MUTUAL EXCLUSION IN PARTITIONED
DISTRIBUTED SYSTEMS

Daniel Barbara
Hector Garcia-Molina
Department -of Computer Science

CS-001
July, 1985

MUTUAL EXCLUSION IN PARTITIONED

DISTRIBUTED SYSTEMS

Danidd Barbara

Heelor Garcia-Molina

Department of Computer Science
|
Princeton University

Princeton, New Jersey 08544

ABSTRACT

A network partition can break a distributed computing system
into groups of isolated nodes. When this occurs, a mutual exclusion
mechanism may be required to ensure that isolated groups do not
concurrently perform conflicting operations. We study and formal-
ize these mechanisms in three basic scenarios: where there is a sin-
gle conflicting type of action; where there are two conflicting types,
but operations of the same type do not conflict; and where there are
two conflicting tvpes, but operations of one type do not conflict
among themselves. For each scenario, we present applications that
require mutual exclusion (e.g., name servers, termination protocols,
concurrency control). In each case, we also present mutual exclusion
mechanisms that are more general and that may provide higher reli-
abilitv than the voting mechanisms that have been proposed as
solutions to this problem. #

1.INTRODUCTION

In a distributed compufing system, a partition occurs when one or more
groups of nodes become isolated from the rest of the system due to a failure of

the communications network. All the operational sites in the same group can

(8]

communicate with each other Vb’ut they cannot communicate with sites in other
groups. In many systems it is {mpossil)le to differentiate between a single site
failure and a partition (noticeably SDD-1 [BERNT‘?].[BERNTS],[E*IAMMSO]). S0
“logical” network partitions are much more common that what one may exﬁocl.

A reliable distributed svstem must be able to cope with network partitions.
This usually means that an isolated group of nodes must attempt to continue
performing the task the system was originally assigned. However, the isolated
group must do this without knowing how many other active groups there exist
and what thev may be doing. After a partition, the various groups cannot decide
on a common strategy to follow.

In manv applications, it becomes.necessary to provide a mutual exclusion
mechanism that works in spite of these catastrophic failures. Specifically, we have
a restricted operation that must be executed by at most one of the groups. For
instance, in a naming system that generates unique names, we probably do not
want isolated groups to concurrently generate different names for the same
object. So. il - grmlp is going to perform the naming, it must be able to guaran-
tee that no other group is performing this activity. This mutual exclusion has to
be enforced without communication between groups.

Another problem were mutual exclusion arises is in controlling access (o
replicated data items in a distributed database, where executing transactions can
read and write these items. Many concurrency control algorithms have been pro-
posed for this problmﬁ, and a good suf\-‘ey of them can be found in [BERN&I].

Basicallv. before committing. a transaction must ensure itsell the control over all

.

the copies of all the data items involved, henceforth excluding any other compet-
ing transaction from changing the values of those items or reading data values
{hat are to be immediately updated. When partitions can occur, a transaction
must also exclude transactions in other groups from executing updates that
conflict with its updates.

Traditionally, mutual exclusion in partitioned distributed systems has been
implemented by using voting mechanisms. That is, each node is a-priori assigned
a number of vofes, and only the group with a majority of the total votes is
allowed to perform a restricted operation [e.g., DAVI&2,GIFF79, THOM79,
GARCR2]. Notice that the nodes do not need to identify the presence of parti-
{ions before updating data or generating a new name: they merely have to collect
enough votes from other sites to insure a majority.

The mutual exclusion problem in the naming and the concurrency control
applications is similar but not identical. In naming, there is a single restricted
aperation: in concurrency control there are two: reading and writing the data.
Transactions that simply read data can execute concurrently in different groups.
Update transact ions must exclude other competing updates and reads. Further-
more, there are other applications (to be discussed in this paper) where mutual
exclusion follows different rules from the ones in these (:_\:znnp!o;_ Thus, a number
of natural questions arise: How are the mutual exclusion scenarios related? How
are the solutions for each scenarios related? Is voting the only way to achieve
mutual exelusion? How should votes be assigned to nodes in order to increase the

“reliability ™ of the system. pLe. to reduce the likelvhood that during a partition

no group has a majority of votés?

The goal of this paper is to answer these and other related questions. In Sec-
tion 2, we develop a framework for studying and classifying the various mutual
exclusion scenarios. We also briefly summarize various applications where mutual
exclusion arises. and show how they fit in our framework. The rest of the paper
(Sections 3.4 and 3) is devoted to studying particular scenarios, discussing tech-
niques for analyzing and improving the reliability of mutual exclusion mechan-
isms. (The scenario of Section 3 has been studied in an earlier paper [GARCS85]:

here we summarize the main results for this case.)

2. A FRAMEWORK FOR MUTUAL EXCLUSION IN DISTRIBUTED

SYSTEMS

In a distributed system, nodes perform tasks or execute transactions. and it
is these operations that have mutual exclusion requirements.

Definition 2.1 Mission: A mission is an activity undertaken by a node or
group of nodes. \lissions are classified into {ypes. It is a priori decided whether
each pair of types is compalible or mutually exclusive: two missions of compatible
tvpes can be evecuted concurrently by isolated groups of nodes while mutually
exelusive ones cannot. O |

For instance. during a partition. a group of nodes undertakes the mission 6(

updating the database. Other groups in the system may try to undertake the

same mission at the same time.

-

Definition 2.2 Compelitive mission type: We say that a mission type is
compelitive if every pair of missions of this type are mutually exclusive.O

Definition 2.3 Non compelitive mission type: We say that a mission {ype is
nan compelitive if every pair of missions of this type are not mutually exclusive.
O

The update mission is an example of a competitive mission type, and the
read mission of a non competitive one.

In this paper we only study scenarios with one or two mission types.
Seenarios with three or more mission types can always be broken into the funda-
mental one and two mission type subproblems, so we do not cover them. With

this in mind we can make a simple classification of mutual exclusion scenarios.

Definition 2.4 CUailateral mulual erclusion scenario A mutual exclusion
scenario is unilateral if it comprises only one type of mission. Q

Of course. the mission tvpe in an unilateral scenario must be competitive
(otherwise there would not be a mutual exclusion problem at all).

Definition 2.5 Hilaleral mutual erctusion scenarios: A mutual exclusion
<cenario 1s bilateral. il it contains two (_\'pe.s: of missions. O

Observe that a bilateral scenario where both mission types dre competitive is
equivalent to a unilateral scenario with a competitive mission type (i.e., in both
cases, all missions exclude each other). Thus, we are left with only two bilateral
CASEs: (-;\) no competitive mission t_\'pés. and (b) one competitive type. If we add
to lhi.\'-tlu' unilateral scenario with competitive type. we have the three basic

ccenarios that we will consider in this paper: the unilateral case is covered 1In

-6-
Soction 3. the bilateral with no competitive types in Section 4, and the bilateral
with one competitive type in Section 5.

In closing this section we survey some of the most common mutual exclusion

problems for distributed systems, and classify them using our terminology.
Unilateral scenarios

Restricled Updaling

.- - -t e

This is a classical example of a unilateral scenario. The mission type
undertaken by each group is to try to remain operative, lLe., to perform
updates on a replicated datia.base. The system does not distinguish between
read-only and update transactions; thus, read-only transactions are handled
as if they were updates.

