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Probability
• The world is a very uncertain place
• 30 years of Artificial Intelligence and 

Database research danced around this fact
• And then a few AI researchers decided to 

use some ideas from the eighteenth century
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What we’re going to do
• We will review the fundamentals of 

probability.
• It’s really going to be worth it 
• In this lecture, you’ll see an example of 

probabilistic analytics in action: Bayes 
Classifiers
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Discrete Random Variables
• A is a Boolean-valued random variable if A 

denotes an event, and there is some degree 
of uncertainty as to whether A occurs.

• Examples
• A = The US president in 2023 will be male
• A = You wake up tomorrow with a 

headache
• A = You have Ebola
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Probabilities
• We write P(A) as “the fraction of possible 

worlds in which A is true”
• We could at this point spend 2 hours on the 

philosophy of this.
• But we won’t.
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Visualizing A

Event space of 
all possible 
worlds

Its area is 1
Worlds in which A is False

Worlds in which 
A is true

P(A) = Area of
reddish oval
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The Axioms of Probability
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

Where do these axioms come from? Were they “discovered”? 
Answers coming up later.
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get 
any smaller than 0

And a zero area would 
mean no world could 
ever have A true 
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

The area of A can’t get 
any bigger than 1

And an area of 1 would 
mean all worlds will have 
A true 
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B
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Interpreting the axioms
• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

A

B

P(A or B)

BP(A and B)

Simple addition and subtraction
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These Axioms are Not to be 
Trifled With

• There have been attempts to do different 
methodologies for uncertainty

• Fuzzy Logic
• Three-valued logic
• Dempster-Shafer
• Non-monotonic reasoning

• But the axioms of probability are the only 
system with this property: 
If you gamble using them you can’t be unfairly exploited 
by an opponent using some other system [di Finetti 1931]
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Theorems from the Axioms
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(not A) = P(~A) = 1-P(A)

• How?
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Side Note
• I am inflicting these proofs on you for two 

reasons:
1. These kind of manipulations will need to be 

second nature to you if you use probabilistic 
analytics in depth

2. Suffering is good for you
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Another important theorem
• 0 <= P(A) <= 1, P(True) = 1, P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)

From these we can prove:
P(A) = P(A ^ B) + P(A ^ ~B)

• How?
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Multivalued Random Variables
• Suppose A can take on more than 2 values
• A is a random variable with arity k if it can 

take on exactly one value out of {v1,v2, .. 
vk}

• Thus…

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP
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An easy fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)()(
1

21 ∑
=

===∨=∨=
i

j
ji vAPvAvAvAP
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An easy fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)()(
1

21 ∑
=

===∨=∨=
i

j
ji vAPvAvAvAP

• And thus we can prove

1)(
1

==∑
=

k

j
jvAP
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Another fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

• And assuming that A obeys…

• It’s easy to prove that

jivAvAP ji ≠==∧=  if 0)(
1)( 21 ==∨=∨= kvAvAvAP

)(])[(
1

21 ∑
=

=∧==∨=∨=∧
i

j
ji vABPvAvAvABP
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Another fact about Multivalued 
Random Variables:

• Using the axioms of probability…
0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)
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Elementary Probability in Pictures
• P(~A) + P(A) = 1
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Elementary Probability in Pictures
• P(B) = P(B ^ A) + P(B ^ ~A)
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Elementary Probability in Pictures
1)(

1

==∑
=

k

j
jvAP
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Elementary Probability in Pictures
)()(

1
∑
=

=∧=
k

j
jvABPBP
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Conditional Probability
• P(A|B) = Fraction of worlds in which B is 

true that also have A true

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu 
is rarer, but if you’re 
coming down with ‘flu 
there’s a 50-50 chance 
you’ll have a headache.”
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Conditional Probability
F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted 
worlds in which you have a 
headache

= #worlds with flu and headache
------------------------------------

#worlds with flu

= Area of “H and F” region
------------------------------

Area of “F” region

= P(H ^ F)
-----------

P(F) 
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Definition of Conditional Probability
P(A ^ B) 

