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ABSTRACT

N-Modular Redundancy (NMR) protécts against arbitrary
types, i hardware or software failures in a minority of sys-
{err: components, thereby yielding the highest degreoe of reli-
ability. In this paper we study the application of NAMR,
specifically Triple Modular Redundancy (TMR), to generai-
purpose database processing. We discuss the struciure and
implementation iradeofls of a TMR system that is “synchron-
ized" at the transaction level. That is, complete transaciions
are distributed to all nodes, where they are processad
independently, and only the majority output is accepted. We
examine the inherent “‘cost’” of such a TMR database sysiem
by presenting preliminary perfcrmance results from a ver-

sion implemented on three SUN-2/120 workstations.
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1. Introduction

In this paper we present an experimental database sysiem that pro-
vides high reliability. It is desi‘gned as a collection of fully-replicated
nodes that execute database transactions synchronously and will operatc
correctly even during periods of a single, “‘arbitrary’’ node failure. rar
implementation experience and preliminary performance results have
alsc shed light on the options available for achieving such reliability and
the inherent costs associated with the approach. In this pap=: wo discuss
the design of the fully-replicated system, the implementation choices.

and the performance results we have obtained.

For the most part, the organization of the paper follows the develop-
ment of the system itself. In the rest of this section we present some
important definitions and discuss our motivations. A description of the
overall system is given in section 2 while sections 3, 4, and S discuss
detailed implementation issues. Then, section 6 presents some prelim-
inary performance results for several system configurations. Finally, in

section 7, we make our concluding remarks.

1.1. Definitions

In order to design reliable systems we must define the types of
failures that will be handled. This is usually accomplished by defining the
“correct’’ operation of each system component in terms of assumptions
about those components. In our discussions, we will make use of the fol-

lowing definitions.



Sane Failure

When a sane failure occurs a node “immediately” halts, without
sending incorrect messages. When the node is restarted, it executes
a recovery algorithm before resuming normal processing. (Such a
node is called a fail —stop node in [Schl83].)

Insane Failure

An insane failure may cause arbitrary node behavior. (An insane
failure is called a malfunction in [Peas80].) Such a failure can cause
a node to send any message, including misleading ores. to other
nodes. Furthermore, it can refuse to send required messages and
can even collaborate with other insane nodes in an attempt to sub-

vert the entire system.

Perfect Node
A perfect node is one that does not fail during a given pericd of time.
This definition is used primarily when discussing the operation of dis-
tributed algorithms. For example, to mask a singie insane faiiure, ui
least two perfect nodes must exist. This does not mean that the
nodes never fail. It simply means that, during the duration of the
insane failure, the nodes do not fail. In general, most distributed
algorithms dealing with insane failures require some number of per-

fect nodes during certain critical periods of the algorithm.

Stable Storage
A node is considered to have stable storage if updates to that
storage are resilient to sane failures [Lamps79]. That is, if a proces-
sor halts in the middle of a storage operation, either the operation is
completely successful or it is not performed at all. Usually, stable

storage is implemented using disks.



1.2. Motivalion

Most database systems assume that only sane failures can occur.
This assumption usually allows the development of efficient algorithms.
Unfortunately, it may be unacceptable when database systems are used
for critical applications (e.g., controlling a nuclear reactcr) or wher
nodes fail in unpredictable ways. Consequently, systems designed to hian-

dle insane failures are being developed for database processing.

One simple method for coping with insane failures ‘‘replicates” all
the work done by the system and “‘compares” the outputs to determine a
single, “correct” system result. Usually, such sysiems contain thrue
fully-replicated processing elements and are known as Triple Modular
Redundan! (TMR) svstems [Siew82 . The main advantage of MR sysielns
is that no matter what caused the failure, or what it affected, the major-
ity result is chosen as the system result, thereby making Lthe system very
relizble. Additionally, TMR techniques may be incorporated a! many
different levels within a system. For example, gate-level compenentis,
modules, or complete computer systems may be replicated. Finally,
since comparisons are performed only on component outputs, it is possi-

ble io incorporate standard processing nodes into the TMR design.

TMR techniques have been used extensively in process cecntrol
environments (e.g., airplane and spacecraft control), but their use hes
almost always involved simple inputs, outputs, and “‘system states’. For
example, the SIFT (Software Implemented Fault Tolerance) computer
controls wing actuator settings based on various sensor readings
[Wens78]. The input and outputs are voltages from hardware devices. On
the other hand, we are interested in using TMR for database applications.
That is, the input is an entire database transaction, while the output is a,
possibly large, subset of the database. Furthermore, the system state
must encompass all the data contained in the database itsell. We believe
that such high-level interaction can significantly reduce communication
costs, allow us to use conventional database processing, and simplify the
design of the reliable system. Such processing, however, introduces
some interesting problems, especially with respect to failure detection
and recovery, that have not been fully examined in the literature. In this
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paper, we will outline these problems and some potential solutions.