As discussed in the introduction, the best known solution to achieve
mutual exclusion in this scenario 1s to a priori assign a number of voltes (or
points) to each node with a copy of the database, and a group whose
members have a majority of the total votes is allowed to perform the res-
tricted operation [e.g.. DAVIZZ, THOM79, GARCR&2]. Mutual exclusion is
achieved because at most a single group can have a majority of votes at a |
time. It is possible that at a given time no group has a gajority and can
perform tim operation. There seems to be no way to avoid this problem.
Even giving one node all votes does not help since that node may fail.

Notice that this problem and its solution can be generalized to the case
where data is not fully replicntgd. For install(-e; consider a system with

nodes. a. b, c and d, and a database consisting of 3 fragments. Fragment \ is

~1

replicated at nodes q, b and c; fragment Y} is only located at sile «; and frag-
ment Z is found at all four nodes. Here, three independent sets of votes are
used. cach to control access to a fragment. The X votes are distributed
among a, b and ¢; the) votes to & and the Z votes to all nodes. (It is also
possible to give X" and Y votes to nodes without a copy.) If a transaction
wishes to access fragments X and Y, it must secure a majority of the X and
Y votes. In this case there are 3 competitive mission types, but each type is
compatible with the other. As stated earlier, for analysis the problem can be
decomposed into 3 independent unilateral scenarios (one for each fragment).
and this is how we will study it in this paper.

Also notice that a transaction can never rely on the fact 1t is in a group
with a majority of votes (the group can disintegrate at any time), so it must
cecure itself the necessary votes before committing. Thus, a protocol for
identitving groups after a partition is not necessary. However, for ease of
presentation. we will speak in this and other scenarios of a “majority group”
as if it were the entity that executes the transactions.

A Directory Server

Consider a directory server that must be unique in the svstem because

.
different objects with the same name or different names for the same object
are undesirable. Here again. during a partition, at mosl one group should
have an active server. and this mutual exclusion can be achieved through
voting.

Reliable Compulation

-8- _ .

In an N-medular redundant system, nodes may fail and yield incorrect
or even misleading results. The computation being performed is replicated at
A\ sites. and if nodes with a majority of votes agree on a result, it 1s con-
sidered correct e.g.. LAMPR2.DOLER2.LYNCR2].

lHere every node or group of nodes has the mission of forcing its result
over the rest of the system. This is the only mission type in this scenario.
Nodes that can communicate with each other and have the same result
cooperate towards the same mission and are considered to be in the same
“partition”. Two groups of nodes with differ(l-nl results are engaged in mutu-
ally exclusive missions.

Bilateral Scenarios with one competitive mission

The Concurrency Control Problem

Transactions are composed by read and writ« operations that access the
database concurrently. Two operations conflict if they try to access the same
data item and at least one of the operations i< a write. Concurrency control
i the activity of controlling the relative order of conflicting operations so the
final result is equivalent to performing the transactions in serial order. We
can distinguish between two types of conflicts. If transaction T} issues a read

.
over the item r and transaction 'Tj issues a write over the same item, we talk
about a read-write {rw) conflict. On the other hand. if both transactions try
10 |)erfm_'m a write over r, we talk about a write—write (ww) conflict. Many
ccmcurronc? control mechanisms have been proposed [BERNR&1]. Here we

will present two to tllustrate. (Others will be discussed i Section 5.) In the

= G

~first. each item (lor set of items) is controlled by a lock manager at a single
site. The managers for different items can be at different sites. and usually
the manager is located at a node with a copy of the item. The lock manager
can issue read locks that give a transaction the right to read the item, and
write locks which give read/write privileges. As a transaction exccutes, 1t
must obtain the appropriate locks before accessing data. If a partition
makes a required manager inaccessible, then the transaction must wait. If
the transactions and manager follow the locking rules, including two-phase
locking (after releasing a lock. a transaction (‘z.lllnnl request additional locks),
then it can be shown that the execution of the {ransaction is equivalent to
some serial execution.

Gifford [GIFF79] devised and implemented a different type of mechan-
ism, one that uses voting for concurrency control. A total of T votes are dis-
tributed among the nodes containing a copy of the database. Ii a transaction
wishes to read and update the database. it must collect a write ‘quorum of w
votes: if it only wishes to read, it collects a read quorum of r votes. If
r4 > Tand 2w > T, then conflicts are avoided. At most one group can
be updating.the database at a time; reads do not exclude each other. l;ut one
reader excludes anv writers. As we have described it, the mechanism treats
the eutire database as a single unit. However, in this case too we can frag-
ment the database and have independent vote assignments for each frag-

ment.

In our terminology. a transaction embarks on a series of read or update

- 10 -

missions. one for each item (or fragment) it accesses. In an update (rcad)

mission. the node where the transaction runs attempts to aain control of an
item and its copies for updating (reading). Aissons on different items are
compatible. so we concentrate on a single item and its two mutually
exclusive mission types: non competitive reads and competitive updates.
Bilateral Scenarios with no competitive missions

Terminalion prolocols

When a failure occurs during the processing of a transaction. the proto-
col used for committing the transaction might be in different states at the
different sites where the transaction runs. A possibly different protocol that
tries to terminate the incomplete transaction at the operational sites must be
invoked. These tvpes of protocols are Kknown as termination protocols
[SKEE&1]. Faced with the problems of dealing with partitions in the net-
work. Skeen [SKEER2] developed a class of termination protocols called
quorum based protocols.

Under a quorum based protocol, the fate of & transaction in an isolated
group is decided by collecting a majority of votes. A transaction must collect
a commit quorum of 1 votes before it is committed by any site. Otherwise
it must collect an abort quorum of 17, votes before it is aborted. Of course
0« .V £ 1 wher V is the total number of votes in the system. To
prevent groups that are isolated from each other from independently decid-

ing to abort and commit, we must have V, + V. > V.

- 11 -

The abort and commit agreements can be thought as missions under-
taken by the groups. Obviously, they are mutually exclusive. This scenario is
therefore a bilateral scenario in which both missions are non competitive. It

does not matter if two groups decide to commit the transaction.

3. UNILATERAL SCENARIOS

In this section we treat the problem ol achieving mutual exclusion in
scenarios with only one mission. These can be viewed as problems i whici we
have a restricted operation that should be performed by at most one group of the
svstem at any given time. The mutual exclusion has to be enforced without com-
munication between groups.

As discussed in Section 2. one way to implement mutual exclusion for this
scenario is by means of voting. A second solution to this mutual exclusion prob-
lem was suggested by Lamport in 1978 [LAMP78], but because it appears to be so
similar to vote assignment. it has received little attention. The idea is to a-priori
define a set of groups that may perform the restricted operation. Bacli pair of
groups should have a node in common to guarantee mutual exclusion. For exam-
ple, if we have nodes a.b, and ¢ we may define the set {{a,b},{b.c}.{a,c}}. Nodes
@ and b can together perform the operation, knowing that neither group {b,c} or
{a,c} can be formed. Notice that this set of groups is equivalent to assigning I
vote to each node (or n votes to each node).

