming the cycle L; — Ty — L;, and cycles in a dependency graph imply

that database consistency could have been be violated [Eswar|

From the scenario posed in the previous paragraph we can conclude that we
absolutely need the values of GL(o) and of SW[o) when normal processing res-
tarts. They will restrict the access to objects accessed by LLTs just to transac-
tions that are compatible with them. But, what about Pre(o), Rel(0), Wait(L) and
T _Wait(L), for all objects o accessed by LLT L? The support given by the
release (Rel) sets is undoubtly necessary for normal execution of our SK con-

currency control mechanism. Without the information about the release sets of
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objects accessed by L we are risking a problem of the following nature: 75, a nor-
mal transaction, compatible with L, accesses after a system restart the object o
already accessed before the crash, by a committed subtransaction S, of L. S sets
Rel(o)={L} before the crash, but after the crash this information could errone-
ously be Rel(o)=0. If this occurs, then when T, finishes it could well release the
global lock of o. Such an event now opens the possibility that a third transaction
T,, incompatible with L and T,, accesses o, and when Tj finishes, that o gets
accessed by another subtransaction of L, say S,. This schedule produced the

dependency cycle

L—Tg— T3 L

7

where T; is not compatible with L and T,, and therefore the database con-
sistency could be violated. If Rel(o) is necessary for all objects o accessed by the
uncommitted LLT L at system’s restart, then the values of Wait(L) and of
T_Waif(L) will be equally necessary, since they closely contribute to the forma-

tion of the release sets.

In the case of Pre(o), we have to remember that the necessary contribution
of those sets to our concurrency control algorithms in maintaining consistency is
in cases like the following: Transaction T accesses o, and before it successfully
terminates execution o is accessed by a compatible transaction T5. If T; ter-
minates execution before T, does, then in the absence of Pre(o) (that if used
would now be Pre(o)={T,} after the deletion of Tj), the global lock on o could
be immediately released, giving then a chance for a third transaction, T3, incom-
patible with 7 and 7,, to access o, opening the possibility of violating con-
sistency. Cases like the one just presented will never show up when restarting our

system after a crash, since all uncommitted transactions and subtransactions (of
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a LLT) will have been undone before restarting normal processing. It is not
difficult to see that in other cases of potential problem, the presence of Rel(o) will
be enough so that the global locks will not be released before it is safe to do so.
Since Rel( o) will always be made available at system’s restart, then we could for-
get about Pre(o) for all o accessed by L, a LLT in progress at the time of the

crash, and assume at restart that Pre(o)—#0 for all objects o in the database.

We have now established that GL(o), SW(o0), Rel(0), Wait(L) and T Wait(L)
will be necessary at restart, but it will not be necessary to log all that informa-
tion for every LLT L. Actually we are fortunate to know that recuperating the
values of those variables will be very simple in our restricted environment. If
when reading the log backwards after a system crash the CRM encounters the
End Subtransaction record of a subtransaction S of an uncommitted LLT L, i.e.,
of a LLT whose End LLT record has not appeared in the log already, then
besides the normal "redo” processing of actions, just the steps outlined below will
be needed to take. Note that these steps, at recovery time, are just in addition to
the ones already mentioned in the previous paragraphs, and will be executed

together, as the CRM reads the log backwards.

1) For every object o, modified by L, set GL(0)="true’, since the LLT L has not

yet finished.

2)  For every object o, modified by L, set Rel(o)={L}. Remember that since L
was the only LL'T allowed in an interleaving of compatible transactions, then
L will be the sole member of Rel(o), and it has to be there forcefully since

the subtransaction S (of L) has already finished.

3) For every object o, modified by L, set SW[o)=CS(L). The identifier of the
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subtransaction S, will immediately tell the CRM the number of LLT L own-

ing it. CRM will search now in the TOC to find out the compatibility set for

such a LLT.

After having done the recovery for every outstanding subtransaction of L, the

CRM will either hit the "Begin LLT” record, or hit the record of the last check-

point. At this moment it will do the following:

4)

Set Wait(L)=0, since all committed subtransactions are already redone, and
the only, if any, subtransaction at the time of the crash has already been
undone. (For a better understanding of this explanation and the one in (5)
we refer the interested reader to Appendix A of [Gare].)

Set T _Wait(L)={L}, since L was the only LLT in an interleaving, if any.
T_Wait(L) could very well be empty if there was no interleaving with other
transactions or if certain conditions of the interleaving did not hold. How-
ever, setting T Wait(L)={L} will do no harm and will add no extra process-

ing time, so that we can safely do so. O

To conclude our discussion on CRM we will turn our attention to normal

transactions, and the information from them, that will be needed at system res-

tart. I'or our purposes, normal transactions can be grouped in three classes:

1)

2)

Transactions not compatible with any LLT in progress at crash time.

