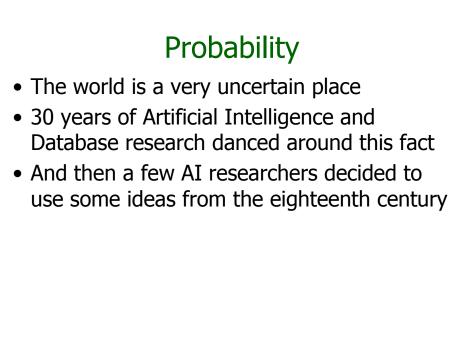


Note to other teachers and users of these sildes. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these sildes verbatim, or to modify them originals are available. If you make use of a significant portion of these sildes in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/hutorials. Comments and corrections gratefully received.

Andrew W. Moore Associate Professor School of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

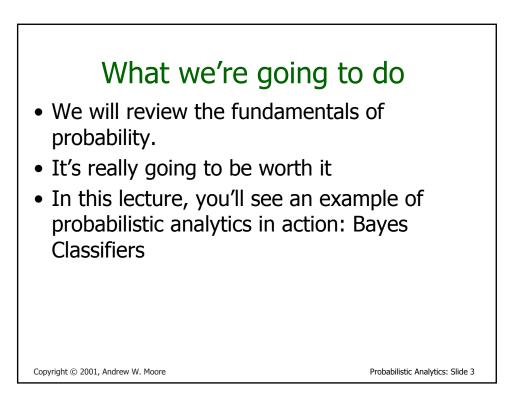