One common criticism of TMR systems for database applications is
Lhat their cost, both in terms of resources and operating expenses, may
be “‘prohibitive’’. Of course, the extra cost does provide added reliability,
so both factors must be considered together. This paper provices a
framework for such comparisons, allowing us to evaluate the TMR data-
base techniques in a fair and objective fashion.

Along the same lines, TMR systems have been criticized because they
are “fully-replicated”. That is, some people believe it is impractical to
replicate an entirc database on three nodes. However, in many svsiems &
small, but critical, portion of the database must be maintained with high
reliability. In such a situation, the critical portion may be maintain=d by
a TMR subsystem. (IBM's Highly Available System protects certain sys-
temn tables using a similar approach [Aghi83].) Our experimental systemni
concentrates on the operation of such fully-replicated, detabase subsys-
tems.

Note that TMR techniques, including the ones presented in this
paper, can be easily generalized to NMR techniques. However, we wiil res-
. trict our discussion to triple redundancy, both because it is the most
likely in practice and because our experimental results are for such a
level of replication.

Finally, a detailed discussion of database processing in the presence
of insane node failures can be found in [Gare85]. In that paper, models
are presented for node and network behavior and a correctness criteria
for the overall database system is defined. Throughout this paper, we will
be discussing the implementation issues associated with such a repli-
cated system. Readers interested in the “theory’’ behind the implemen-

tation should refer to the paper cited.

2. System Design

An important advantage of a TMR system is its simple design. All
nodes perform the same functions and contain the same data. Further-
more, it is possible to design a node’s operation around separate com-

ponents, each responsible for a distinct process. For example, one
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component on each node may provide for the synchronization of transac-
tion execution, while another performs the transactions themselves. In

our system, each node consists of the following components.

Scheduler
Transaction Manager
Voter

Recovery Manager

Also, user processes, located throughout the processing nodes or on
other hosts, submit transactions to be performed and wait for transec-
tion results to be returned. In order to describe the operation of these
components, we will trace a single transaction as it is processed by the

system (Figure 1}.

2.1. Scheduling

A user process begins the execution of a transaction by submitting a
{ransaction request to one of the schedulers. It is the scheduler’s task to
guarantee that all nodes in the system receive the transaction request,
even in the presence of node failures. Additionally, the schedulers must
guarantee the same “transaction commit order” (ie., the system
schedule) on all nodes. In short, the schedulers make use of synchron-
ized clocks, a reliable broadcast algorithm and ‘‘synchronization’” mes-
sages to fnaintain identical schedules on all perfect nodes. We will dis-

cuss some of the scheduling algorithm details in section 3.

2.2. Transaction Processing

Once a transaction has been scheduled by the local scheduler, it is
sent to the local transaction manager. The transaction manager, in turn,
executes them against the database as fast™as possible. The actual pro-
cessing of transactions may be implemented in many different ways. (We
will discuss various options in section 4.) However, in all cases, the tran-
saction manager must “‘commit’’ the transactions in the order they were
scheduled. '
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Once a transaction has been completed, the output of the transac-
tion is sent to the user, while the current ‘‘signature’ of the database is
sent to each voter (see below). The user determines the “correct” out-
put’of the transaction by selecting the output produced by a majority of
nodes. If no correct output can be determined, the user may submit a
special transaction to discover the outcome of the questionable transac-

tion.

2.3. Failure Detection

The database signature of each node is used to determine when a
node failure has occurred. That is, a given node can determine that “it”
has failed by comparing its database signature to that of the other nodes.
I{ the signature received from the local transaction manager disagrees
with that from a majority of the transaction managers, the voler assumes
that some local component has failed and sends a failure report to the
recovery manager. (The voter can only detect the failure after the node
has been repaired and is functioning properly. Once it is repaired, the
node executes its algorithms correctly, but the database contains
incorrect data.) This form of failure detection allows the voter to detect
transient processing errors, lost transactions, processor halting, and
spontaneous media failures. For the most part, the voter doesn't care
what failure happened, only that some failure caused the database to be

inconsistent.

The signature used by the voters must encode the eflects of each
transaction on the database and should be relatively easy to compute and
maintain. Such a signature may be completely deterministic (e.g., a redo

log) or it may be probabilistic (e.g., a “‘checksum").

2.4. Failure Recovery

Once a possible node failure has been detected, the recovery
manager is responsible for bringing the local database back to a con-
sistent state. Of course, since transactions may have been processed by
the other nodes during the failure, the recovery manager must depend on
the other nodes in the system to determine the correct database state.