Transactions compatible with a LLT, say L, in progress at crash time, but

that did not access any object previously accessed by L.

Transactions compatible with a LLT, say L, in progress at crash time, that
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did access at least one object previously accessed by L.

Transactions in the first class present no problem at all: They are not com-
patible with any LLT in progress at crash time, which implies that they were not
able to participate in interleavings with transactions not terminated when the
failure occurred. And since at system restart all outstanding normal transactions
will have been either redone or undone, then none of the information related to

its identifier or accessed objects will be needed.

The transactions of (2) are compatible with an in progress LLT, but since
they did not access any objects previously accessed by the LLT, they can be con-
sidered on the same conditions as the transactions of class (1), and therefore no

information related to them will be needed at restart.

Transactions in class (3) do present a problem if they committed before the
crash. In this case some of their related SK information will be needed after a
crash to properly recuperate the database, and allow for a problem-free continua-
tion of normal processing. If a transaction in this class was in progress at the
moment of a crash, then we know that it will be competely undone, and its
modifications will not show up in the database after system restart, which implies
that none of its related information will be needed when normal processing
begins. Failure to recognize the SK information needs after system restart, from
committed transactions in class (3) can result in an eventual consistency violation
as the example in the next paragraph shows. A similar example has already been
given. The reader should, however, notice that the scenario in the next example is
different. In the former case we were making a point on the necessity of logging
SK information related to a LLT. In the next example we will show that it is also

necessary to log some information concerning committed transactions in class (3),
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and therefore the example has some different features.

Consider LLT L = {Sj,....5;} and assume that L is compatible with normal
transaction 7). Suppose that subtransaction S, accesses object o,. After S,
finishes, transaction Tj is submitted to the system. It accesses objects o, and o,
and commits before the next system crash, leaving both objects with global locks.
When the failure occurs, L is not finished and is forced to continue execution at
restart of normal processing with subtransaction S;, previously undone while
recuperating from the failure. After S, finishes, a normal transaction, 75, not
compatible with L and 7 is submitted and asks permission to access 0,. If none
of the SK information related to the objects accessed by T is available after the
crash then o, could be found to be free and the permission granted. This opens
the possibility for a consistency violation to occur: Suppose that T, finishes
before S;, and that S; also accesses oy, If this last subtransaction finishes success-
fully, committing thereby L, our transactions dependency graph will show the fol-

lowing cycle:
Li—=Ty—Ty— L,

and consistency can therefore not be guaranteed. If the CRM would have made
available to our concurrency control mechanism at system restart the values of
GI{o) and SW o), for every object o accessed by Tj, then a graph dependency
cycle of non compatible transactions would have never occurred. It will suffice
here to say that if GL(o) is needed, then Rel(o) is also needed, else we would not

have a way of knowing when to safely release the global lock on o.

What about Wait and T_Wait sets information for (normal) transactions in

class (3) that committed before a system crash? It can be seen in Appendix A
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that none of the information in those sets will be needed for continuation of nor-
mal processing, once the transaction finished execution. Thus our CRM will not

care about them when reconstructing the database after a crash.

To provide the concurrency control manager with the information about
G1{o0), SW(o) and Rel(o) for every object o accessed by a transaction in class (3),
say T, that committed before the crash, our CRM will take the following step:
Together with the commit record, it will write the value of ID(T) onto the log. As
we know (see Appendix A), when a normal transaction 7T is submitted ot the
DBMS ID(T) = 0, and it remains like that until it is forced to chose an interleav-
ing descriptor (ID), in our LLT adaptation, a set of compatibility. This occurs
when it first tries to access an object globally locked by a LLT, say L, whose
compatibility set (CS) contains the type of T. At this moment ID(7) becomes
ID(T) = CS(L), and for all objects o already accessed, or to be accessed by T,
SWlo) = CS(L). If T never tries to access an object previously accessed by a

compatible LLT, then it will run until termination with ID( T) = 0.

Given the previously mentioned facts, we conclude that if the value written
next to the commit record of a normal transaction is ”#”, then when the CRM
reads the log backwards after a crash, it will not worry about this transaction SK
information, but only undo it in the previously mentioned way, in subsection
6.4.4.1. If such value is not equal to @, the CRM will know that T participated in
an interleaving with a LLT, say L, and that the written value refers to CS(L). To
find out what the identification number (¢d) of L is, the CRM will go to the TOC
and look in the column of compatible sets until it finds the one that equates the
value written in the log. From the description of the TOC we know that next to

that column, the CRM will find the identifiers of transactions of the given type.
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Since in our restricted environment no two LLTs will be allowed to participate in
interleavings, then the ¢d’s column of the TOC will have, at the most, one #d of a
LLT, in our case the one of L. If the timestamp associated to L’s id is smaller
than the timestamp of 7, the CRM can be sure that T was participating in an
interleaving with L. (If the timestamp is greater, then 7T participated in an inter-
leaving with a previous LLT, say R, of the same type as L. Due to the restric-
tions of our system, R must then have finished successfully before L started, and

therefore no special provisions at recovery will be taken for 7T"s accessed objects.)