Copyright © 2001, Andrew W. Moore

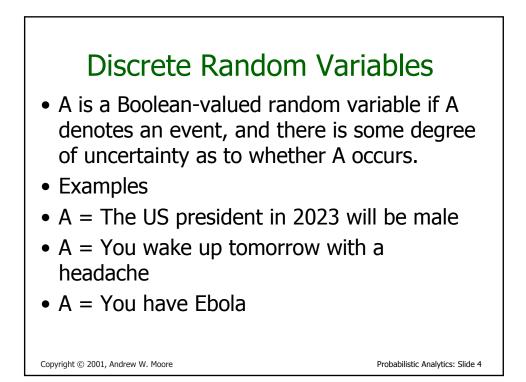


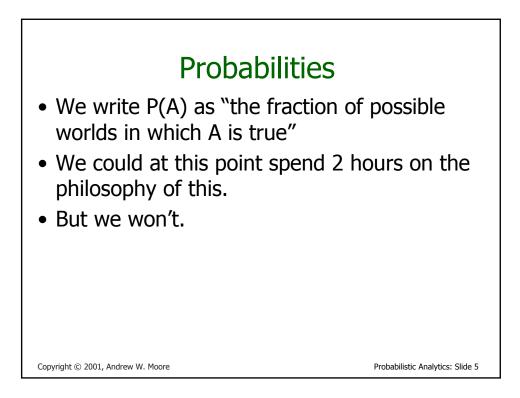
Copyright © 2001, Andrew W. Moore

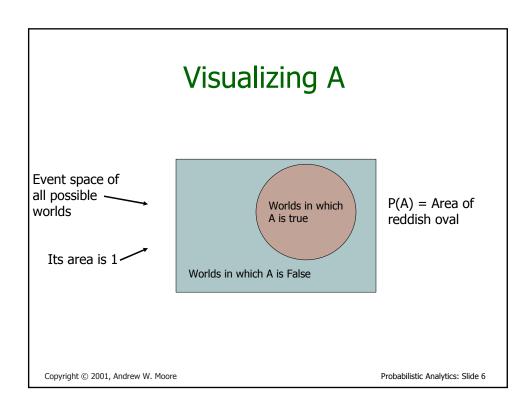
Probabilistic Analytics: Slide 2

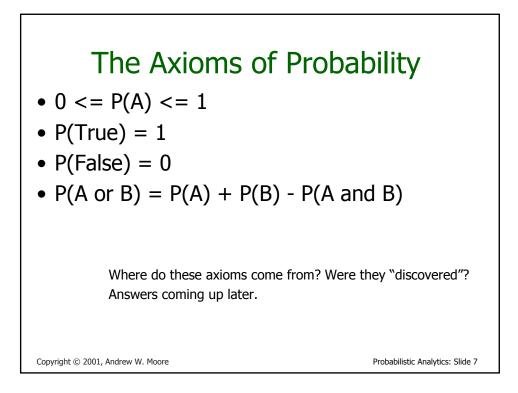
Aug 25th, 2001

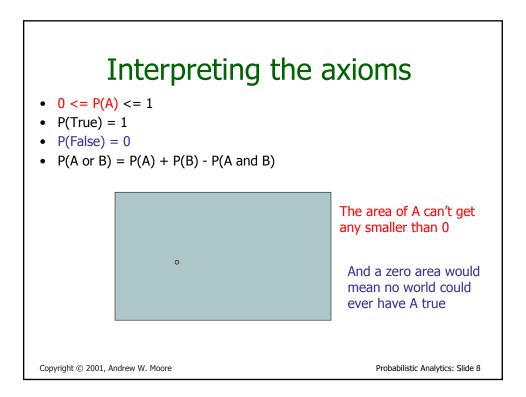


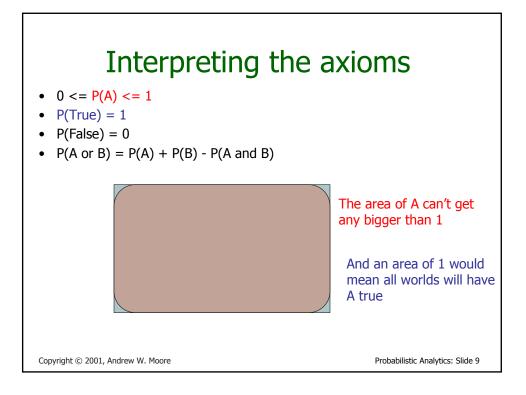


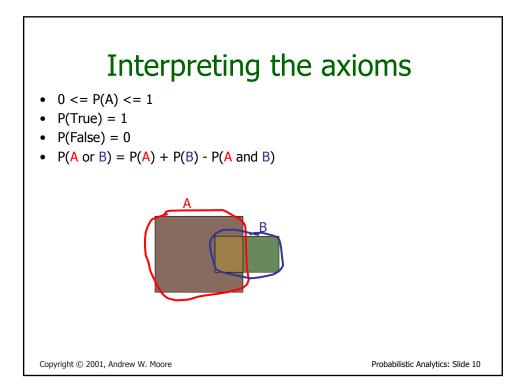


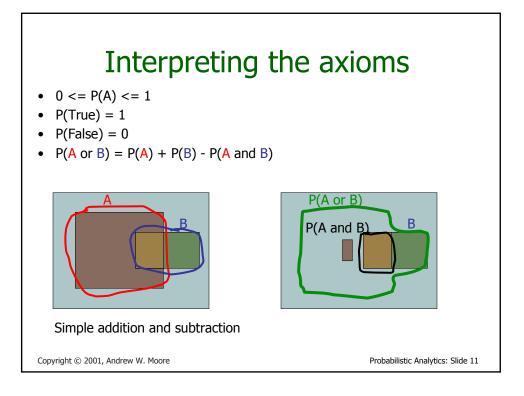


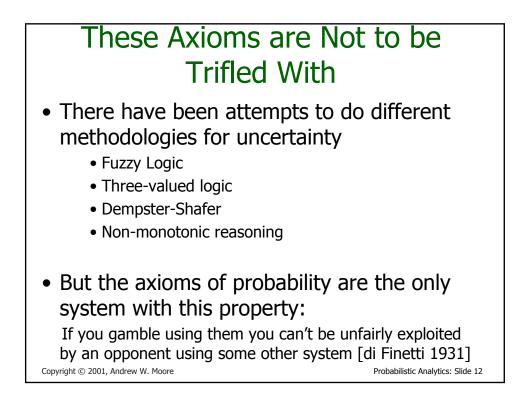