ATn
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Once again, we will present the basic recovery procedure by following the
flow of messages through the system. Keep in mind, the primary goal of
the recovery protocol is to allow & failed node to restore its database,
without noticeably interrupting transaction processing at the other

nodes.

To start the recovery process, the voter informs the local recovery
manager of a failure (Step 1 in Figure 2). In turn, the recovery manager
submits a ‘‘snapshot’ transaction to the local scheduler (Step 2). The
snapshot transaction, like any other, is assigned a position in the global
schedule and is eventually processed by the transaction managers on all
perfect nodes (Steps 3 and 4). (Note, if the recovering node can't partici-
pate in this snapshot transaction it isn’'t ready to recover anywayv.) When
a snapshot transaction is executed, the transaction manager stores a
“snapshot’’ cf the local database. Of course, these snapshots are taken
at different physical times, but they represent the database seen by each
node after the same transaction. Once the snapshot has been takern,
each transaction manager sends it to the local recovery manager and
resumes normal transaction processing (Step 5). (Actually, the transac-
tion manager on the recovering node must postpone processing. We will
discuss this shortly.) At this point, the recovery managers send their
snapshots to the failed recovery manager, who uses them to correct the
local database. Finally, the failed transaction manager is given a correct
copy of the database and may resume transaction processing (Steps 6
and 7).

There are many different protocols that may be used by the recovery
managers to send their snapshots to the recovering node. If the database
is small, the entire snapshot may be transmitted to the other node.
Alternately, a database ‘'signature’ may be used to detect the database
pages that have been corrupted and need to be transmitted to the failed
node. (This signature need not be the same one used by the voters to
detect a failure.) However, in all these cases one point remains the same.
It always takes some finite amount of time to install the consistent copy
after the snapshois have been taken. Therefore, transaction requests

that arrive during this time and are processed by the normal nodes, must
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be stored by the recovering node and processed at a later time. Conse-
quently, there is some time period, possibly infinite, when the recovering
node is trying to catch-up to the other nodes in the system. (Actually,
transactions may be executed before the database is consistent, but this

may cause another failure. Pay your money and take a chance !)

At this point, we discuss the implementation details associated wilh

some of the system components.

3. Scheduler

The schedulers must guarantee the following properties in the pres-

ence of node failures.

1) If any perfect scheduler schedules a transaction, then all perfect
schedulers schedule that transaction. Furthermore, if a feully
scheduler schedules a transaction, then either all or none of the per-
fect schedulers schedule that transaction. Note, we d2 not reguire

that all transactions be scheduled.

2) If any perfect scheduler schedules a set of transactions in a given
order, then all perfect schedulers will “'eventually” schedule that set
of transactions in the same order. In particular, we do not require
that transactions be scheduled simultaneously by all perfect nodes,

only eventually.

The first property is a version of the Byzantine Generals Problem
[Lamp82] and has many proposed solutions [DoleB2, Lync82, Peas€0].
(Any algorithm which solves this problem is called a “reliable broadcast™
algorithm.) The second property essentially requires that all “‘actions” on
the global schedule be “synchronized’’. Two approaches have been pro-
posed to guarantee such a property. Lamport has described a "state
machine approach” which makes use of reliable broadcasis and syn-
chronized real clocks to cope with arbitrary node failures [Lamp84]. To
the same end, Schneider makes use of reliable broadcasts and logical
clocks, implemented via acknowledgement messages [Schn82]. Both
approaches are very general, and can be applied to many different distri-
buted applications. Consequently, the design of the scheduler incor-

porates ideas from both. (In fact, the entire database system presented
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in this paper can be considered a manifestation of these approaches.)

A complete presentation of the scheduler design is beyond the scope
of this paper. Instead, we will discuss two important implemeniation
issues. (Readers interested in a detailed discussion of the scheduler

design and operation should refer to [Pitt85].)

3.1. Null Transactions

As mentioned, Lamportl's state machine approach makes use of syn-
chronized clocks to guarantee a unique ordering of transactions by ali
perfect schedulers. Essentially, each transaction is assigned a glebally
unique timestamp that is used to correctly schedule it, despite an insane
failure. It can be shown that the timestamp must depend on the “max-
imum’’ messace delay imposed by the system [LampB4]. Unfortunately.
most messages are processed far more quickly. For exampie, In our
implementation the maximum message delay is about 500 ms, while the
average message delay is about 11 ms.! Consequently, it is advantagesus

to “‘prematurely’’ schedule transactions when no failures occur.