To windup the discussion of the previous two paragraphs, we can say the
following: When reading the log backwards at system restart, if the CRM finds
next to the commit record of a normal transaction 7, a set value different from @
(remember this is the value of ID(T)), then it will have to find out, in the previ-
ously described way, the ¢d of the unfinished LLT, say L, with the one it partici-
pated with in an interleaving (assuming T participated with an unfinished LLT).
Then, as it continues to read the log backwards, it will execute, together with all
other steps of our CRM, for all objects o modified by this transaction T the fol-
lowing steps:

1) Set GI{o) =" true ;
2) Set Rello) = {L}; and

3) Set SWo) = CS(L).

6.4.5 Deadlocks

As has already been pointed out in the introduction, the probability of run-
ning into deadlock situations is very sensitive to the ”"size” of the transaction

(number of objects that the transaction will access, time needed to carry out
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computation).A LLT as its name indicates, will have a large size, and therefore
have a high probability of running into conflicts. We ought then to consider what
is the most suitable strategy to solve those conflicts. We could actually take
several different approaches to solve the problem, although we think that the best
solution can come just out of a close knowledge of the type of workload submit-
ted daily to the DBMS. But whatever we decide to do, the mechanisms should
have flexible parameters, so that the DBA can tailor it to its own convenience.

These ideas are, however, only one general approach to solving the problem.

Our plan here will be to present a way of solving a deadlock situation once
it has been detected. We will not talk about how to detect a deadlock, since as
everyone knows that can be done easily and straightforwardly [Agra]. The main
focus here will be on how to break a cycle in a transaction’s "wait for” graph,
i.e., which transaction should be killed, backed out, to break the cycle, and allow
for normal processing to continue. And if we decide to back out a LLT involved
in the cycle, should we back it out completely, or will it suffice to just undo the
running subtransaction and compensate for a few, not all, of the outstanding
committed subtransactions? This aspect of our DBMS owes its importance not

just to the existence of LLTs, but to the use of SK as well.

In order to be as fair as possible each transaction will be assigned a priority
according to its stage of computation, and type: normal or long lived. The former
is done to base our decision on which transaction to kill in a deadlock case, on
the knowledge of how advanced the transaction is in relation to its whole compu-
tational needs. The latter will serve to give the LLTs some sort of advantage (see
below) over normal transactions. LLTs have bigger probabilities of getting

involved in deadlocks at an advanced stage of life, and it would be unfair to
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choose them for back out based on the same factors we will be using for normal

ones. We think that LLTs should have some amount of leverage.

At transaction’s submission, an approximate number of the objects that the
transaction needs to process will be known. Let’s call this number «; for each
transaction T}, and let’s call [; the total number of objects that have already been
acquired with local locks. We could assign, barring a small future consideration,

for each normal transaction 7; at any moment during its life the priority:

For LLTs the priority will be different, based on our above reasoning. Here the
number of subtransactions composing the LLT will also be known at submission
time, and we consider that the successful termination of each of them marks the
definite advancement of one more step in its computation. Therefore, if we call s;
the total number of subtransactions and r; the number of transactions that have
already executed, then for each LLT L; its priority at any moment in time, again
barring a small future consideration, will be
l; r;
P = " + Pl

Continuing with our desire of being as fair as possible, we will define that each
transaction starts processing with priority p; = 0, but if any transaction involved
in a deadlock is chosen as the one to kill then when it is submitted again for pro-
cessing it will start with its old priority in order to give such transactions some
advantage over newly submitted ones. This is the just mentioned consideration

we needed to take into account, so that now we can rephrase in a final way our

recently expressed formulas. Let us first assume that when a transaction is
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backed out due to deadlock situations it executes the the operation old_p; — p,
and that the values of old_p; will always be null before a transaction is first sub-
mitted to the DBMS. Our new formulas are then, respectively for normal and

LLT transactions:

.
p; — old_p; + — , and
)
l; Ty
p;=old p; + — + — .
1 8

Every time that a transaction asks for a lock the TM calls a special routine,
called the DD (Deadlock detector) routine. If the lock is granted then normal pro-
cessing will continue, otherwise an edge will be added to a "wait_for” graph, and
the TM notified to delay processing of the current transaction until the required
database object becomes free again, and this transaction is the next one in line to
access the object. To this end our concurrency control mechanism will call the
DD routine every time an object is unlocked, so that the DD can delete the
proper edge from the "wait_for” graph and advise the TM of the next transaction
to be permitted to access the object. The TM will then reschedule a continuation
of the transaction’s processing as soon as the CPU can accommodate it. If the
last edge added to the graph closes a cycle we know that a deadlock has been
detected. In such a case the DD will signal it to the TM together with the
identifier of the transaction chosen (see below) to be backed out. The TM will

then, with help of our CRM, back out the unlucky chosen transaction.