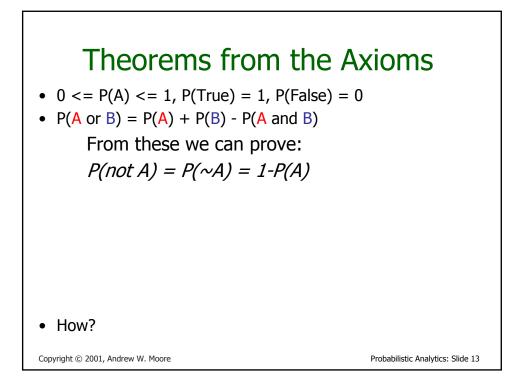


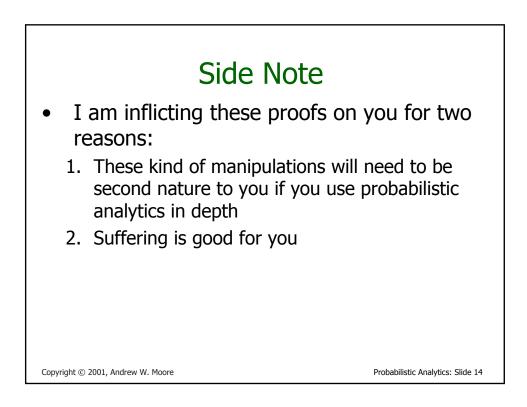


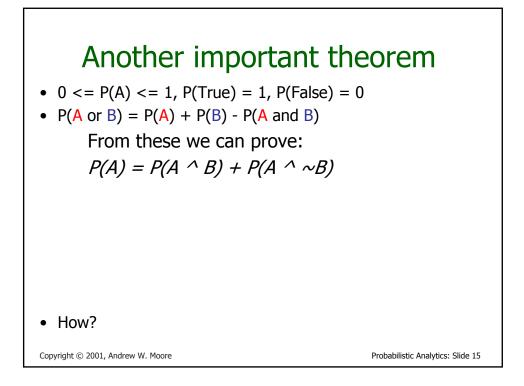


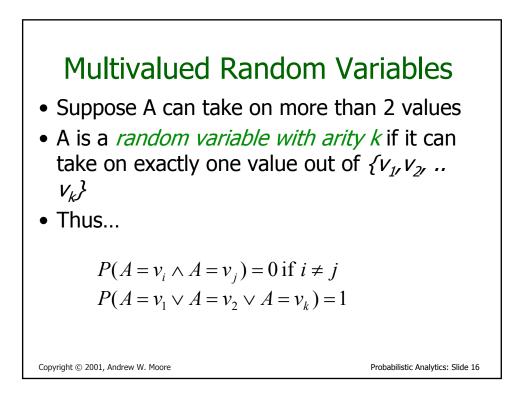


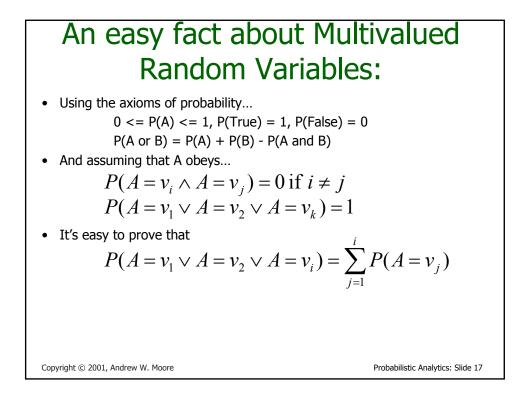












An easy fact about Multivalued Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

• And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

• It's easy to prove that

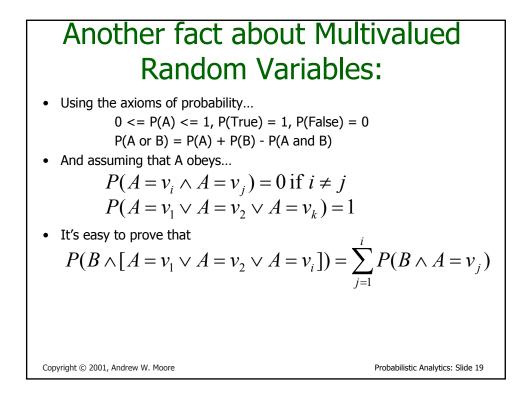
$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{i=1}^{i} P(A = v_j)$$