P(A|B)  =  -----------
P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat! 
50% of flus are associated with headaches so I must have a 
50-50 chance of coming down with flu”

Is this reasoning good?
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Probabilistic Inference

F

H

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(F ^ H) = …

P(F|H) = …
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Another way to understand the 
intuition

Thanks to Jahanzeb Sherwani for contributing this explanation:
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What we just did…
P(A ^ B)     P(A|B) P(B)

P(B|A) = ----------- = ---------------
P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay 
towards solving a problem in the 
doctrine of chances. Philosophical 
Transactions of the Royal Society of 
London, 53:370-418
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Using Bayes Rule to Gamble

The “Win” envelope 
has a dollar and four 
beads in it

$1.00

The “Lose” envelope 
has three beads and 
no money

Trivial question: someone draws an envelope at random and offers to 
sell it to you. How much should you pay?
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Using Bayes Rule to Gamble

The “Win” envelope 
has a dollar and four 
beads in it

$1.00

The “Lose” envelope 
has three beads and 
no money

Interesting question: before deciding, you are allowed to see one bead 
drawn from the envelope.

Suppose it’s black: How much should you pay? 
Suppose it’s red: How much should you pay?
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Calculation…
$1.00
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More General Forms of Bayes Rule

)(~)|~()()|(
)()|()|(

APABPAPABP
APABPBAP

+
=

)(
)()|()|(

XBP
XAPXABPXBAP

∧
∧∧

=∧
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More General Forms of Bayes Rule

∑
=

==

==
==
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k
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vAPvABP
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Useful Easy-to-prove facts
1)|()|( =¬+ BAPBAP

1)|(
1

==∑
=

An

k
k BvAP
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

Example: Boolean 
variables A, B, C
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

Example: Boolean 
variables A, B, C

111

011

101

001

110

010

100

000

CBA
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA
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The Joint Distribution
Recipe for making a joint distribution 

of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

3. If you subscribe to the axioms of 
probability, those numbers must 
sum to 1.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Using the 
Joint

One you have the JD you can 
ask for the probability of any 
logical expression involving 
your attribute

∑=
E

PEP
 matching rows

)row()(
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Using the 
Joint

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(
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Using the 
Joint

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(
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Inference 
with the 

Joint

∑
∑

=
∧

=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP
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Inference 
with the 

Joint

∑
∑

=
∧

=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612  
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Inference is a big deal
• I’ve got this evidence. What’s the chance 

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance 

my spouse is already asleep?
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Inference is a big deal
• I’ve got this evidence. What’s the chance 

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance 

my spouse is already asleep?
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Inference is a big deal
• I’ve got this evidence. What’s the chance 

that this conclusion is true?
• I’ve got a sore neck: how likely am I to have meningitis?
• I see my lights are out and it’s 9pm. What’s the chance 

my spouse is already asleep?

• There’s a thriving set of industries growing based 
around Bayesian Inference. Highlights are: 
Medicine, Pharma, Help Desk Support, Engine 
Fault Diagnosis
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Where do Joint Distributions 
come from?

• Idea One: Expert Humans
• Idea Two: Simpler probabilistic facts and 

some algebra
Example: Suppose you knew

P(A) = 0.7

P(B|A) = 0.2
P(B|~A) = 0.1

P(C|A^B) = 0.1
P(C|A^~B) = 0.8
P(C|~A^B) = 0.3
P(C|~A^~B) = 0.1

Then you can automatically 
compute the JD using the 
chain rule

P(A=x ^ B=y ^ C=z) =
P(C=z|A=x^ B=y) P(B=y|A=x) P(A=x)

In another lecture: 
Bayes Nets, a 
systematic way to 
do this.
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Where do Joint Distributions 
come from?

• Idea Three: Learn them from data!