Up to this point nothing has been said explicitly about how to choose the
transaction to kill in the case of a deadlock. The rules will be the following (some

comments are included):



- 125 -

Note: For an easier understanding of the rules we will assume the existence,

1)

2)

and make references to the following cycle:

To-—> Tl -+ T-z-’ T3 = ...—‘>T0

Choose the transaction with the lowest priority, among the ones involved in
the cycle, say Tj.

Assume that T, and T, are not compatible. Let o; be an object locked by
T,, and suppose that this is the object for which 7}, is waiting to be released.
Suppose that T participated in an interleaving with a LLT L, then
Rel(oy) = {L}. (To know if this is the situation just check that Rel(o,) 52

and that T ;& Rel(0;).) In this case two things can happen:

a) L is one of the transactions already in the cycle. Killing 7} will not do
any good: a smaller cycle will be formed, where 7, will be waiting for L,
since the global lock on o0; can not be released until Rel(o;) = @, which
will not occur until L finishes execution. T, will have to wait for L

since Ty is not compatible with L, as it was not compatible with 7).

b) L is not a transaction in the cycle. This an easier situation to deal with,
but anyway, T, will have to wait for L to finish, to be able to access o,.

This can take long , and it is therefore not advisable to kill T}.

We conclude that whatever situation shows up, (a) or (b), the result of kil-
ling T, is not desirable. The advise is then that we completely or partially
backout the transaction that does not have the same problem as 7. How-
ever, since other problems can arise, the choice of the transaction with
lowest priority (to backout) will be made according to rules # 3, 4 and 5

below.
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If 7, is a normal transaction abort it.

Assume T, and T are not compatible. If T}, the transaction chosen to back
out, is a LLT, say Ty = {S;, Ss, .... Sio}, then we will be able to choose to
completely back it out, or just to undo the currently processing subtransac-
tion, say S;, and compensate for some of the subtransactions in the reverse
order of submission until the object that 7 is waiting for, say o;, has been
freed. E.g.: If the first subtransaction to have accessed the database object o,
is S; then undo S; and execute the compensating subtransactions Sg', S;!
and S;!, in order to undo as little already done work as possible. (This will
not always be feasible. See next paragraph.) The decision on what to do with
the LLT, if a partial backout is feasible could be based on the following fact:
If many (a number to be specified by the DBA) transactions are waiting for
objects accessed by our LL'T, T}, prior to the access of o, then it will be use-
ful to back it out to take advantage of the call that is being made to the

CRM.

Is it always possible by just partially backing out the LLT, in our case
T}, that o, will become free for T to access it? Unfortunately this is not
always possible. To see why, suppose that between subtransactions S; and .S;
a normal transaction, T, compatible with 7} executed. If after running com-
pensating subtransaction S;! we release the global lock of o,, and allow
therefore, the non compatible transaction 7j, to access it, this could easily
lead to the violation of a consistency constraint. What should we then do?

Three solutions are possible:

a) Back out T) completely. This will allow to release the global lock on o,

without causing any problem in the future.
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b) Find out if there was a compatible transaction, like T, that executed
between S; and S;. If the answer to this question is affirmative then
only a full backout will be possible. If the answer is negative, then by
executing subtransactions Sgl, Sgl, and S;l, we will leave the database
exactly as it was before S started execution. T In this case it will be pos-

sible to do a ”partial backout”.

¢) If no transaction executed between S| and S;, that accessed o4 or any
other object involved in a consistency constraint that includes o4, then
executing Sgl, Sgl, and S;l, will leave the value of object o4, with a very
high probability, exactly as it was before S; started. In this case T
could be allowed to access o, after S;! finishes, with a high probability
that it will not violate the database consistency. Under this cir-
cumstances a partial backout of the LLT T, will be allowed. However,
since it might be very time- and space-consuming to take provisions to
check easily if o, and all objects related to o, in consistency constraints
were accessed by another transactions between S} and 57, then this solu-

tion is not considered a practical one.

Before going on to rule # 5 let us direct our attention to the following prob-
lem: What happens if we decide to (partially) backout the LLT Ty, and one
of the compensating subtransactions, say S;! runs into a deadlock situation?
We could apply the rules given here to break the cycle, but we think that
there is an easier solution: Kill the transaction that S;' will be waiting for.

Call this transaction T,. Why is this solution easier? T) has not finished

T In some strange cases, a compensating subtransaction, even without the LLT having
had any type of previous interleaving interference from other compatible transaction, will
not return the state of the DB to its old state, but just to a consistent one.
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execution yet, therefore it has not released any global locks, which implies
that Sg' is waiting for a transaction compatible with T, to release the local
lock it holds on the ”problem object”. Due to our environment’s restrictions,
this compatible transaction T, has to be a normal transaction, and killing a

normal transaction is not a difficult task.