A given scheduler can determine that a transaction can be preme-
turely scheduled by monitoring the flow of transactions from each
scheduler. For the most part, if all schedulers have transaclions pend-
ing, then the transaction with the smallest timestamp can be scheduled
immediately [SchnB2]. That is, the transaction can be scheduled be fore
its timestamp expires. In this way, the scheduling delay associated with
each transaction is independent of the maximum message delay, given
that there are no failures and at least one transaction is pending from
each scheduler. (The scheduling delay is the amount of time it takes to

schedule a transaction.)

During slack periods, a steady supply of pending transactions can be
provided by ‘mull” transactions [Lamp84, Schn82]. Essentially,
schedulers submit null transactions when they have no real transactions

pending and at least one transaction is awaiting premature scheduling.

1.  The large difference is caused by the operating system, not the network hardware.
The details of our implementation, e.g., hardware used, are given in section 6.
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Null transactions are handled like any other transaction, with the excep-

tion that they are not sent to the transaction manager when scheduled.

There is, of course, a tradeoff associated with the use of null transac-
tions. When few user transactions are being processed concurrently, null
{ransactions allow premature scheduling and this decreases the average
scheduling delay. On the other hand, when many user transactions are
pending, premature scheduling can be accomplished without the use of
null transactions, which cause additional processing. Conseqﬁently, the
“policy”” used to generate nulls must take both factors into account. To
illustrate this point, Table 1 shows the number of null transactions gen-
erated by the currently-implemented policy, as a percentage of the total
number of transactions processed, for varying degrees of multiprogram-
ming. Note, as multiprogramming increases fewer null transactions are
generated. Conversely, with low concurrency null transactions account
for most of the processing done by the schedulers, but the system is
lichtly loaded anyway. (The details of the current null policy can be
found in [Pitt85].)

Table 1. Null Transaction Processing
Multiprogramming | % of Null Trans

1 67

2 61

3 55

4 50

5 42

6 39

It is interesting to note that most of the scheduling delay associated
with a transaction is due to ‘‘synchronization”, rather than “distribu-
tion”. That is, a transaction itself is distributed to all nodes through one
reliable broadcast. Such a broadcast may or may not be “‘expensive’’,

depending on the failure model used and implementation details.
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However, a transaction can't be scheduled prematurely until the other
schedulers have issued transactions (user or null) with later timestamps,

and these require additional broadcasts.

3.2. Balching Transactions

The reliable broadcasts used by the schedulers produce many mes-
sages for each transaction. In particular, in a three node system four
messages are generated for each transaction (real or null) submitted by
a scheduler (Figure 3). A decrease in message processing may be
achieved by scheduling transactions in “‘batches”. That is, each
scheduler collects a number of transactions before submitting them to
the other schedulers, where the entire batch is scheduled at one time. Of

course, this strategy has both advaniages and disadvantages.

On one hand, transaction batching decreases the total number of
messages generated. For example, if three transactions are batched
together, then eight messages are saved during the scheduling process
(recall Figure 3). Of course, this decrease in the number of messages
also decreases the amount of message ''processing” performed by the
schedulers. (Message processing includes the transmission time and the
CPU time used by the sender and receiver.) Figure 4 shows the average
processing time for messages of varying sizes in our system. We can see
that the system-imposed overhead for each message (i.e., the y-
intercept) is about 8.6 ms. Therefore, by batching N transactions
together we may be able to save 4x8.6x(N—1) ms of processing time,
thereby increasing system throughput.

On the other hand, the schedulers must know “‘when” to submit the
current batch of transactions. For example, with two transactions wait-
ing in the batch it may be 2 ms or 2 days before a third arrives. Conse-
quently, the scheduler should only hold a batch until it has been waiting a
certain period of time or until it has been filled (i.e., the largest possible
message size has been reached). Furthermore, batching may increase
the average scheduling delay because transactions are sometimes “‘wait-

ing" for a batch to be released.
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4. Transaclion Manager

The transaction manager may be implemented using many different
conventional database techniques. This flexibility is due to the small
number of requirements imposed by the system design. In fact, the tran-
saction manager is only required to commit transactions in timestamp
order and to maintain a database snapshot. Now we discuss a few of the

choices.

4.1. Stable Storage

Unlike normal database processing systems, the transaction
manager does not need to use stable storage for the database. If the
database is lost during a failure, the node can recover by using the dala
from the other nodes. However, it may still be advantageous to keep the
database in stable storage. If a sane failure occurs and the recovering
node is able to recognize this, then it can use the local copy when recov-
ering. thereby decreasing the recovery period. That is. at recoveryv time
the local database is consistent and the node need only acquire the
changes performed while it was down. Of course, even with stable
storage, an insane failure may destroy the dalabase, making use of the
remole ccples necessary.