• And thus we can prove _k

$$\sum_{j=1}^{\kappa} P(A = v_j) = 1$$

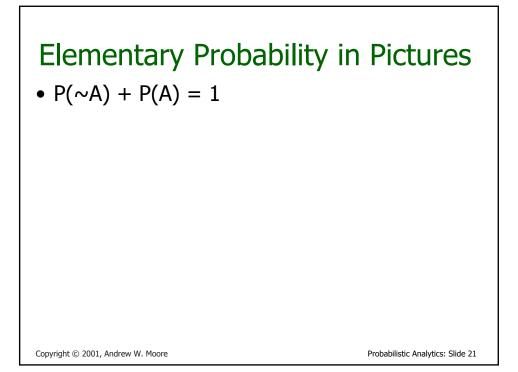
Copyright © 2001, Andrew W. Moore

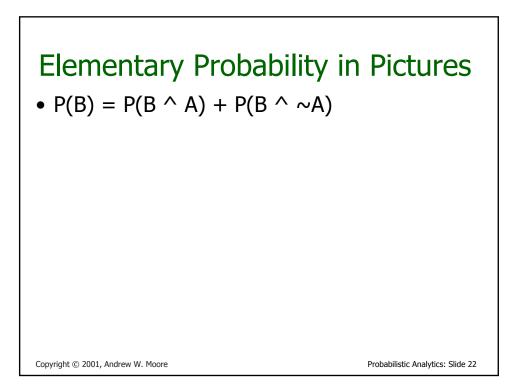
Probabilistic Analytics: Slide 18

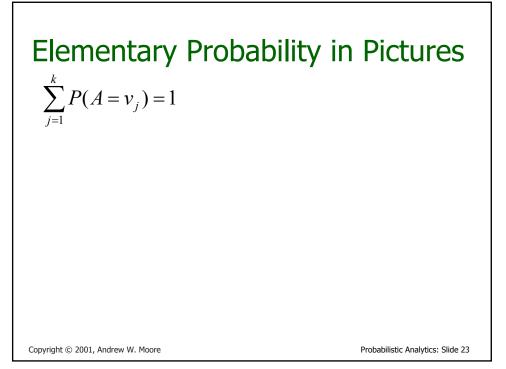


Another fact about Multivalued Random Variables: Using the axioms of probability... $0 \le P(A) \le 1$, P(True) = 1, P(False) = 0P(A or B) = P(A) + P(B) - P(A and B)And assuming that A obeys... $P(A = v_i \land A = v_i) = 0$ if $i \neq j$ $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$ • It's easy to prove that $P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{i=1}^{l} P(B \land A = v_j)$ And thus we can prove $P(B) = \sum_{i=1}^{\kappa} P(B \land A = v_j)$ Probabilistic Analytics: Slide 20