5) If Ty is a LLT and the transaction preceding it in the ”wait-for” graph (7j)
1s compatible with 7 then just undo the currently executing subtransaction
of Ty, say S;. This will immediately break the cycle since both transactions
being compatible implies that T, was waiting for a local lock to be released,
and never for a global lock in a previously executed subtransaction. Note

that this rule could be considered as a special case of rule 4.

6.4.6 Timing Transactions

A very useful idea when dealing with LLLTs is a mechanism that will time a
transaction’s waiting period for a locked object. When a transaction asks for an
already locked database object then the DD will put it on a waiting queue for the
object, and a timer will be set for the transaction. At the DBA’s discretion a
fixed time could be set, so that when such a time has gone by and the waiting
transaction 1s still on the queue, then it will be assumed to have a large potential
for causing a deadlock, and will therefore be aborted. As an alternative, different
times could be chosen according to the transaction’s size and/or the computa-
tional stage of the transaction, so that larger transactions and/or transactions
that have already executed a large portion of its work will not be easily backed

out. Note the usefulness of such strategy in the case of a LLT.
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There are other good uses of timing transactions. Considering that the aver-
age transaction’s response time (or transaction’s turnaround time) is very impor-
tant, we could use timing to improve such response. Contemplate the case of a
LLT L = {S; .... S3o}. Suppose now that while it executes, several other normal
transactions, non compatible with L, are put to wait for objects held by L, that
were accessed in L’s early stages. In this case all normal transactions will have to
wait until L finishes, to continue with their own executions. (Note that other
transactions could well be waiting for those transactions to finish too.) The tur-
naround time for transactions in the system will then be very high. For a better
understanding let us vaguely approximate the turnaround time following two
different strategies. Suppose that each subtransaction of L would normally,
without problems, run in 1 Min., i.e., L, will take, if it does not run into trouble, a
little bit more than 30 Min. (¢;). Suppose too that each of the other 10 normal
transactions takes 1 Min to execute ({7) and that all of them are stopped by L
already when Sj, finishes. If we wait for L to finish then the turnaround time will

be greater than:

t, + 10X (tp + 20)
11

_ 30 + 10X(1 + 20)
11

30 + 210
11

:& ~ 21.8 Min.

Had we aborted L and resubmitted it, say 10 Min. later, then the turnaround

time would be approximately
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10 + t;, + abort time of L + 10 X (t7 + abort time of L)
11

. 10+30+ 10+ 10 X (1 + 10)
11

50+ 110 160

— ~ 14.5 Min.
11 11

To approach this problem what we could do is to provide the system with an
algorithm that takes into consideration the time the LLT L needs to finish, the
sum of the different times that the normal transactions have been waiting for L,
the number of such transactions, and their time still needed for them to finish.
This algorithm will then, taking into consideration the normal daily load of our
DBMS, signal the TM whether L should be aborted or not. In case of abortion,
the TM will request the CRM to back out the LLT. Such an algorithm could run
on behalf of the TM and as a part of our known DD routine everytime a normal
transaction is put to wait for an object held by a LLT. To make it simpler we
could run it at time intervals set by the DBA. The exact appearance of this algo-
rithm, we think, is beyond the scope of our analysis and is left as an open, very

interesting question for future research.
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Chapter 7

SUMMARY AND CONCLUSIONS

In this thesis we studied several aspects of a concurrency control mechanism
based on semantic knowledge. The motivation behind this study was to take
advantage of the fact that in application dependent (AD) databases, the utiliza-
tion of semantic information can help the DBMS to achieve a better performance,
than if it uses a general purpose (GP) scheduler. A GP mechanism, like the
widely known 2PL, was shown in chapter 2 to be sufficient, but not necessary to
produce consistent schedule executions. On the other hand, we showed, in the
same chapter, that our SK based concurrency control mechanism can produce

consistent data values that can never be produced by a 2PL mechanism.

Motivated by the potential advantages of SK, we compared a SK con-
currency control mechanism with a 2PL one. The scenario for the comparison
was a simulation of a two site distributed DB. Chapter 3 presented the simula-
tion model in detail, together with some of the results that showed the perfor-
mance behavior of both mechanisms in different circumstances. One result is of
special interest: The behavior of the mechanism depended mainly on two predic-
tors: The probability of conflict (PRE) and the probability of saved conflicts
(PSC). For the environment simulated we showed that for values of PRE >
0.035 and/or PSC > 0.02, it is worth considering the utilization of SK. The avai-
lability of such values is an important result, since they will permit us to consider
the use of SK without having to rely on time consuming experiments. It remains
an open question to verify in a real life environment the accuracy of those values
for our particular model. Another important open question is the following: Do

these values, or similar ones, apply to different environments?, i.e., given the
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same values for a different system configuration, will SK still be worth consider-
ing?