The assignment of votes or the choice of set of groups fan have a critical
effect on the reli;_ll)iliiy of a distributed system. Consider for example, a system

with nodes a.b.c. and d and an assignment that gives one vote to each. This

ceems like a natural choice because it gives each node cqual weight. Since 3 votes

are needed for a majority. this is equivalent to the set of groups

S= {{a,b,r}',{a,b,d},{a,c,d},{b,r,d}}

But now. consider an assignment that gives node a 2 votes and the rest a

single vote. The majority is still 3, so this is equivaleni to

R = {{a,b},{a,c},{a,d},{b,(,d},‘-

Set R and its associated vote assignment is clearly superior to S because all
groups of nodes {hat can operate under S can oper-ie under R. but not vice
versa. For instance, a and b can form a group under R but not under S. So, if
the svstem splits into groups {a.b} and {c,d}, therc will be one active group
under R but none under 5. So clearly, no system designer should ever select set
S (or its equivalent vote assignment), in spite of the fact it seems “‘natural.”

We use the term “R domr'nate..s S to mean that R is alivays superior to 5.
Obviously. we want to ignore dominated sets {or vote assignments). But even if
we do. we musl‘ sliii <elect one of the non-dominated sets, and this 1s no easy
task. In our example, which of the nodes should get the 2 votes? Or should we
give one node 1 vote and the rest 3 votes? Or 4, 3, 2 and 2 votes!?

There are many choices, but many are duplicates. For example, giving a 4
votes, b 3 votes, and ¢ and d 2 each, yields exéc—tly the same set of groups that
was given by R S0 agaih, in the sé]oct-ion process we want to ignére ‘duplicate

vote assignments.

- 13-

The concept of set of groups proves to be useful. not only b(‘(-nus(; it facili-
{ates the analysis of vote assignments, but because it is a more “powerful”
mechanism for mutual exclusion. as we will see in a moment. In the rest of this
cection we summarize the most important properties of vote assignments and sets
of groups. These properties will be useful in understanding how these mechan-
isms operate and for selecting “good’’ assignments or sets of groups. A more
detailed discussion of these properties appears in [GARCS5); theorems and lem-
mas will be stated here without proof.

We start by defining sets of groups and domination. Notice that to avoid
confusion we are referring to sets of nodes as groups. Sots of groups are thus sets
of sets of nodes. In dealing with mutual exclusion, we do not want to have sets
like {{a},{b,c}} or {{a},{a,b}}. The former set would allow two different groups
to be active at the same time, while in the latter the group {a,b} is redundant.

We will use the term coterie (from the French) to refer to the sets of groups
that are “well formed.” (According to Webster's dictionary, a coterie is a “‘close
circle of friends who share a common interest... A set refers to a group, usually

larger and, hence, less exclusive than a coterie.”’)

Definition 3.1 Coferie. Let U be the set of nodes which compose the system. A

set of groups. S. is a colerie under (7iff

(1) G € Simplies that G54 8, and G C U.
(1) (Intersection property) 1 G, H € S, then G and H must have at least one

common node.

- 14 -
(iti) (Minimality) There are no G,H € Ssuch that G C H.

When { is understood, we will drop it from the discussion. O

Note that not all nodes must appear in a coterie. For instance, {{ a}} is a

coterie under { a.b.c}.

Definition 3.2 Domination for Coleries. Let R, S be -oteries (under U). R dom-
inates S it R # S and for each H € S there is a G € R such that G C H. (We

sav that G'is the group that dominates H.)O

Definition 3.3 Dominated and Non-Dominated Cotertes. A coteﬁe S (under U)
i« dominaled iff there is another coterie (under U) which dominates S. If there 1s
no such coterie, then Sis non-dominated (ND for short). O

As discussed earlier, a dominated coterie should not be used because there 1S
a coterie that provides more protection against partitions. For mstance, the
coterre -

{{a,b,c},{c.d,e}}

should be replaced by {{c}}, and the coterie

{{a,b}.{b,c}}

should be replaced by
[{ably{ac}.{b.c}}

The next theorem gives us a way to check if a coterie is ND without

enumerating all other coteries. This will be useful later on.

Theorem 3.1 Let S be a coterie under [/ S is dominated ifl there exists a

=1 =

group G C U such that

(1) G is not a superset of any group in S.
(11) G has the intersection property. That is, for all HE S, G'N H+# 0.0

Checking domination of coteries seems to be a hard problem. The best algo-
sthm that we know at this point is the one suggested by Theorem 3.1. It gen-
erates all the possible subsets of the universe of = nodes, and for each one,
checks if it can be added to the coterie. This algorithm is clearly exponential in
n. The worst case complexity of an algorithm to check for non-domination is,
however. an open problem.

It is clear that given a vote assignment we can always find the corresponding
coterie. It is enough to find the tight majority groups (groups for which the dele-
tion of anv element breaks the vote majority). The set of tight majority groups is
clearly a coterie since it satisfies the properties of definition 3.1. Thus, the funda-
mental question is whether every coterie can be represented by a vote assign-
ment. If this were true. then coteries and vote assignments would be equivalent

concepts. The following theorem settles this question.

Theorem 3.2 There are ND coteries such that no vote assignment corresponds

-

to them. O

The following coterie is an example of such a coterte:

tlad St

€
[}
.d.E(l

=
™
o
<~
o
e
Bz’
[~

- 16 -

If we try to set up linear inequalities to describe this coterie as a vote assign-
ment (e.g.. votes(a) + votes(b) > Majority of votes), we arrive at a contradic-
tion.

Theorem 3.2 tells us that coteries are a more powerful concept than vole
assignments. That is, in some systems a coterie like the one in the previous
example could actually 3,r"ield the best reliability characteristics, and there would
be no wav to enforce the same groups with votes. However, vote assignments
have some advantages over coteries, namely they are easier to implement. The

Venn diagram of Figure 1 summarizes the classes of coteries.

/ Coteries \

N

ND-Coleries

Vith Vote Assignment

L
\

Figure 1

-

Another important question concerns the number of possible ND coteries for

a svstem with n nodes.

I ~) o = .
Theorem 3.3 The value 2° for some constant ¢, is a lower bound of the

number of ND coteries under a universe oi n nodes. O

Theorem 3.3 shows unequivocally that any attempl to exhaustively

- 17 -

enumerate ND coteries is hopeless for lzirge n. Thus, it will not be possible to con-

duct an exhaustive search for the optimal coterie for a system. However we have

made (wo important observations:

(1) The number of ND coteries for small systems (5 nodes or less) is small. This
is interesting since these will be likely systems in practice. (Remember that
each node has a copy of the database or a potential name server.) Figure 2

<hows the ND coteries for systems with 5 nodes or less. For example. for a

f-node svstem there are 3 classes: (a) give all the votes to a single node (e.g..

tal): (b) give three of the nodes an équal number of votes (e.g..

ClabY dachdbc) }) and (c) give all the nodes an equal number of votes.
except for one node that receives an extra vote ({ {a,b,c},{ad},
Yh.dy {c.d) }). Also observe that for 5 or less nodes all coteries have
equivalent vote assignments.