Stable storage may help at recovery time, but there is a cost associ-
ated with its use. That is, a transaction manager that does not use stable
storage should be able to maintain a higher processing rate, during no-
failure periods, than one that does. This increase in performance may or
may not compensate for the increase in recovery processing. The best
choice will depend on the frequencies of each type of failure and on the

overhead of each storage strategy.

In the current implementation, the database consists of a collection
of pages maintained on disk. Additionally, a cache of recently-used pages
is maintained in memory. Any transaction requiring a given page may
find it in the cache or may read it from the disk. Any update to the page
is performed on the cache copy. If no stable storage is desired, updated
cache pages are written to the disk only when a cache slot is required for

another page. Consequently, a node failure may cause previous updates
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to be lost.

If stable storage is desired, two extra steps are taken. First, as a
transaction modifies cache pages, they are "'‘pinned’ in memory. That is,
the cache pages are not allowed to overwrite the corresponding disk
pages until the transaction commits. (At commit time, the pages arc
flushed to disk.) Given a sufficiently large cache, pinning is not a resiric-
tive operation. Secondly, to survive a sane failure during the flush
period, a “‘redo” log is maintained. That is, before any page is written to
the disk the updated data within that page is written to a sequential log.
Once all log records have been writlen, a commit record is written on the
log and the transaction output is sent to the user. At this point, the
updsted pages may migrate to the disk at any rate. When all the pages
for a transaction have migrated the corresponding log records are

deleted. (This keeps the log size manageable.)

4.2. Degree of Multiprogramming

The simplest transaction manager is implemented by a single pro-
cess. This process receives transactions from the scheduler and exe-
cutes them serially. No concurrency mechanism is needed, wheiher
stable storage is implemented, or not. Such a transaction manager is

easy to implement and has been examined first in our experiments.

A performance gain may be achieved by creating multiple transac-
tion servers. In this way, the transaction manager receives transactions
from the scheduler and assigns the transaction to a server. Each server
is capable of performing a single transaction at a time, similar to the
simple transaction manager described above. Of course, with multiple
servers, some concurrency control mechanism must be used to guaran-
tee that the transactions are performed in the correct sequence. In fact,
many ‘‘standard’ concurrency control algorithms may be adapted to
ensure this. For example, two-phase locking can be modified so that a
transaction which requires a lock held by another transaction, with
greater timestamp, can simply abort the later transaction and take the
lock. Along these lines, we are implementing a multi-server transaction
manager based on the PREDATOR Database System [KentB5].
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4.3. Snapshots

As stated in section 2, the transaction manager is responsible for
taking a snapshot of the database. This snapshot is used by the recovery
manager when a node is recovering from a failure. Of course, during the
recovery phase of another node, the local transaction manager musl con-

tinue normal processing without disturbing the timestamped snapshot.

In our system, the transaction timestamps are used to simplidy
snapshot generation. In particular, every page in the database is marked
with its most recent update time. Additionally, each page may have two
different disk copies. At any time, every page has a copy that has a
timestamp less than or equal to the current snapshot time. This copy is
called the '‘snapshot’” copy. If only the snapshot copy exists, it is copiec
to a free page before any iransaction may update that page. This new
copy will ha{re an update time greater than the snapshot time. Ii twe
copies exist and both have update times earlier than the snapshct time,
then the oldest copy is deleted and the previous condition is enplied.
Finally, if a copy exists with an update time greater than the snepshot

time, then it may be updated directly by the transaction.

This strategy provides efficient snapshot generation. A new snapshot
is generated simply by advancing the snapshot time. Any page updated

after the snapshot will be copied automatically.

4.4. Database Signature

A database signature may be exchanged at two different times. First,
whenever a transaction is performed, the resulting database signature is
sent to each voter. The voters use this signature to determine if a failure
has occurred. Since the voter receives a signature after every transac-
tion is executied, the signature should be easy to compute and transrnit.
Additionally, the voter need not determine the pages that have been cor-
rupted. Rather, the voter simply has to detect the presence of a cor-
rupted page. Currently, the signature used by the voter is represented
by a four-byte checksum. The checksum is computed from the check-
sums of all the pages accessed by a given transaction. In this way, cor-
rupted pages can be detected with high probability. (In practice, the
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checksum for an entire page is computed once when the database system
is started. Thereafter, each checksum is ‘‘adjusted” when the

corresponding page is modified, providing efficient maintenance.)

Whenever a recovery is in progress, the recovery manager may use a
database signature to determine the pages that have been corrupted and,
consequently, must be transferred from the other nodes. Unlike the
voter signature, this database signature is rarely transmitted by the
transaction manager. Furthermore, this database signature must “pin-
point” the pages that have been corrupted. Depending on the size of the

database, three types of database signatures will be examined.