The algorithms in appendix A of [Gare| have to be considered only as a first
attempt in the construction of a concurrency control mechanism that utilizes SK.
This fact was proven in chapter 4 by showing that shortcuts can be implemented
in the algorithms. Improved versions of these algorithms can reduce the average
time complexity, and as discussed in the same chapter, for some classes of tran-
saction types it can be a real advantage. How far can we go in the reduction of
time complexity for a reliable scheduler that takes advantage of semantic infor-
mation? At this moment we do not have an answer for this question, but we
think that it should be investigated and answered in the future. If we can design
an algorithm that improves the performance of 2PL in any (or most) DBMSs
environment(s), then we will have made a substantial improvement in con-

currency control mechanisms.

In this thesis we were also concerned with providing assistance to the DBA
and/or DB programmer about how to determine if two transactions are compati-
ble. Chapter 5 was devoted to making a first approach in that direction. In that
chapter we studied properties and relations among compatible transactions. We
also gave some suggestions on how to make two transactions compatible if they
were not already compatible. The results were encouraging, especially those per-
taining to transactions executing set operations. The latter results demonstrate
the possibility of incorporating these aids in the DBMS. This would relieve the
DBA of the burden of having to determine, by himself, if two transactions are
compatible. However, we are still very far from achieving our next goal in this

area: “Given any two transaction types (not forcefully different), determine easily
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and immediately if they are compatible”. The final goal, already considered in
the section on set operations, is to be able to equip the DBMS with the proper
tools to determine by itself when two transactions are compatible. A large

amount of research is still needed to achieve these goals.

Our final subject of SK research was in the area of LLTs. In chapter 3 we
showed simulation results where only one transaction, out of every 500 transac-
tions submitted to the system, was long lived. The results indicated that if a
LLT is compatible with at least 50% of the remaining normal transactions sub-
mitted to the system, a SK mechanism will process the LLT considerably faster
then a 2PL mechanism. Encouraged by this result, we studied the possibility of
implementing a DBMS that uses SK to process LLTs in an efficient way. In

chapter 6 we discussed some of the issues involved.
From the study in chapter 6 we can conclude the following:

1) A DBMS, where no two LLTs are allowed to be compatible, and that uses an
SK concurrency control mechanism, can be implemented on top of an
already existing DBMS by making small modifications, and additions to the

latter.

2) The mechanisms for resolving deadlocks, presented in section 6.3.5, and the
ideas in section 6.3.6. concerning timing transactions should be investigated
further, in order to achieve applicable results. For the latter ideas we could
set as a goal the determination of exactly when a LLT should be aborted,

given the scenarios posed in the respective section.

Our final conclusion in this thesis is that the idea of SK, as an aid to

efficiently process concurrently executing transactions is still at a very early stage
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of development. The SK mechanism has a big potential, as some of the results
here have shown, but more research will be needed to fully discover all of its

advantages.



- 135 -

REFERENCES

[Agral

[Bern]

[Clark]

[Cord]

[Eswar]

[Fisch]

[Gare|

(Gray1]

Agraval, R., Carey, M. J., Dewitt, D. J. Deadlock Detection is Cheap

ACM-SIGMOD Records 13, 2 (June, 1983) pp. 19-34.

Bernstein, P. A., Goodman, N. Concurrency Control in Distributed
Database Systems. ACM Computing Surveys 13, 2 (June 1981) pp.

185-221.

Oral presentation at the Fifth Berkeley Workshop on Distributed
Data Management and Computer Networks (Emeryville, CA., Feb. 3-
5), Lawrence Berkeley Lab. of the University of California at Berke-

ley, Berkeley, CA., 1981.
Cordon, R., Garcia-Molina, H. Semantic Knowledge based Con-

currency Control: Variations and Performance. Technical Report

344, EECS Dept., Princeton University, May, 1985.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, LL. The notions
of consistency and predicate locks in a database system. Commun.

ACM 19, 11 (Nov. 1976), pp. 624-633.

Fischer, M.J., Griffeth, N.D.; and Lynch, N. A. Global States of a Dis-
tributed System. IEEE Transactions on Software Engineering, Vol.

SE-8, No. 3 (May, 1982), pp. 198-202

Garcia-Molina, H. Using Semantic Knowledge for Transaction Pro-
cessing in a Distributed Database. ACM Transactions on Database

Systems, Vol. 8, No. 2, June 1983, pp. 186-213

Gray, J., Homan, P., Korth, H., Obermarck, R. A Straw Man Analysis

of the Probability of Waiting and Deadlock. IBM Research Lab., San



[Gray?2]

[Gray3]

[Kent]

[Klein]

[Kohl]

(Kung]

[Lamp]

[Lehma)

- 136 -

Jose, CA.