Prepare to see one of the most impressive learning 
algorithms you’ll come across in the entire course….
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Learning a joint distribution
Build a JD table for your 
attributes in which the 
probabilities are unspecified

The fill in each row with

recordsofnumber total
row matching records)row(ˆ =P

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Fraction of all records in which
A and B are True but C is False
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Example of Learning a Joint
• This Joint was 

obtained by 
learning from 
three 
attributes in 
the UCI 
“Adult” 
Census 
Database 
[Kohavi 1995]
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Where are we?
• We have recalled the fundamentals of 

probability
• We have become content with what JDs are 

and how to use them
• And we even know how to learn JDs from 

data.
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Density Estimation
• Our Joint Distribution learner is our first 

example of something called Density 
Estimation

• A Density Estimator learns a mapping from 
a set of attributes to a Probability

Density
Estimator

ProbabilityInput
Attributes
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Density Estimation
• Compare it against the two other major 

kinds of models:

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes
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Evaluating Density Estimation

Regressor Prediction of
real-valued output

Input
Attributes

Density
Estimator

ProbabilityInput
Attributes

Classifier Prediction of
categorical output

Input
Attributes

Test set 
Accuracy

?

Test set 
Accuracy

Test-set criterion for estimating performance 
on future data*
* See the Decision Tree or Cross Validation lecture for more detail
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• Given a record x, a density estimator M can 
tell you how likely the record is:

• Given a dataset with R records, a density 
estimator can tell you how likely the dataset 
is:
(Under the assumption that all records were independently

generated from the Density Estimator’s JD)

Evaluating a density estimator

∏
=

=∧∧=
R

k
kR |MP|MP|MP

1
21 )(ˆ)(ˆ)dataset(ˆ xxxx K

)(ˆ |MP x
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A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

192 
Training 
Set 
Records

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe
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A small dataset: Miles Per Gallon

192 
Training 
Set 
Records

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe
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A small dataset: Miles Per Gallon

192 
Training 
Set 
Records

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe

203-
1

21

10  3.4  case) (in this 

)(ˆ)(ˆ)dataset(ˆ

×==

=∧∧= ∏
=

R

k
kR |MP|MP|MP xxxx K

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 62

Log Probabilities

Since probabilities of datasets get so 
small we usually use log probabilities

∑∏
==

==
R

k
k

R

k
k |MP|MP|MP

11

)(ˆlog)(ˆlog)dataset(ˆlog xx
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A small dataset: Miles Per Gallon

192 
Training 
Set 
Records

mpg modelyear maker

good 75to78 asia
bad 70to74 america
bad 75to78 europe
bad 70to74 america
bad 70to74 america
bad 70to74 asia
bad 70to74 asia
bad 75to78 america
: : :
: : :
: : :
bad 70to74 america
good 79to83 america
bad 75to78 america
good 79to83 america
bad 75to78 america
good 79to83 america
good 79to83 america
bad 70to74 america
good 75to78 europe
bad 75to78 europe

466.19  case) (in this 

)(ˆlog)(ˆlog)dataset(ˆlog
11

−==

== ∑∏
==

R

k
k

R

k
k |MP|MP|MP xx
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Summary: The Good News
• We have a way to learn a Density Estimator 

from data.
• Density estimators can do many good 

things…
• Can sort the records by probability, and thus 

spot weird records (anomaly detection)
• Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News
• Density estimation by directly learning the 

joint is trivial, mindless and dangerous
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Using a test set

An independent test set with 196 cars has a worse log likelihood

(actually it’s a billion quintillion quintillion quintillion quintillion 
times less likely)

….Density estimators can overfit. And the full joint density 
estimator is the overfittiest of them all!
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Overfitting Density Estimators
If this ever happens, it means 
there are certain combinations 
that we learn are impossible

0)(ˆ any for  if  

)(ˆlog)(ˆlog)testset(ˆlog
11

=∞−=

== ∑∏
==

|MPk

|MP|MP|MP

k

R

k
k

R

k
k

x

xx
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Using a test set

The only reason that our test set didn’t score -infinity is that my 
code is hard-wired to always predict a probability of at least one 
in 1020

We need Density Estimators that are less prone 
to overfitting
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Naïve Density Estimation

