Quick links


Report ID:
May 17, 2018
Download Formats:


The rapidly growing size of data and the complexity of analytics present new challenges for large-scale data analytics systems. Modern distributed computing frameworks need to support not only embarrassingly parallelizable batch jobs, but also advanced applications analyzing text and multimedia data using complex queries and machine learning (ML) models. Given the computation and storage costs of advanced data analytics, resource management is crucial. New applications and workloads expose vastly different characteristics which make traditional scheduling systems inadequate, and at the same time offer great opportunities that lead to new system designs for better performance.

In this thesis, we present resource management systems that significantly improve cloud resource efficiency by leveraging the specific characteristics of advanced data analytics applications. We present the design and implementation of the following systems
(i) VideoStorm: a video analytics system that scales to process thousands of vision queries on live video streams over large clusters. VideoStorm’s offline profiler generates resource-quality
profiles for vision queries, and its online scheduler allocates resources to maximize performance in terms of vision processing quality and lag.

(ii) SLAQ: a cluster scheduling system for approximate ML training jobs that aims to maximize the overall model quality. In iterative and exploratory training settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. SLAQ allocates resources to maximize the cluster-wide quality improvement based on highly-tailored model quality predictions.

(iii) Riffle: an optimized shuffle service for big-data analytics frameworks that significantly improves I/O efficiency. The all-to-all data transfer (i.e., shuffle) in modern big-data systems (such as Spark and Hadoop) becomes the scaling bottleneck for multi-stage analytics jobs, due to the superlinear increase in disk I/O operations as data volume grows. Riffle boosts system performance by merging fragmented intermediate files and efficiently scheduling the merge

Follow us: Facebook Twitter Linkedin