(2) Even for large systems, we can enumerate a subset of the class of ND

coteries that includes those with vote assignment. This class results 1n a

more manageable number of choices.

With these results we can narrow down the number of choices that must be
considered by a svstem designer. To select one of the remaiping vote assign-
ments or coteries. we need metrics that evaluate the “reliability™ provided by

each choice. For example, we could use one of the following two metrics:

a) Node Vulnerability: The minimum number of node failures that produces

a state where no group is active (e.g., updating the database).

- 18 -

for 1 node systems = [{ H
for 2 node systems = [{)
for 3 node systems = [{ }. H{at. {{a,b},{a,c},{b,c}}]
for 4 node systems = [{ } {{fl}} {{a, bl,{ﬂic},{bnc}}v
{{ab.c}fadb {bd}{c.di}]

for 5 node systems = [{ },

—F\-w

— e

a

-

{a
{
l

Ay Abdy{c.di
b Ledib.ced {ade);
.r,,-.{c dy {b.c.ef fad.e}.
{a.c‘e}.{b,d;a;.{b,d,e}},
{{a.b.r},{b.c.e}.{a.a’.e},
{a,c,e},{b,d,a},{b,d,e},
{a._b._et[,{f,drﬂ},{C,d._b},{f,d,e}},
{tab.c.d) faeld beldc.el.ldel}
Figure 2
h) The steady state probability that the system is active: It 1s the proba-
bility that the system has an active group of nodes, given the failure charac-
teristics of each component in the system.

To illustrate the use of these two metrics. consider the system of Figure 3
Assume that for every node, {he steadyv state probability of being active is equal
to p. while the links are perfectly reliable (they are always functioning). We can
compare the two ND Coteries for this 3 node system, that is the singleton coterie
f{a} and the wniform coterie { {a,b},{a.c}.{b.c} }, using the two metrics defined

above.

The node vulnerability of the singleton coteric 15 one (if node a is down. the

- 19 -

database cannot be updated), while that of the uniform coterie is 2 {two failures
are needed to disrupt the system).

‘As for the probability that the system is active, P, it will be p under the

singleton coterie, and

=+ 3p°(1 - p)

ander the uniform coterie. (at least two of the nodes have to be active). For

0.5 < p < 1.0, it will be best {o use the uniform coterie.

Figure 3

4. BILATERAL SCENARIOS WITH NO COMPETITIVE MISSIONS

In this section we study bilateral scenarios in which neither mission 1s com-
petitive. Let us consider termination protocols once again.

Quorum protocols [SKEENR2] assume an a-prlic;ri distribution of votes
among the nodes. A transaction must collect a commit quorum of 17 votes before
it is committed. or an abort quorum of 7, before it is aborted. by any. group
under a partition. (Of course, if any of the sites in the group is :lll‘-(led_\' in commit

or abort state. the transaction is committed or aborted). To prevent two uncon-

nected groups from taking contradictory decisions, we must have V,+ V.> W

Skeen observes that the selection of the vote distribution and the values of
1", and 1 affect the performance of the algorithm, and suggests several wavs (o
optimize these values. However, the selection of V7, is not as independent from
the selection of 1, as it may seem at first.
Lot us consider the following example: a three node system with nodes a. b
and ¢ and a total of 1" votes. Assume that we select V.= 1" (a total commit
quorum). This means that the onlv group that can conunit transactions is the one
containing all .\'mvs. Let w; be the number of votes that node i receives. Con-
sider the following cases:
1w, = w, + w,and V, =, Then the groups that can abort a transaction
are {a} and {b,c}. (Any other group is a superset of one of them.)
2w, = w, = «, and 1, = 17 THere {ab.c} is the only quorum group for
aborting a transaction.

3 w,= Vand v,=w = 0. obviously 1, = V. And {a} is the only quorum
group for abortion.

1 w, = u, = uw, and \" = w, Here the groups arc fat btdcq-

It is easv to see that under a partition, if we have a group able to decide on
aborting the transaction under cases 1 through 3, that same group will be able to
do <o under case 1. {Observe that any of the abort groups of cases 1 through 3 is
contained in at least one group of case 4.) Therefore, given t“hnt one selects

" = 17 it does not make sense to have either choices 1,2 or 3 for the abort

“guoram. In other words, our choices for quorums seem to be restricted. just like

ARSI I LI T 14 e T by te Be T o e e

the choices for coteries were restricted to I\D ones. Notice also that the groups
in case 1 correspond to the minimal transversals of the commit quorum group
taboel. The result is hnl a coincidence and can be generalized casily. \\';- need a
few definitions before doing so. The first one 1s a gencralization of the concept of
COLCTICS.

Definition 4.1 Quorum sel: A quorum set is the set of groups that can
complete a mission. More formally, let U be the set of nodes which compose the
svstem. A set of groups. Q. is a quorum set under U iff
(i) G € Qimplies that G 5% @,;nn(l G cC U
(ii) (Minimality) There are no G.H € Qsuch that G C H. O

We take the name of quorum sets from the example of quorum based proto-
cols. Notice that definition 1.1 is similar to the definition of coteries. except that
the intersection property has been dropped because the missions are not competi-
tive. For instance. in quorum protocols two different groups can be committing
the transaction at the same time.

The definition of domination used for coteries (Definition 3.2) is also applica-
ble in the case of quorum sets.

Definition 4.2 Quorum dominalion: We say that a quotum set @ dom-

. inates @, when all the groups in Q, are supersets of some group in Q.0

o

As an example, if:

Ql - { {aib}v{c;d} }
0 =1{{a{c),

Z

Then. Q dominates Q.

[&]

9 -

In bilateral scenarios, we have two quorum sels, one for each mi:;\sicm type.
tn the example of quorum protocols we iali{ about the commil quorum sef or the
abort quonr.m sel.

Both quorum sets must be designed in such a way that any group in one of
them precludes every group of the other from being formed. In this way we
ensure the mutual exclusion between the two missions. Thus, il a commit (abort)
quorum is going to be used in conjunction with an abort (commit) quorum. every
group in one must intersect every group in the other.

Definition 4.3 Complemenlary quorum .s-et: Given a quorum set. 2
complementary quoram scl s another quorum set, such that every group in one
intersects every group in the other. O

For example if we have:

Q. = {{abtlcd}}

as the commit quorum set. then

Qo= { {achiad{behibd}
is a suitable choice for the abort quorum set.

Given a quorum set for one of the missions, there are several choices for the
other. Among them, one of the choices is particularly important and it is the sub-
ject of our next two definitions. -

Definition 4.4 Transversal: A transversal of a quorum set @ under Uls
defined to be a set T C U such that for every group Ge @ GN TH#0. A

minimal transversal is a transversal such that no proper subset of it 1s a transver-

sal. O

A R DT T A T A T AT s I T

Definition 4.5 Antiquorum set:. An antiquorum set is the set of minimal
transversals of a quorum setOQ
For instance. in our example above, @, is the antiquorum of Q,. We will

o

denote the antiquorum of a quorum Qas QL.

We are now ready to show the importance of the antiquorum.