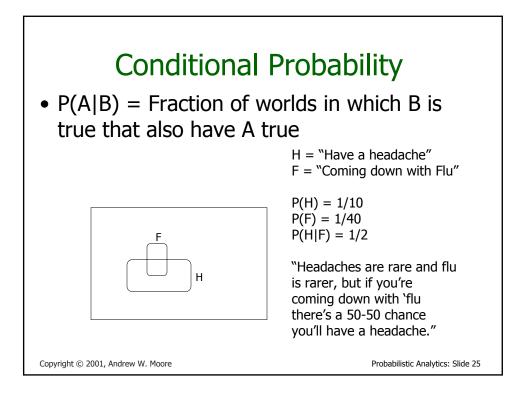
Copyright © 2001, Andrew W. Moore

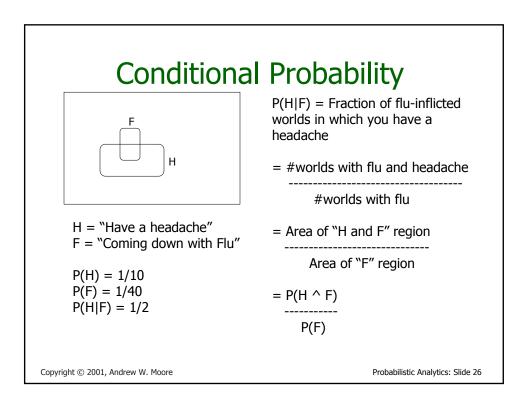


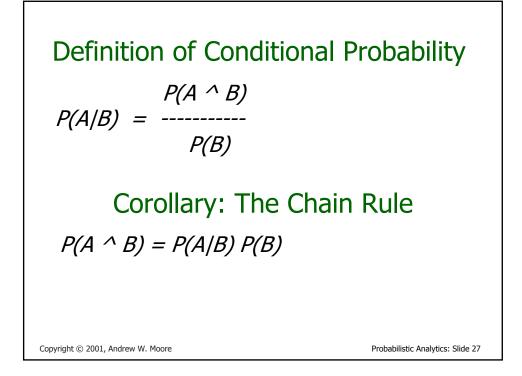


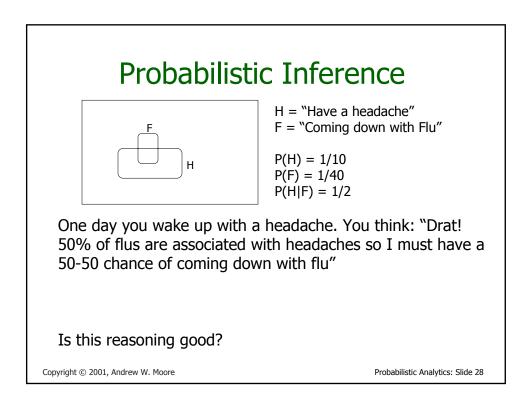


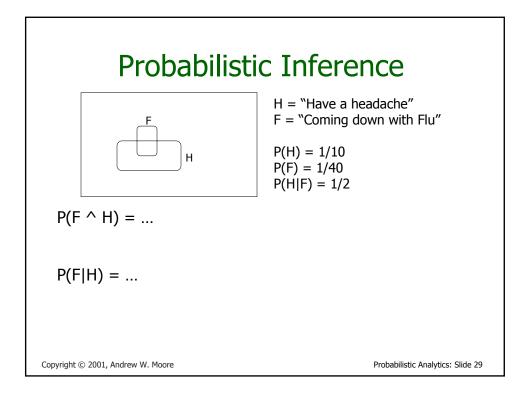
<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