The problem with the Joint Estimator is that it just 
mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed 
independently of any of the other attributes.
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Independently Distributed Data
• Let x[i] denote the i’th field of record x.
• The independently distributed assumption 

says that for any i,v, u1 u2… ui-1 ui+1… uM

)][(
)][,]1[,]1[,]2[,]1[|][( 1121

vixP
uMxuixuixuxuxvixP Mii

==
==+=−=== +− KK

• Or in other words, x[i] is independent of 
{x[1],x[2],..x[i-1], x[i+1],…x[M]}

• This is often written as  
]}[],1[],1[],2[],1[{][ Mxixixxxix KK +−⊥
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A note about independence
• Assume A and B are Boolean Random 

Variables. Then
“A and B are independent”

if and only if
P(A|B) = P(A)

• “A and B are independent” is often notated 
as BA ⊥
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(A^B) =

= P(A) P(B)

• Assume P(A|B) = P(A)
• Then P(B|A) =

= P(B)
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Independence Theorems
• Assume P(A|B) = P(A)
• Then P(~A|B) =

= P(~A)

• Assume P(A|B) = P(A)
• Then P(A|~B) =

= P(A)
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Multivalued Independence

For multivalued Random Variables A and B,

BA ⊥
if and only if

)()|(:, uAPvBuAPvu ====∀
from which you can then prove things like…

)()()(:, vBPuAPvBuAPvu ====∧=∀
)()|(:, vBPvAvBPvu ====∀
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Back to Naïve Density Estimation
• Let x[i] denote the i’th field of record x:
• Naïve DE assumes x[i] is independent of {x[1],x[2],..x[i-1], x[i+1],…x[M]}
• Example: 

• Suppose that each record is generated by randomly shaking a green dice 
and a red dice

• Dataset 1: A = red value, B = green value

• Dataset 2: A = red value, B = sum of values

• Dataset 3: A = sum of values, B = difference of values

• Which of these datasets violates the naïve assumption?
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily 

compute any row of the joint distribution.
• Suppose A, B, C and D are independently 

distributed. What is P(A^~B^C^~D)?
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Using the Naïve Distribution
• Once you have a Naïve Distribution you can easily 

compute any row of the joint distribution.
• Suppose A, B, C and D are independently 

distributed. What is P(A^~B^C^~D)?
= P(A|~B^C^~D) P(~B^C^~D)
= P(A) P(~B^C^~D)
= P(A) P(~B|C^~D) P(C^~D)
= P(A) P(~B) P(C^~D)
= P(A) P(~B) P(C|~D) P(~D)
= P(A) P(~B) P(C) P(~D)
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Naïve Distribution General Case
• Suppose x[1], x[2], … x[M] are independently 

distributed.

∏
=

=====
M

k
kM ukxPuMxuxuxP

1
21 )][()][,]2[,]1[( K

• So if we have a Naïve Distribution we can 
construct any row of the implied Joint Distribution 
on demand.

• So we can do any inference 
• But how do we learn a Naïve Density Estimator?
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Learning a Naïve Density 
Estimator

recordsofnumber total
 ][in which  records#)][(ˆ uixuixP =

==

Another trivial learning algorithm!
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Contrast

Given 100 records and 10,000 
multivalued attributes will be fine

Given 100 records and more than 6 
Boolean attributes will screw up 
badly

Outside Naïve’s scopeNo problem to model “C 
is a noisy copy of A”

Can model only very 
boring distributions

Can model anything

Naïve DEJoint DE
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Empirical Results: “Hopeless”
The “hopeless” dataset consists of 40,000 records and 21 Boolean
attributes called a,b,c, … u. Each attribute in each record is generated 
50-50 randomly as 0 or 1.

Despite the vast amount of data, “Joint” overfits hopelessly and
does much worse

Average test set log 
probability during 
10 folds of k-fold 
cross-validation*
Described in a future Andrew lecture

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 82

Empirical Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean 
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 
or 1. D = A^~C, except that in 10% of records it is flipped

The DE 
learned by 

“Joint”

The DE 
learned by 

“Naive”
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Empirical Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean 
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 
or 1. D = A^~C, except that in 10% of records it is flipped

The DE 
learned by 

“Joint”

The DE 
learned by 

“Naive”
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A tiny part of 
the DE 

learned by 
“Joint”

Empirical Results: “MPG”
The “MPG” dataset consists of 392 records and 8 attributes