Theorem 4.1 Given a quorum set Q. any complementary quorum set is
dominated by QL.

Proof: Let R be any complementary quorum set for Q with I Q. Let
Je Rand J¢ Q. Since JN G # @ forall GEQ, Jisa transversal of @. Now,
since @' contains all the minimal transversals of @, there exists a /€ Q! such
that Jis a supersel of H. Since J was not in Q!, then J must be a superset of H.
Since this is true for all Jin R, then Q! dominates R.O

Theorem 4.1 implies that once the quorum set is chosen, the best comple-
mentary set to chose will be the antiquorum. Hereafter, we will use the anti-
quorum as the understood choice.

Definition 4.6 Quorum agreemen{. The set ¢ = {Q,Q"} is called the
quorum agreemenl. O

Observation 4.1: There are quorum agreements in which neither the
quorum or the antiquorum is a coterieQO

The quorum agreement ¢ = { Q.,Q, } presented earlier is an example of this
tvpe of quorum agreement.

A< we have mentioned. coteries are a subclass of quorum sets. In fact. they

924 -

vstem in the following way.

restrict the behavior of the s

Observation 4.2. \Whenever one of the quorum sets in :1")il:\i0|‘:\l seenario
is a coterie, at most one group will be able to complete the corresponding nils-
sion. That is. the mission type is forced to be competitive.O

For instance. if the commit (abort) quorum is a coterie, only one group at
most will be able to commit (abort) the transaction during a partition.

Theorem 4.2 Every bilateral mutual exclusion scenario implemented using
voting techniques will result in at least one of the quorum sets being a coterie.

Proof: Let ¢ ={ @, Q! } be the quorum agreement. Let N be the set of
nodes in the svstem and u{a) be the votes that node a h'as._ Every group G in @

must obey:

NVaufa) > Ve
acG
similarly for every Jin Q'
Su(a) > V,
acJ
Now, since Vi, + V. > Vand V= Y} u{a) we have that either 1, or V. (or
ﬂEJN-
both) are a majority (i.e., greater than half of the votes). Therefore the groups
must intersect. O

The following is an important corollary:

Corollary 4.1 Every quorum agreement that does not have a coterie does
not have a corresponding vote assignment.

Again the quo;'um agreement of our first exa:‘nl_nle, is also an example for

corollary 4.1, However, there are other quorum agreements that do not have

vote assignments. It is enough to consider any coteric without a corresponding
vote assignment. (Theorem 3.2.)

As a consequence of Theorem 4.2 we can state that every quorum protocol
devised by Skeen corresponds to a quorum agreement in which at least one of the
two components (quorum or antiquorum) is a coterie. Figure 4 presents the
classes of quorum sets.

If we restrict ourselves to voting mechanisms, we will not be able to imple-
ment true bilateral scenarios in which none of the missions is competitive. Voting
limits our power. for¢cing one of the missions to compete with itself. All the
quorum based protocols devised by voting mechanisms force the commit or abort
to be limited to one group in the system. Aside from this, the more general con-
cept of quorum sets allows choices that might very well be better choices under
some metries.

To illustrate. consider the svstem of Figure 5. and the quorum agreement:

Q == { {ﬂﬁb}a{csd} }
O‘l === { {ﬂ’,d}{bf}ia1(=:bd} }

-

which is nof implementable by voting schemes (by Theorem 4.2). It represents a
very simple and efficient quorum protocol in which to commit (abort) a transac-
tion. a node needs onlv to communicate with a single, immedifte neighbor. For
example. node a can abort the transaction if it can communicate with b and it

can abort 1t if it can communicate with d.

When a quorum set is a coterie, we call its antiquorum an anficoterie. An

-26-

/ General quorum sels \

/ :

j \

; \

- \:

! \

f = i
i Cotertes \ \
. l: !
- \
L

]
\ \\ ili"it‘h Vote Assignment (m l\ \

Y

Figure 4

/3
/
/ \\b

d ¥

\
\

Figure 5

anticoterie is not necessarily a coterie. The following example illustrates the case.

Q= {{ab}llac}}
Q'= {{ah{bcl}

Notice that Q is not an ND-Coterie, in fact, if it were, the corresponding
anticoterie would be a coterie also. The following example illustrates the point.
Q= { {ab}{ac}{bc}}

Q' = { {ab}{ac}fbc}]

We can prove that this is the case in general and moreover. if both quorum sets
are coteries, they must be the same ND-Coterie.

Theorem 4.3 If Q15 an ND-Coterie then @' = @

Proof: From the definition of ND Coterie, it is exsy to see that every group
in Q is a minimal transversal and is hence in @'. To show that Q! has no addi-
tional groups. consider some J € Q! such that Jis not a superset of any group
in Q. By Theorem 3.1. @ i then dominated. which contradicts the statement of
the Theorem, Thus, @ = @L.O

Theorem 4.4 If in the quorum agreement ¢ = {Q, Q") both of the quorum
<ets are coteries. they must be the same ND-Coterie.

Proof: Assume that both quorum sets are coteries but @ is not an ND-
Coterie. Then according to Theorem 3.1 there must be a group, G not in @ that
has the intersection property and is not a superset of any group in Q. Therefore
¢ should be a member of @' Notice also that G has the same properties: if G
did not intersect with some grouf) JG Q, then G would be a superset of J. Simi-
larlv. if G were a superset of some J€ @ then would not inhl{’rse(-t with ./

Therefore. G must also be a member of @1 But. il G and (are members of Q1

- 98 -

then Q" i« not a coterie as was assumed. Thus, Loth are ND-Coteries and

according to Theorem 4.3 they are the same coterieQ

Theorem 4.4 shows that there are only three possil:le situations:

e Both the quorum and antiquorum are the same ND-Coterie. In this case we
are in the presence of an scenario that behaves as unilateral.

e One of the two quorum sets is a coterie. but not an ND-Coteric. while the
other is not a coterie. This scenario 1s a bilateral one. in which the set that is
a4 coterie is implementing a competitive mission type.

e Neither set is a coterle. This is again a bilateral scenario, but both mission
tvpes are not.competit e.

In the rest of this section we discuss the classification of quorum agreements
in terms of their performance over some metric.

For a given quorum set @, il we can find anothir quorum @ such that @,
dominates Q. then under every partition in which a group of @ is able to operate,
a group in @ will also be able to do so (but not vice versa). Can we extend this
definition of domination to guorum agreements? That 1s, can we find a wayv of
saving that quorum agreement ¢ ".d(nninalt-:s" g> Oue idea would e to define
domination in terms of Q U Q"' and QU Q;'. However, mixing, the members of
Q and @' does not make sense since theyv refer to different missions.

A second approach would be to say that ¢; dominates ¢ if Q, dominates Q
and @;' dominates QA. “This idea does not work either l)(%-:\us(' of the following

theorem.