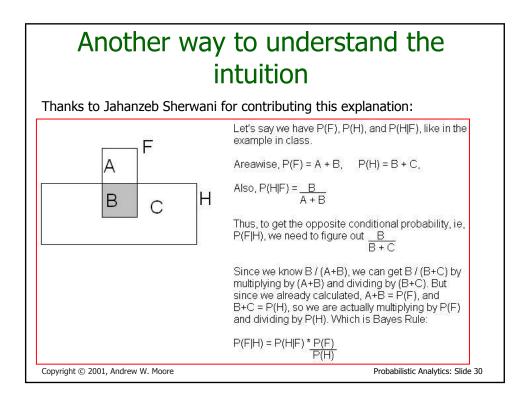


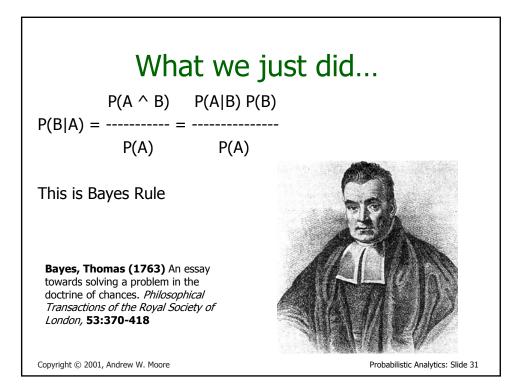


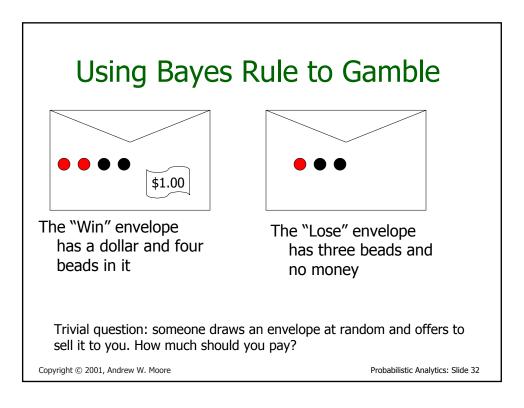


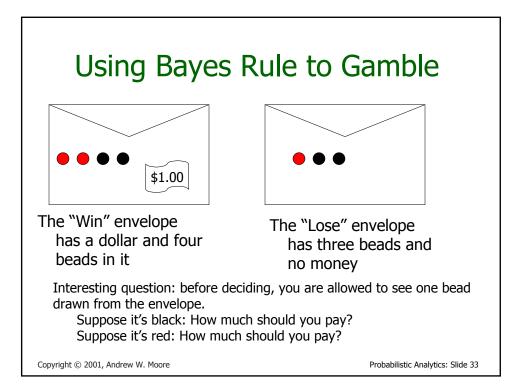


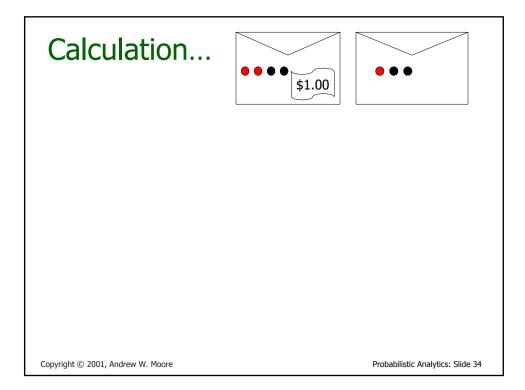


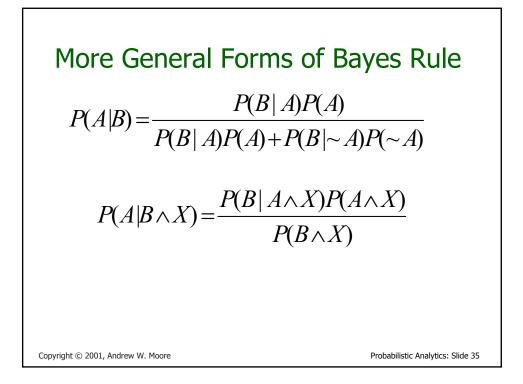


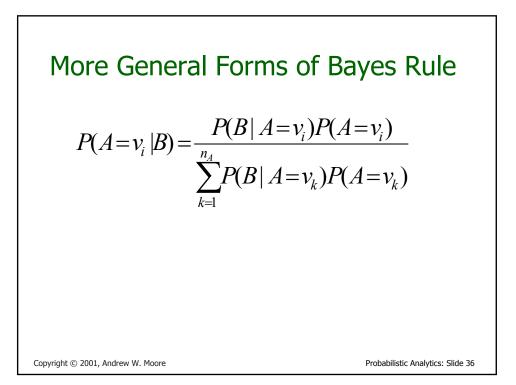










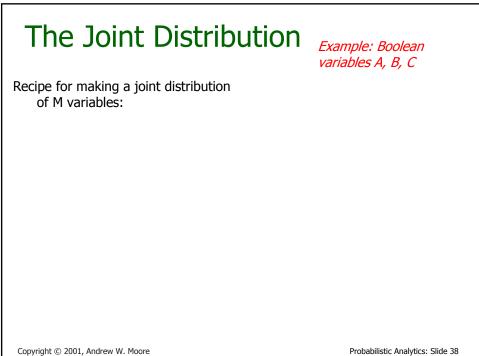


Useful Easy-to-prove facts

$$P(A | B) + P(\neg A | B) = 1$$
$$\sum_{k=1}^{n_A} P(A = v_k | B) = 1$$

Copyright © 2001, Andrew W. Moore

Probabilistic Analytics: Slide 37



Copyright © 2001, Andrew W. Moore

The Joint Distribution

variables A, B, C

Example: Boolean

Recipe for making a joint distribution of M variables:

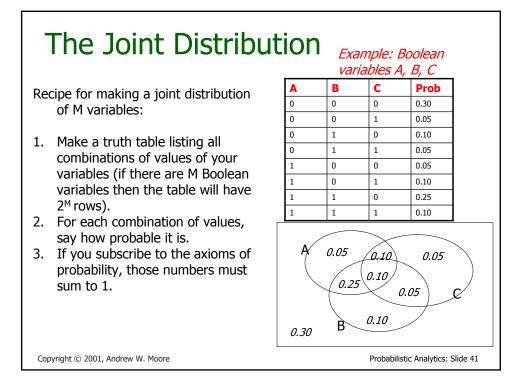
 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).