If the database is small, as in the current implementalicn, the data-
base signature can be represented by an array of checksums. There is
one checksum for each page in the database. The entire checksum array
is exchanged by the recovery managers as required. Additionally, the
entire checksum array can be maintained in memory, even for medium

size databases, thereby making it computationally efficient.

For large databases, it is impractical to transfer an array of check-
sums. Rather, a “hierarchy’ of checksums is maintained. That is, all
database pages are grouped into segments, which, in turn, are grouped
into larger segments. A checksum for each segment is computed based
on the checksums for the pages (segments) within that segment. Using
this tree of checksums, the recovery managers can iteratively determine
the pages in the database that have been corrupted. For example, con-
sider a database with 10,000 pages organized into 100 segments of 100
pages each. In the first phase of a recovery, the recovery managers
exchange only the checksums of the 100 segments. For any segment that
is corrupted (as determined by its checksum), the checksums of its 100
pages are exchanged. If transactions access pages within a single seg-
ment, only 200 checksums will be exchanged to recover from a single
transaction failure. Clearly, the size of the database segments, as well as

the transaction access patterns, determine the efficiency of such a stra-
tegy.
Finally, for large databases, the complete signature must be easy to

compute. In particular, a recovering node may have to reconstruct the
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entire database signature before initiating the restart protocol. Such a
situation may be helped by a probabilistic signature proposed by Lipton.
[Lipt84] His strategy produces a signature that can be used to detect,
with hlgh probability, differences between two databases. More impor-
tantly, the signature can be computed using any ordering of the database
pages. In this way, a recovering node can compute the signature by
sequentially accessing the * physical’” database pages, thereby making its

computation efficient.

5. Failure Detection

As previously described, the voter is responsible for detecting thc
failure of the local node, by corhparing all outputs from all nodes. The

implementation of such a voter should consider the following details.

5.1. Vote Queue

Since the three nodes will probably be execuling transpct*onc at
different rates, it is advantageous to maintain a queue of pending tran-
sactions. When all signatures for a given transaction have been received,
they are compared. Additionally, if the local signature agrees with
another (thereby forming a majority), before the third is received, thea
voter may delete the transaction from the queue. The other signature
will simply be ignored when it arrives. This strategy helps to decrease
the average size of the voter’s queue. Of course, the voter must always
wait for the local signature to arrive before it can delete a transaction

from the queue.

5.2. Time Limit

If the local signature for a transaction is lost (or the transaction was
not performed by the local node) the voter must decide when to report
the “‘failure’” to the recovery manager. That is, after seeing a majority
from the other nodes, the voter should only wait some finite amount of
time before informing the recovery manager. Unfortunately, choosing a
time limit is not easy. For example, if the local transaction manager is

heavily loaded (e.g., when trying to catch-up after a recovery), the
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sicnature for each transaction will arrive much later than those for the
other nodes. Therefore, if the time limit is too small, the voter will report
a “‘failure” even though the transaction was performed correctly. (The
current recovery protocol isn't affected by such a situation, but the
imposed overhead is unnecessary. Additionally, a real failure on another

node can't be handled during this period.)

The easiest way to remedy this situation is to select a large time
limit. Unfortunately, preliminary research shows that the length of the
time limit directly determines the number of pages that must be
exchanged during a given recovery cycle. (The longer a failure goes
unreported, the greater the probability that other transactions wiil
access the corrupted pages and corrupt other pages.) Therefore, we must
select a time limit that is large enough to prevent false failure reports,

yet small enough to reduce the amount of recovery processing.

5.3. Vote Batching

There is a method that may be used to eliminate the effects of a local
signature message that is lost. If the signature reflects all pages in the
database, not just those accessed by a single transaction, it may be used
to delelte a group cf transactions from the queue. For example, the
currently used signature is generated from the checksums for all of the
database pages. lf a signature message is lost, but the pages are
correctly updated, the next signalure message will reflect the changes.
Therefore, for a given transaction, if the voter sees that the local signa-
ture agrees with the majority, it. can delete all pending transactions that
have a timestamp less than the current one. Conversely, if the local sig-
nature disagrees with the majority, all pending transactions can be

deleted.

Such a modification can be extended to gain another advantage.
Similar to batch scheduling, the transaction manager could decide to
send a signature for a batch of transactions. However, in this case,
instead of combining a group of signature messages, all but the last are
eliminated. This should improve the load on the network and the overall

system performance, Wwithout drastically affecting the recovery
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characteristics.