[

Theorem 4.5 Given a quorum agreement ¢ = {OQ“} it 1s not possible to
find another quorum agreement ¢y = { G .Q;' } such that @ dominates Q and
Q;" dominates Q'

Proof: Assume that @, dominates @ and Q;' also dominates Q. Recall
that Q' is formed by the minimal transversals of @, and Q' by the minimal
transversals of Q. Thus, all the groups n Q! are also transversals of Q. Now
since @Q;' deminates Q' we can have two situations:

e There is a group ql' that is smaller than any of those in @' and still is a
transversal of Q. Therefore", Q! does not contain all the minimal transver-

sals of Q.

e All the groups of @' are in @;'. but there exist: a group G in Q7! that is
not in Q1. In this case, G is a minimal transversal of @ and consequently of

Q also. Thus, again Q' does not contain all the minimal transversals of Q. O

Theorem 4.5 shows that we can not do better than (o dominate one of the
quorum sets. The following theorem shows that we pav a price when one quorui
set dominates the other.

Theorem 4.6 If ¢ = 1Q,Q'} and ¢, = 10Q,.@Q;'} are quorum agreements
such that @, dominates @, then Q' dominates Q7. .

Proof: Assume that Q; dominates Q. Every ¢ € Q;' is a minimal transver-
sal of Q; and therefore a transversal of Q. Hence, G or a su bset of & must be in

Q' implyving that Q' dominates Q' O

To illustrate these last results, consider the following quorum agreements:

= Bl

a9 -
Ql = {{atb‘ctd}}
Qi' = {{a} {6} A} Ad})

s °
Qs = {{a._b,c}‘{a,b‘d},{a.c,d},{b.-f.d}}
& = {{a.b}.{n.c}.{a.d}.{b.c}.{b.d}.{r.d}}
qs3 -
Qi} — {{ﬂ,b,(‘},{ﬂ,d},{bf(,d}}

= | '
Q' = {{ab}.{ac}{ad)ibdh{cd)

qy -
Q, = {{ab.chady b db{e.dt}

Q_“l = {{G.b,f},{ntd}1{b’d}’{ C‘d}}

g5 -
Qs = {{ad},{b,}}
Q' = {{ab}fach{cd {641

We can establish the following order:

]

Q;' dom Q" dom Qs' dom QY

Q, dom Q3 dom Q. dom @,

sarardi -1 e s - F : W -1 v st sfines
Regarding @5.Q5 , we can only compare it with Q. @;', by stating:

Qs dom @
Q;' dom Q3

but this is expected since Q;' dominates any antiquorum. In fact ¢ 15 the most

trivial quorum agreement we can have. (For instance, 1 a quorum based protocol

under any partition, 1t will never commit or it will never abort, depending on

whom Q, represents). Notice that @5 does not domina: nor is it dominated by

-~ By

Qs Qg 0r Qy

Notice that the selection problem for bilateral scenarios is more complicated
as compared (o the unilateral case. The number of choices increases. since the
intersection property has beei dropped. Also, deciding between two guorum
agreements that dominate each other (like ¢, and ¢5 for instance) implies favoring
one of the two missions: aborts or commits.

One proposed metric for quorum protocols is the expected number of
blocked sites. that is. the average number of sites that cannot resolve the fate of
{he transaction when a failure (;Apartir-ion} occurs. Cooper [COOP82] developed a
technique to compute this number given that a parlicular partition has occurred.
Ile uses the commit protocol description and assumptions about the communica-
tion delavs and processing time to compute the probability that a site is in its
window of uncertainty (it does not know whether to commit or abort a tiransac-
tion) and is isolated from the groups that know how to handle the transaction.
Using the components reliabilities, such a technique can be adapted to compute
the expected number of blocked sites under all partitions, fer a given quorum

agreement.

5. BILATERAL SCENARIOS WITH ONE COMPETITLVE MISSION.

We study now of bilateral scenarios in which one of the missions must be
competitive. According to Theorem 4.4, we are restricted to two possible situa-
tions: |

e Both quorum sets are the same ND-Coterie, rendering a unilateral scenario.

e Only one of the quorum sets is a dominated coterie.

For both cases, quorums have two important advantages. They are a con-
venient mechanism for describing all bilateral mutual exclusion scenarios with
one competitive mission. Furthermore. they can provide new mechanisms that are
not implementable by voting and that may be more efficient i some systems. In
the rest of this section we illustrate these points by considering the concurrency
control problem for replicated data.

Two main techniques are widely recognized for concurrency control in distri-
buted systems: {wo-phase locking (2PL) and l{mes:lamping. In 2PL, belore access-
ing a data item, a (ransaction must own a readlock or a wrilelock on it. Two
locks over the same item conflict if at least one of them is a writelock. In times-
tamping. transactions are given unique timestamps, which are used to resolve
conflicting operations. Timestamp based algorithms are not able to cope with
partitions, since they will either cause data to diverge in different groups. or will
halt processing during a partition. Therefore we do not consider them here.

Depending on which locks a transaction must acquire before being able to
commit, five locking techniques can be distinguished [BERN&L,GIFF79]. We will
describe them briefly. showing how a quorum agreement can represent each in a

svstem where a data item Is replicated at 4 nodes. We will use Q for the update

quorum and Q! for the read quorum.
e Basic Two Phase Locking: Here, when a transaction wants to write the data
iten. it must first get writelocks from all the copies. Therefore, it sends lock

request to every copy of the item and waits for positive acknowledgments

- 3% -
from all of them before committing the update. Notice that readers need
onl obtain a readlock from any of the copies, since this will preclude any

writer from getting all the writelocks. The quorum agreement wiil be:

Centralized 2I’L: Before accessing the data, locks raust be obtained at a cen-
tral site (the same site for all items). The quorum agreement will be (assum-
ing a is the central site):

Q={{a}=¢"
Primary Coopy 2PL: For each data item. one copy Is designated as the pri-
marv copy and all the appropriate locks must be obtained there. The
quorum agreement will be (assuming a is the primary copy for the item In
question):

Q={{a}=¢"
Voting 2PL: In this technique, each node is given a number of votes. Tran-
sactions request locks from all the copies and wait for a majority of positive
answers before accessing the data item. A possible quorum agreement could
be:

Q= { {abhlad,(bdhfcdt } = Q" °

Gifford’s Voting: This is a generalization of the previous cases. As discussed
in Section 2. a read quorum consists of r votes zud a write quorum of w
votes. with 2w and r + w being greater than the total votes, T. This is
essentially the same-as Skeen’s mechanism, with the writes being forced to

be the competitive mission type. This voting mechanism can describe the

- 31-

previous four (e.g.. in the last quorum a, b, ¢ have 1 vote, d has 2, and
r—= w=3). Il r< w, then we arrive at mechanisms not covered by the
previous four cases For instance, with 1hi_s same vote assignment but with

r=2 w=4wegel

Q= { {a,b,d},{a,c,d},{b,c,d} }
ql = { {d},{a,b},{a,c},{b,c} }

Note, incidentally, that not all choices for voting are good. Specifically, we
can easily show that if r=T+ 1-w, then we get a good quorum agree-
ment, else the read quorum will not be anticoterie of the write coterie. For

example. with the same assignment as before, if r= 3, w=4, T =235, we

=} {a,b,d},{a,c,d},{b,c,d} }
Q, = { (0.t} fad) {bdh{cd)) # Qi

a verv poor choice (e.g., we do not need to lock at {a,d} to read, locking at

I d} is enough). .