The DE 
learned by 

“Naive”
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A tiny part of 
the DE 

learned by 
“Joint”

Empirical Results: “MPG”
The “MPG” dataset consists of 392 records and 8 attributes

The DE 
learned by 

“Naive”
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The DE 
learned by 

“Joint”

Empirical Results: “Weight vs. MPG”
Suppose we train only from the “Weight” and “MPG” attributes

The DE 
learned by 

“Naive”
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The DE 
learned by 

“Joint”

Empirical Results: “Weight vs. MPG”
Suppose we train only from the “Weight” and “MPG” attributes

The DE 
learned by 

“Naive”
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The DE 
learned by 

“Joint”

“Weight vs. MPG”: The best that Naïve can do

The DE 
learned by 

“Naive”
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Reminder: The Good News
• We have two ways to learn a Density 

Estimator from data.
• *In other lectures we’ll see vastly more 

impressive Density Estimators (Mixture Models, 
Bayesian Networks, Density Trees, Kernel Densities and many more)

• Density estimators can do many good 
things…
• Anomaly detection
• Can do inference: P(E1|E2) Automatic Doctor / Help Desk etc

• Ingredient for Bayes Classifiers
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Bayes Classifiers
• A formidable and sworn enemy of decision 

trees

Classifier Prediction of
categorical output

Input
Attributes

DT BC
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values 

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input 
distribution among the Y=vi records.
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values 

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input 
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values 

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input 
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that 
makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11
predict vYuXuXPY mm

v
==== L

Is this a good idea?
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values 

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input 
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that 
makes P(X1, X2, … Xm | Y=vi ) most likely

)|(argmax 11
predict vYuXuXPY mm

v
==== L

Is this a good idea?

This is a Maximum Likelihood 
classifier.

It can get silly if some Ys are 
very unlikely
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How to build a Bayes Classifier
• Assume you want to predict output Y which has arity nY and values 

v1, v2, … vny.
• Assume there are m input attributes called X1, X2, … Xm

• Break dataset into nY smaller datasets called DS1, DS2, … DSny.
• Define DSi = Records in which Y=vi

• For each DSi  , learn Density Estimator Mi  to model the input 
distribution among the Y=vi records.

• Mi  estimates P(X1, X2, … Xm | Y=vi )

• Idea: When a new set of input values (X1 = u1, X2 = u2, …. Xm
= um) come along to be evaluated predict the value of Y that 
makes P(Y=vi | X1, X2, … Xm) most likely

)|(argmax 11
predict

mm
v

uXuXvYPY ==== L

Is this a good idea?

Much Better Idea
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Terminology
• MLE (Maximum Likelihood Estimator):

• MAP (Maximum A-Posteriori Estimator):
)|(argmax 11

predict
mm

v
uXuXvYPY ==== L

)|(argmax 11
predict vYuXuXPY mm

v
==== L
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Getting what we need
)|(argmax 11

predict
mm

v
uXuXvYPY ==== L
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Getting a posterior probability

∑
=

====

====
=

==
====

=

===

Yn

j
jjmm

mm

mm

mm

mm

vYPvYuXuXP

vYPvYuXuXP
uXuXP

vYPvYuXuXP

uXuXvYP

1
11

11

11

11

11

)()|(

)()|(
)(

)()|(

)|(

L

L

L

L

L
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Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11
predict

vYPvYuXuXP

uXuXvYPY

mm
v

mm
v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction:
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Bayes Classifiers in a nutshell

)()|(argmax

)|(argmax

11

11
predict

vYPvYuXuXP

uXuXvYPY

mm
v

mm
v

=====

====

L

L

1. Learn the distribution over inputs for each value Y.

2. This gives P(X1, X2, … Xm | Y=vi ).

3. Estimate  P(Y=vi ). as fraction of records with Y=vi .

4. For a new prediction: We can use our favorite 
Density Estimator here.

Right now we have two 
options:

•Joint Density Estimator
•Naïve Density Estimator
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Joint Density Bayes Classifier
)()|(argmax 11

predict vYPvYuXuXPY mm
v

===== L

In the case of the joint Bayes Classifier this 
degenerates to a very simple rule:

Ypredict = the most common value of Y among records 
in which X1 = u1, X2 = u2, …. Xm = um.