6. System Performance

In this section, we present preliminary performance results for a tri-
ple node database system. In particular, we examine the average
response time and the system throughput, for periods of normal process-
ing. Of course, since our system is experimental, “‘absolute’ values for
the transaction response time and the system throughput may be
misleading. It is more advantageous to compare the performance of the
triple node system to other, less reliable systems, implemented using the
same basic design. In this way, we can begin to determine the perfor-
mance costs associated with an increase in reliability. To this end, the
basic system design has been used to implement a single node and a dual

node database system.

Unless otherwise stated, each system makes use of the processing
components described in the preceding sectlions. Specifically, the
schedulers are designed to make use of null transactions tc reduce the
scheduling delay, but batch scheduling is not used. Additionslly, the
transaction manager processes transactions serially, without the use oi
stable storage, while the voters receive signatures for each transacticn.
Finally, the recovery managers make use of an array of checksums, as a

database signature, to determine the corrupted database pages.

6.1. Configurations

Each of the database systems were implemented on a collection of
SUN-2/120 workstations, running SUN UNIX (based on BSD 4.2 UNIX), con-
nected by a 10-Mbit/sec ethernet.? Each workstation contained two disks,
one supporting the operating system and one supporting the database.

Interprocess communication was performed using the UDP/IP facilities of

2. We realize that the ethernet is a single point of failure in our experimental system,
but we are using it for a practical reason: we have no other. However, our design
does not require the “‘broadcast” capability of the ethernet. Any direct connection
between the processing nodes will suffice. Furthermore, we believe that a different
network will not change our performance results significantly.
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SUN UNIX. Finally, all transactions originated from a single user process
located on a VAX-11/750, running BSD 4.2 UNIX.

Now, we briefly describe the configuration of each system.

Single Node System

The single node system consists of one transaction manager. Tran-
sactions are sent directly to the transaction manager from the user.
Since only one node exists (and no stable storage is used), there is no
recovery from failure, and therefore, no recovery manager. Simi-
larly. no voter or scheduler is needed. Note, since the single node
system doesn’'t use stable storage, it doesn’'t represent a convemn-
tional dalabase system. Rather, it represents an ‘‘upper bound”
against which to compare. That is, it yields the best possible perfor-

mance by neglecting reliability considerations.

Dual Node System

The dual node system consists of a scheduler, a transaction manager
and a recovery manager on two nodes. It is capable of recovering
from a single, sane failure of either node and may execute transac-
tions during such a recovery, although at a reduced rate. Finally, the
transaction managers have been modified to detect their own

failures. (This is possible because of the nature of sane failures.)

Triple Node System
The triple node system consists of all components on three nodes,
where voters are used to detect node failures. The system is capatble
of recovering from a single, insane node failure and allows transac-

tion processing during recovery periods.

6.2. Database Transactions

The database used in our preliminary experiments consists of 100,
512-byte pages, while the database cache (in memory) can hold a total of
16 pages. Furthermore, each database transaction updates a fixed

number of pages chosen randomly with uniform probability, where each
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update affects a single byle chosen at random. This combination of a
small database, a relatively large cache, and a simple transaction alows

efficient processing.

It should be noted that these parameters would normally be con-
sidered unrealistic. However, such parameters tend to exaggerate the
impact of message processing on the overall system performance. That
is, since transactions are processed quickly, a comparable portion of the
system performance is devoted to message processing. Such an exag-
geration allows use to focus on the change in message processing as the
number of nodes is increased, and that is the goal of our preliminary
experiments. Future experiments, involving recovery processing and
more complicated transaction rrenagers, will make use of more realistic

transactions and databases.

6.3. Response Time

In each system, the average transaction response time was “eter
mined when a single user existed. That is, there was only one transac-
tion being processed by the system at any given time. Such a situalion
yields results that are free from the effects of multiprogramming. In the
single and dual node systems the response time was taken to be the time
between sending a transaction request and receiving the firsf iransac-
tion output. In the triple node system it was taken to be the time until
two identical outputs were received. In all cases, the average was deter-
mined based on a sample set large enough to insure an error of less than

five percent.

Figure 5 shows the average response times for each of the systems.
In all three curves, the slope is about 11 ms/page. That is, each database
page access (a read and a write) takes about 11 ms. Additionally, the y-
intercepts for each curve are 16, 76, and 130 ms. These values represent
the response time for a transaction that accesses no database pages. The
differences in these response times can be explained as follows. (Recall,

the average message delay is 11 ms.)

In the dual node system at least three extra messages are

exchanged, one to broadcast the transaction request to the other
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scheduler, one to send a "'null” transaction back to the input scheduler,
and one to send the transaction to the transaction manager. Addition-
ally, since node clocks may differ, the scheduler may wait some amount
of time before sending the null transaction. (In our implementaticn, the
clocks differ by aboul 20 ms.)