Bernstein and Goodman have decomposed the concurrency control problem
into two svnchronization mechanisms that can be treated separately: one for
read/write synchronization and one for write/write synchronization. Both syn-
chronizations need not be performed at the same time. If trpnsactions delay
actual changes to the database until the end (saving them in their private
storage), rw synchronization can be performed as the transaction runs, saving the
ww svnchronization until the time the transaction is ready to commit.

In the pure locking case. they exhibit 12 different _::wlhods by combining the

first Tour techniques explained above. Again. quorums are useful to describe these

-35-

hvbrid mechanisms. To illustrate, we will describe a method (suggested by Bern-
«tein and Goodman) that uses basic 2PL for rw synchronization and voting 2PL
for ww svnchronization. To carry on both types of synchronization, we distin-
guish between rw writelocks (for rw synchronization) and ww writelocks (for ww
svnchronization). An rw writelock only conflicts with readlocks on the same item,
while a ww writelock only conflicts with other ww writelocks over the same item.
The rw svnchronization is performed in the following way. To write data item
r. a transaction request rw writelocks from every copy of z and waits for a posi-
tive acknowledgment from every one of them. To ILGHd the item z, the transaction
must acquire a readlock from any of the copies. The ww synchronization is
guaranteed by forcing transactions to collect a majority of ww writelocks before
actually writing r. Using @, and Q;! for the rw synchronization and @, for the

wie svnchronization, the algorithm can be described in terms of quorums as fol-

lows:

Q. = { {ab,c,d} }

QL = { {a}.{b}.{c}{d} }
Q,, = { {abchad . {bd} {cd} }

In our terminology. this decomposition corresponds to breaking a bilateral

scenario in (wo separate scenarios: a bilateral scenario (rw) and a unilateral one
-

(ww]. Recall that in the original bilateral scenario one of the missions (the update

mission) was competitive. For the bilateral scenario that results after the decom-

position this is not the case. The writes do not have to exclude each other in the

rw synchronization scenario. They have a separate way of enforcing the mutual

exclusion amone themselves in the ww synchronization scenario. Using the exam-

-36-

ple above, the rw writelocks are used to enforce :the.rw svnchronization, while the
ww writelocks do the same for the ww sg.'nchrohization. However, in this exam-
ple. the bilateral scenario is cémpetitive, and this is unnecessary.

The discussion above can be summarized in the following observation:

Observation 5.1 Any bilateral scenario in which there is a competitive mis-
sion can be decomposed in two separate scenarios: a bilateral scenario without
competitive missions and a unilateral scenario, provided that both scenarios can
be synchronized independently. O

The hybrid locking mecha,n.-ism we have presented has certain advantages in
conventional database processing [BERN81], but from the point of view of parti-
tions. it has no real advantages over, say, a basic 9PL mechanism. In both cases,
readers must lock at one site and writers must lock at all four sites. The fac{
that the writers perform different types of locking (yw or ww) at the different
cites does not matter: all four sites must be available.

However, now that we can make the rw svnchronization missions of the bila-
teral scenario truly noncompetitive (by using quorum agreements without
corresponding vote assignments), we can construct hybrid mechanisms tlmt:niho
have advantages under partitions and that lie outside the l'ramev:ork of Bernstein
and Goodman.

For example. suppose that we implement rw synchronization with the
([H()l'llll] i\g['('(‘!li(‘[lil

Qru‘ == { {ﬂb},{(‘d}
Ot = { {ac} fad{bc).1b.d} !

sry

L

AN DDA T s A ST TR TR SR e e e e e

and ww svnchronization with

Quu = { {a.b,d}{ac} . {bc} {e,d} }

As discussed in Section 4, the quorum agreement {Q,,,@;L} may be well suited

i

for systems like the one in Figure 4. Here, a transaction originating at node a (b)
that tries to read an item must acquire the readlock at its own site plus a
readlock at b (a). A transaction originating at node ¢ (d) must do the same at
node d (¢). Similarly, the writes must secure the rw writelocks at two neighboring
nodes. This mechanism requires minimum communication, since a node only
needs to send messages to one neighbor. When a transaction completes, it
ensures exelusion with other writers by locking at one of the groups in Q. If the
transaction had obtained rw locks at {a,b}, it probably will request ww locks at

{a.b.d}. This is a larger group of nodes, but communication among its members is

required for a shorter period of time, only while the transaction commits.

Quorums can provide interesting non-voting concurrency control mechan-

isms. even if svnchronization is not decomposed. For example. the quorum

Q= ! jab.cifade} {cde} } (wrides)

0= ! tac) tad {bd}{c.d}fcel.leb} {eal } (reads)

]

canuot be implemented with voting (v(ae) + v(d) + v(e) > w and v(a) + v(b) +
v(d) < w imply that v(b) < v(e). However, v(a) + v(b) + v(c)> w and v{a) +
vic) + vie) < w imply that v(b) > v(e).) For the system of Figure 6, this may be
an excellent mechanism since read locks only have to be acquired at a single

neighbor. and write locks at two neighbors.

- 38-

Figure 6

Incidentallv. with four or less nodes, all quorum agreements with a competi-
tive mission can be represented by voting. This example shows that it is not the
case for 5 or more node svstems. In the unilateral scenario, we saw in Section 3
that it requires 6 or more nodes to obtain an ND Coterie without a vote assign-
ment. Finallv. in the bilateral scenario with no competitive missions, all quorum
agreements cannot be implemented with voting. .

The examples above show how concurrency control mechanisms can be stu-
died using quorum sets. In fact the use of quorum sets, provides a more general
framework in which new techniques -(-'an be defined. They may also be helpful in
selecting a good strategy for concurrency control. For example. Smith and Decitre

[SNITRY] presented an analysis of voting algorithms using the probability that

-39-
read or write quorum collection fails. Their goal was to compare several choiees
of r w and the votes under this metric. Quorum sets may be used in this same

wayv.

6. CONCLUSIONS

We have presented a frame.work fo_r studving mutual exclusion scenarios in
distributed svstems. In section 3 we introduced the coueept of coteries. Coterles
proved to be a more powerful tool than vote assignments for two reasons. First,
there are assignments that do 1191. have a corresponding vote assigament. Second,
thev are much more structured, lending themselves to formal analysis, and help-
ing in the selection of a good mutual exclusion mechanism.

In the next section we generalized the concept of coteries for scenarios that
have more than one mission. Doing so, we discovered that quorum sets are also
more powerful than exclusion mechanisms based on voting, and are useful i the
selection process. For quorum based termination j):'otocols, for instance, our
re<ults aid in the selection of the parameters V. and V.. We see that once 1
and the votes for each site are chosen. the quorum =: has been determined.
According to Theorem 4.1 ih(-"b('st choice for the comnlementary quorum set s
the antiquorum. This simple result helps to trim down the choices drastically.

We presented a new class of quorum based protocols that cannot be imple-
mented using voting mechanisms. Ferhaps among those protocols we can find
the optimum ones for specifie situations. The following ridm is worth pursuing.
Assume that in a given svstem of 5 nodes the most probable partition is

(a.b){c.de). Assume also that we decide to favor the aborts over the commits.