Gray, J. N. The transaction concept: virtues and limitations. In Proec.
Seventh Int. Conf. Very Large Data Bases (Cannes, France, Sept. 9-

11), ACM, New York, 1981, pp.144-154

Gray, J. N. Notes on database operating systems. Advanced Course on
Operating Systems Principles, Tech. Univ. Munich, July 1977; also in
Operating Systems: An Advanced Course, R. Bayer, R. M. Graham,

and G. Segemuller, Eds. Springer Verlag, 1979, pp. 393-481.

Kent, J., Performance and Implementation Issues in Crash Recovery

Ph.D. Thesis, Princeton University (June 1985).

Kleinrock, L., Queueing systems. Wiley Interscience Publication, New

York, 1975, Vol. 1

Kohler, W. H., A survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems. ACM Computing Sur-

veys, Vol. 13, No. 2, June 1981, pp. 149-183.

Kung, H.T., Papadimitriou, C.H., An optimality theory of concurrency
control for databases. Proc. ACM-SIGMOD Int. Conf. Management of
Data (Boston, Mass., May 30-June 1), ACM, New York, 1982, pp.57-

65.
Lampson, B. W. & Sturgis, H. E., Crash recovery in a distributed

storage system. Comm. ACM, to appear.

Lehman, L. P., Bing Yao, S., Efficient Locking for concurrent Opera-
tions on B-Trees. ACM Transactions on Database Systems, Vol. 6,

No. 4, Dec., 1981.



[Lynch)]

[Moss]

Silbe]

[Stron|

[Verho|

(Wiede]

- 137 -

Lynch, N. A., Multilevel Atomicity. Proc. of ACM Symposium on
Principles of Database Systems (Los Angeles, CA., Mar. 29-31), pp.

63-69

Moss, J. E., Nested Transactions: An Introduction. U.S. Army War

College, Carslile Barracks, PA.

Silberschatz, A., Kedem, Z., Consistency in hierarchical database sys-

tems J. ACM 27:1, pp. 72-80

Stron, B.I., Consistency of redundant databases in a weakly coupled
distributed computer conferencing system. Proc. Fifth Berkeley
Workshop on Distributed Data Management and Computer Networks
(Emeryville, CA., Feb. 3-5), Lawrence Berkeley Lab. of the University

of California at Berkeley, Berkeley, CA., 1981, pp. 143-153.

Verhofstadt, J. S. M., Recovery Technics for Database Systems ACM

Computing Surveys 10, 2 (June 1978), pp. 167-195.

Wiederhold, G., Databases. IEEE COMPUTER, Vol. 17, No. 10, Oct.,

1984



- 138 -

Appendix A

This is the only appendix in this thesis. It is a replica from Appendix A in
|Gare|. We describe here the management of locks by the SK transaction pro-

cessing mechanism.

Associated with each object o in the database, we have:

Li{o) = A boolean variable which indicates if the object has a local lock.
GL(o) = A boolean variable indicating if the object has a global lock.
SWo) = the share-with set of a global lock. It is an interleaving descrip-

tor giving the types of transactions that may share the global

lock. (Only defined if GL(0) = true.)

REL(0) = the release set of a global lock. The global lock on o can only
be released when all the transactions in this set have completed.

(Only defined if GL(0) = true.)

PRE{(0) = the set of transactions that have obtained a global lock on o but
have not yet accessed it. The global lock cannot be released if
this set is not empty. (Again, PRE{0) is only defined if GL(0) =

true.)
Associated with each transaction T are the following sets:
LL_SET(T) = the set of objects on which T currently holds a local lock.

GL_SET(T) = the set of globally locked objects that have T in their PRE{0)
set.
INT) = the interleaving descriptor being used by T to set global locks.

If T is non-local, ID(T) must be T’s only descriptor; otherwise,

ID(T) can be any one of T's descriptors, or the empty set.
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WAIT(T) =  the wait set of 7. Transaction T accumulates in WAIT(T) the
REL(0) sets of all the globally accessed objects it has accessed in
the current step. The global locks obtained by T can only be
released when all the transactions in WAIT(T) reach their termi-

nation point.

T _WAIT(T) = the total wait set of 7. This set is used to accumulate the

WAIT(T) sets obtained at the end of each step.

To simplify the presentation, we assume that when each non-local transac-
tion T completes, it broadcasts a message to all nodes indicating this and con-
taining T__WAIT(T). We also assume that each node X keeps a list, DONF(X),
of all the non-local transactions that have completed. Each node also keeps the
T_WAIT(T) sets for all the non-local transactions in DONEX). We wish to
emphasize that these assumptions are made in order to simplify the presentation
only. In a system where broadcasts are not expensive this might actually be the
best way for the mechanism to operate, but other alternatives are possible for

other systems. We do not discuss these additional strategies in this paper.