Note that if no records have the exact set of inputs X1
= u1, X2 = u2, …. Xm = um, then P(X1, X2, … Xm | Y=vi ) 
= 0 for all values of Y.

In that case we just have to guess Y’s value
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Joint BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean 
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 
or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier 
learned by 
“Joint BC”
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Joint BC Results: “All Irrelevant”
The “all irrelevant” dataset consists of 40,000 records and 15 Boolean 
attributes called a,b,c,d..o where a,b,c are generated 50-50 randomly 
as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25
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Naïve Bayes Classifier
)()|(argmax 11

predict vYPvYuXuXPY mm
v

===== L

In the case of the naive Bayes Classifier this can be 
simplified:

∏
=

====
Yn

j
jj

v
vYuXPvYPY

1

predict )|()(argmax
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Naïve Bayes Classifier
)()|(argmax 11

predict vYPvYuXuXPY mm
v

===== L

In the case of the naive Bayes Classifier this can be 
simplified:

∏
=

====
Yn

j
jj

v
vYuXPvYPY

1

predict )|()(argmax

Technical Hint:
If you have 10,000 input attributes that product will 
underflow in floating point math. You should use logs:









==+== ∑

=

Yn

j
jj

v
vYuXPvYPY

1

predict )|(log)(logargmax
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BC Results: “XOR”
The “XOR” dataset consists of 40,000 records and 2 Boolean inputs called a 
and b, generated 50-50 randomly as 0 or 1. c (output) = a XOR b

The Classifier 
learned by 
“Naive BC”

The Classifier 
learned by 
“Joint BC”
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Naive BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean 
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 
or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier 
learned by 
“Naive BC”
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Naive BC Results: “Logical”
The “logical” dataset consists of 40,000 records and 4 Boolean 
attributes called a,b,c,d where a,b,c are generated 50-50 randomly as 0 
or 1. D = A^~C, except that in 10% of records it is flipped

The Classifier 
learned by 
“Joint BC”

This result surprised Andrew until he 
had thought about it a little
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Naïve BC Results: “All Irrelevant”
The “all irrelevant” dataset consists 
of 40,000 records and 15 Boolean 
attributes called a,b,c,d..o where 
a,b,c are generated 50-50 randomly 
as 0 or 1. v (output) = 1 with 
probability 0.75, 0 with prob 0.25

The Classifier 
learned by 
“Naive BC”
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BC Results: 
“MPG”: 392 

records

The Classifier 
learned by 
“Naive BC”
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BC Results: 
“MPG”: 40 

records
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More Facts About Bayes 
Classifiers

• Many other density estimators can be slotted in*.
• Density estimation can be performed with real-valued 

inputs*
• Bayes Classifiers can be built with real-valued inputs*
• Rather Technical Complaint: Bayes Classifiers don’t try to 

be maximally discriminative---they merely try to honestly 
model what’s going on*

• Zero probabilities are painful for Joint and Naïve. A hack 
(justifiable with the magic words “Dirichlet Prior”) can 
help*.

• Naïve Bayes is wonderfully cheap. And survives 10,000 
attributes cheerfully!

*See future Andrew Lectures
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What you should know
• Probability

• Fundamentals of Probability and Bayes Rule
• What’s a Joint Distribution
• How to do inference (i.e. P(E1|E2)) once you 

have a JD

• Density Estimation
• What is DE and what is it good for
• How to learn a Joint DE
• How to learn a naïve DE

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 114

What you should know
• Bayes Classifiers

• How to build one
• How to predict with a BC
• Contrast between naïve and joint BCs
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Interesting Questions
• Suppose you were evaluating NaiveBC, 

JointBC, and Decision Trees
• Invent a problem where only NaiveBC would do well
• Invent a problem where only Dtree would do well
• Invent a problem where only JointBC would do well
• Invent a problem where only NaiveBC would do poorly
• Invent a problem where only Dtree would do poorly
• Invent a problem where only JointBC would do poorly