- 40 -
That is. we decide that the situations in which the groups are ready to abort a
transaction are more probable than those in which they can commit a transac-

tion. Then. we can use the following protocol:

Q, = { {ab}.{cde} }

Q.= { {ﬂ.(}'.{ﬂ,d},{(f,é},{b,(‘:‘.!b,d},{b,e} }

v

That is. we select the groups in the abort quorum to be the most common groups

during a partition. and the commit quorum as the corresponding antiquorum.
In Section 5 we studied the problem of bilateral scenartos in which one of
the missions is competitive. We showed how existing concurrency control

mechanisms for this case can be studied with quorums. and how novel ones can

be developed.

7. REFERENCES

[ALSB76] P.A. Alsberg. G.G. Belford, J.D. Day, and E. Grapa. “Multi-Copy
Resilency Techniques,” Center for Advanced Computation, CAC 202,
University of Ilinois, Urbana, May 1976.

[BARB24a] D. Barbara, and 1. Gareia-Molina, ~Optimizing the Reliability ‘)Il‘(l-
vided by Voting Mechanisms,” Proc. Fourth International Caiference
on Distributed Computing Systems, May 1934, pp. 34(.)—316.

(BARB&4b]D. Barbara and H. Garcia-Molina, “The Vulnerability of Voting
Mechanisms,” Proc. Fourll: Symposium on Reliabilily in Distribuled
Software and Database Systems. October 1924

[BARBR3] D. Barbara and H. Garcia-Molina, “Evaluating Vote Assignments

with a Probabilistic Metric.”" to appear in: FProc. Fifteeath 1EEL

[BERNTT

[BERN7Y

[BERN&I]

[COOPR2]

[DAVIR2)

[DAVIRY]

- 41 -
International Symposium on Faull-Tolerant Computing, June 1985,

P.A. Bernstein, D. W. Shipman, J. B. Rothnie, N. Goodman, “The
Councurreney Control Mechanism of SDD-1: A System for Distributed
Databases (The General Case)”, TR CCA-77-09, Computer Corpora-
tion of America. December 1977,

. A. Bernstein, J.B. Rothnie, N. Goodman, C.A. Papadimitriou,
“The Concurrency Control Mechanism of SDD-1: A System for Distri-
buted Databases (The Fully Redundant Case)”, [EEE Transaclions
on Software Engineering. Vol. 4, No. 3, May 1978, pp. 151-167.

P.A. Bernstein, and N. Goodman, “Concurrency Control in Distri-
buted Database Systems,” ACM Computing Surveys, Vol. 13, No. 2,
June 19281, pp. 185-221.

E. C. Cooper. “Analvsis of Distributed Commit Protocois™. 1V
[uternational Conference on Management of Dala. June 19820 pp.
175-183.

S. Davidson, “Evaluation of an Optimistic Protocol for Partitioned
Distributed Database Syvstems”, Technical Report 299, Department of
Electrical Engineering and Computer Scizuce, Pringeton University,
May 19282

$. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in a Par-
titioned Netwoxlk: A Survey”, Technical Report 320, Depa.rl-menf of
Electrical Engineerring and Computer Science, Princeton University,

Nov. 1984,

[DOLER2]

[ESWATG]

[GARCRS)]

[GIFF79]

[GRAYT9]

D -

4
-y

D. Dolev, and S. Strong. “Polynomial Algorithms for Multiple Proces-

sor Agreement™. Proc. 14th ACM Symposium on Theory of Compul-

ing. 1932, pp.401-497. |

X P. Eswaran. J. Grav. R.A. Lorie. and L1 Traiger, “The Notions of
Consistency and Predicate Locks in a Database System™, Commuaica-
tions ACAL, Vol. 19, 11, pp. 624-633.

. Garcia-Molina. and D. Barbara, “How to Assign Votes in a Distri-
buted Svstem.” to appear in Journal of the ACM. (An carlier version
appeared as Technical Report 311, Departuizzat of Electrical Eugineer-
ing and Computer Science, Princeton University, March 1983.)

DI Gifford, “Weighted Voting for Replicated Data”. Proceedings
Seventh Symposium on Operaling System Principles, December 1979,
pp- 150-162.

J. Grav, “Notes on Database Operating Systems’, Operaling Syslems:
An Advance Course. R. Bayer et al. editors, Springer-Verlag. 1979,

pp. 393-421.

[HANNRO] M. Hammer, and D. Shipman, “Reliability Mechanisms for SDD-1: A

(LAMP7]

(LANPR2]

System for Distributed Databases,” Transactions gn Database Sys-
tems, Vol. 5. No. 4, December 1980, pp. 131-466.

L. Lamport, “The Implementation of Reliable Distributed Mult.ipro—
cess S}'stems;‘, Computer Networks, Vol.2, 1978, pp. 95-114. |
Lamport. L.. Shostak, R, and.Pease, M., *“The Byzantine Generals

Problem™. ACM Transactions on Programming Langquages and

(LYNCS2

[PARKRO]

[ROTH7?

[SNEER1]

[SKEER2]

[SMIT&4]

- 43
Systems, Vol. 4, No. 3, July 1982, pp. 382-401.
N. Lynch. M. Fischer. and R. Fowler, A Simple aad Efficient Byzan-
tine Generals Algorithm™, Proceedings Second Symposium on Reliabil-
ity in Distributed Software and Database Systems, July 1982, pp.46-52.
D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton. B. Walker. E.
Walton, J. Chow, D. Edwards, S. Kiser, and C. Kline, "Detection of
Mutual Inconsistencey in Distributed Systems™, FProccedings of lirc
Fifth Berleley Worlkshop on Distribuled Dela Management and C'om-
puter Nelworks, February 1930, pp. 172-133.
J.B. Rothnie and N. Goodman, “A Survey of Research and Develop-
ment in Distributed Database Management”, Proceedings Third
VLDB Conference, Tokvo, 1977, pp. 43-62.
D. Skeen. and M. Stonebraker, “A Formal Model of Crash Recovery
in a Distributed Svstem®s-Proceedings Fifth Berkeley Workshop on
Distributed Dala Management and Computer Networks. May 1981, pp.
120-142.
D. Skeen. “A Quorum-Based Commit Protocol™, Proceedings Sixth
Berkeley Workshop on Distributed Data Aanagemenl and Compuler
Networks, February 19282, pp. 69-80.
\V. Smith, and P. Decitre, “An Evaluation Method for Analysis of the
Weighted Voting Algorithm for Maintaining Replicated Data”,
Proceedings of the Fourth [niernation(;! C'onference on Distributed

Compuling Systems, NMay 1984, pp. 494-502.

- 44 -

[THOM78] R.H. Thomas, “A Majority Consensus Appf-.mch to Concurrency Con-
trol”", ACA Transactions on Database Systzms. Vol. L. Num. 2. June
1979, pp- 180-209.

[WQIG84] D.D. Wright, “Managing Distributed Datsbases in Partitioned Net-
works”, Ph.D. Thesis, Department of Computer Science. Cornell

University, 1984.