In the triple node system most of the extra 114 ms is attributable to
the reliable broadcast (2 message delays), the synchronization (i.e., null)
messages (4 message delays) and the clock differences (20 ms). The
remaining time delay is a result of the user waiting for two outputs

instead of one.

6.4. System Throughput

The averace transaction response time is useful for determining the
additional message delays imposed by a system, but it doesn’t accurately
refiect the amount of ““parallelism’ within the system. For example, with
an infinite capacity processor, the scheduling of one transaction can be
done concurrently with the database processing of another. Additionally,
multiple transactions can be scheduled by the schedulers concurrently.
(If designed properly, the transaction manager can also execute transac-
tions concurrently, but the current transaction managers do not provide
this flexibility.) With a less powerful processor, however, these concurrent
operations degrade the performance of each other. In order to deter-

mine this degradation, the system throughput must be examined.

For each system, the system throughput was determined by saturat-
ing the transaction manager at each node.3 That is, for each system and
transaction size, a level of multiprogramming was chosen which kept the
transaction manager busy and maximized the system throughput. Figure
6 shows Lhe “best’ throughput values for each system and transaction
size. Note, for each system the throughput increases as the transaction
size increases. Essentially, since the scheduling delay is a *'per transac-
tion” overhead, the larger transactions are executed more efficiently.

3 Much to ocur dismay, measuring system throughput during saturation periods is

dificult. The strain on the system, due to the processing load and the large rumber
of messages, produces a large variation in results.
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Using the single node system as a base, we can see that the dual node
system has a throughput of 60 to 76 percent. Clearly, the degradation is
a result of the concurrent scheduling of transactions. Furthermore, the
curves suggest that larger transactions experience a proportionally

smaller degradation.

Similarly, the triple node system shows a throughput of 26 to 54 per-
cent. Part of the throughput degradation is attributable to the increase
in synchronization messages, while another part is a result of voter pro-
cessing. Recall, in the dual node system the transaction manager detects
failures, while in the triple node system this role is performed by the
voter processes. Although the actual comparison of transaction outputs
is computationally inexpensive, many signature messages (9 per trensac-
tion) must be processed by the voter and operating system on each node,
and this decreases system performance. (Remember, no balching

(scheduling or voting) was implemented in the current experiments.)
Finally, the reader should keep in mind that the systemns were imple-

mented on micro-computer based workstations. Consequently, the sys-

tem degradation imposed by concurrent processes is exaggerated. Also,

the transaction manager has been implemented without stable storage,

using a smell database. Due to such simplicity, message procesz'ig is -

comparable to, if not greater than, database processing. Presumably,
database systems that make use of stable storage and a larger database
will show a proportionally smaller throughput degradation as the number

of nodes is increased. (Future experiments will attempt to quantify this

statement.)

7. Conclusion

In this paper we have presented a reliable database system designed
using TMR techniques. The system consists of three fully-replicated data-
base nodes that execute transactions synchronously. Each node consists
of a collection of components, each of which performs a well-defined part
of the overall system task.

Our preliminary results show that the average scheduling delay is

relatively independent of the transaction size. Consequently, the system
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achieves its greatest throughput when processing large transactions.
That is, as transaclions require more processing, the scheduling overhead

imposed by the TMR design decreases proportionally.

An important aspect of the system design is that transactions are
performed by the transaction managers withoul inter-node communica-
tion (e.g., no remote lock request and no distributed deadlock detection).
Consequently, the transaction manager can be implemented using con-
ventional database techniques. Also, since the database is replicated at
three nodes, there is no meed to use stable storage. Without stable
storage, the transaction managers may be able to sustain high processing
rates.

Failure detection is always a difficull problem and has been solved in
our TMR design by using a database signature. The signature provides an
efficient method to detect incorrect transaction outputs. However, the
number of messages required for failure detection in a TMR system may
cause a degradation in system throughput. Once a failure has been
detected, the recovery manager may use another type of signature to
determine the corrupted database pages. Then, the correct database

pages are acquired from the other recovery managers.

In our TMR database system, the main performance costs are due to
synchronization and failure detection messages. Therefore, we have con-
sidered two methods to reduce the number of messages. First of all,
transaction batching may be used during the scheduling phase. Simi-
larly, signature messages, used for failure detection, may be transmitied
for a group of transactions, instead of singly. In both cases, the decrease
in message traffic should allow greater system throughput, without

significantly affecting other system characteristics.

Finally, our experimental results allow us to quantify the cost of a
TMR database system. In particular, we can examine the scheduling
delay of each transaction. In other words, we can begin to understand
the amount of processing required to “synchronize’’ actions in a fully-
replicated distributed system. Secondly, our design allows us to investi-
gate the performance of systems with varying degrees of reliability and

availabilily. Future experiments will pursue these topics in more detail.
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