We now outline the steps that must be followed by each transaction in lock-
ing and unlocking. (There are many variations or improvements which we do not
discuss here due to space limitations.) Transactions that are locking or unlocking
objects should not interfere with each other, so there must be a mutual exclusion

mechanism to avoid this. For simplicity we do not discuss this mechanism here.

Comments are enclosed in double brackets *“ << >> ",

Step 1. Before a transaction T starts

LL_SET(T) « ®; GL_SETT) + 0,



- 140 -

WAIT(T) «— 0, T _WAIT(T) « 0
IF ty{ T) € LOCAL THEN ID(T) « 0 ELSE ID(T) « id(ty( T));

Step 2. Before transaction T starts a step
“for as many objects o which we know in advance will be referenced by this
step; and for each object o which may be referenced by its counter-step (if any)
but not by the step, do:”
IF =GI{o) THEN
BEGIN GIL{o) « true; SWo) « ID(T);
PRE(0o) «— {T}; REL{o)«— 0 END |
ELSE IF ID(T) = SWo) AND SWo) 40 THEN
PRE(0) + PREo) | J {T}
ELSE IF ty(T) € LOCAL AND ID(T) =0 AND ty(T) € SWo) THEN
BEGIN < < its time to select a descriptor for locking > >
PRE(0) — PRE(o) | J { T};
IT) — SWo);
FOR pe€ GL_SET(T) DO SWp) — SWo)
END

ELSE “wait and try global locking later”;

GL_SET\T) « GL_SET(T) | J {o};

Step 3. Before a step of transaction T is allowed to access object o
IFF =GL(o) OR T ¢& PRE(0o) THEN
“perform global locking as in Step 2 above”;
IF =LL{o) THEN LL{o) « true

ELSE “‘wait and try local locking later’’;
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LL_SET(T) « LL_SET(T) | J {o};
WAIT(T) «— WAIT(T) | J REL(o);

Step 4. When a transaction T completes a step at node X

A.IF T is a local transaction
< < T has completed its only step. At this point LL_SET(T) must equal
GL_SENT). >>
T _WAIT(T) «— WAIT(T);
WHILE “there is an R € T_WAIT(T) not yet processed in this loop
such that R € DONE(X)” DO
I_WAINT) « ( T_WAINT) - {R}) |y T_WAIT(R);
FOR pe€ LL_SET(T) DO
BEGIN << release locks >>
REL(p) «— REL(p) | J T_WAIT(T); LL(p) « false;
PRE(p) — PRE[p) - {T};
I PRE(p) =@ AND REL(p) =@ THEN GIL(p) « false;

END:

B.If T is non-local completing a revocable step,
or a counter step, or its last step

< << At this point LL_SET(T) should be a subset of GL_SET(T) > >
FOR pe€ LL_SET(T) DO

BEGIN

REL(p) «+ REL(p) | J {T}; LL(p) « false;

END;

LL_SET(T)«— 0; GL_SETT) < 0,
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T_WAIT(T) « T_WAIT(T) | J WAIT(T); WAIT(T) « 6;

C.If T is non-local completing a non-revocable step

(except its last step)

“do nothing”

Step 5. If transaction T must be aborted
<< T should not be aborted if it is in the process of releasing locks > >

<< Undo all irrevocable steps (if any) and the currently executing step or

counter-step > >
FOR pe€ LL_SET(T) DO
BEGIN
“Restore object p to its original value (e.g., using log)’’;
LI(p) « false
END;
LL_SET(T) « 9, WAIT(T) « 0;
FOR p€ GL_SENT) DO
BEGIN
PRE(p) — PRE(p) - {T};
IF PRE(p) =0 AND REL(p) =0 THEN GL(p) « false
END;
GL_SET(T) « o,
“For all outstanding revocable steps, execute their counter-step (in order).
Each of these counter-steps is executed just like a regular step, except that no

1

pre-locking is necessary (i.e., skip Step 2)

Step 6. When non-local transaction T completes all its steps
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or all of its counter-steps
< < Step 4.B must have been executed at this point > >
“send to all nodes a completion message indicating that 7 has finished and

containing T_WAIT( T).

Step 7. When a node X receives a completion message for T
(including T _WAIT(T))
DONE(X) — DONHEX) |J {T};
WHILE “‘there is an R € T_WAIT(T) not yet processed in this loop
such that R € DONFE(X)"” DO
T_WAINT) « ( T_WAINT) - {R} ) |y T_WAIT(R);
FOR ‘‘each object p such that GL(p) is true” DO
BEGIN
PRE(p) — PRHp) - {T};
IF T € REL(p) THEN
REL(p) — ( REL(p) - {T} ) |y T_WAIT(T);
IF REI{p) =0 AND PRE(p) =0 THEN GIL(p) « false;

END;

(End of Appendix A.)