-	variables A,		
Α	В	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

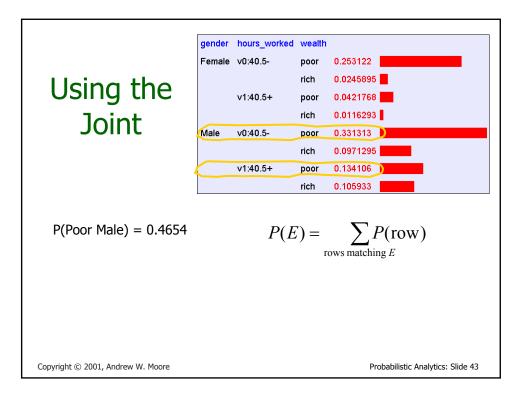
Copyright \odot 2001, Andrew W. Moore

The Joint Distribution Example: Boolean variables A, B, C Prob В С A Recipe for making a joint distribution 0 0 0 0.30 of M variables: 0 0 1 0.05 0 1 0.10 0 1. Make a truth table listing all 0 1 1 0.05 combinations of values of your 0 0.05 1 0 variables (if there are M Boolean 1 0 1 0.10 variables then the table will have 1 1 0 0.25 2^M rows). 1 1 1 0.10 2. For each combination of values, say how probable it is.

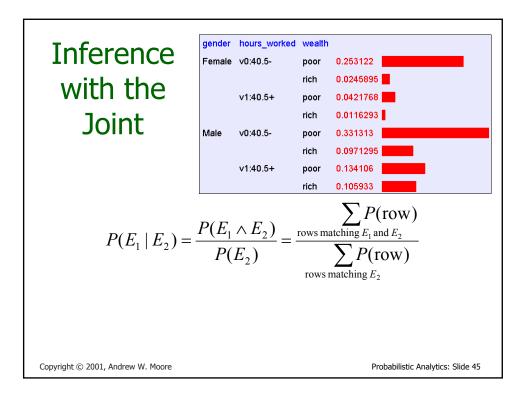
Probabilistic Analytics: Slide 39

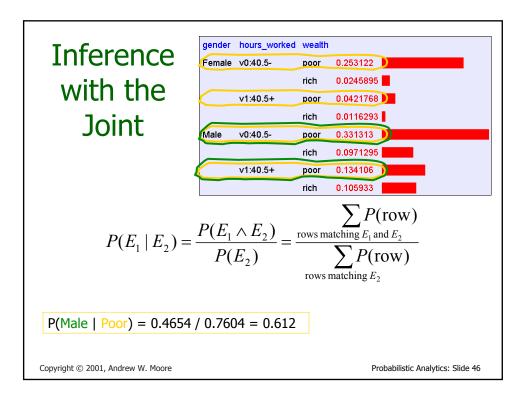


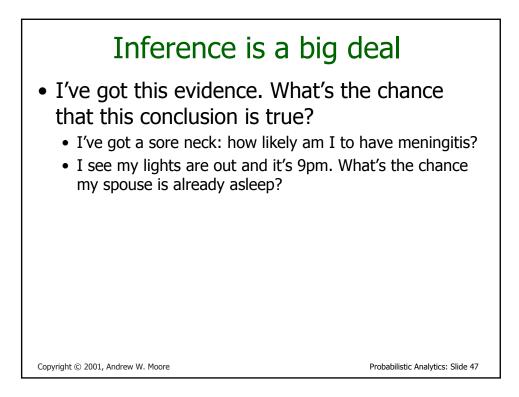
	gender	hours worked	wealth	
		v0:40.5-	poor	0.253122
			rich	0.0245895
Using the		v1:40.5+	poor	0.0421768
Joint			rich	0.0116293
JOILIC	Male	v0:40.5-	poor	0.331313
			rich	0.0971295
		v1:40.5+	poor	0.134106
			rich	0.105933
One you have the JD you ask for the probability of logical expression involvi your attribute	P(E		$\sum_{\text{ows matching } E} P(\text{row})$	

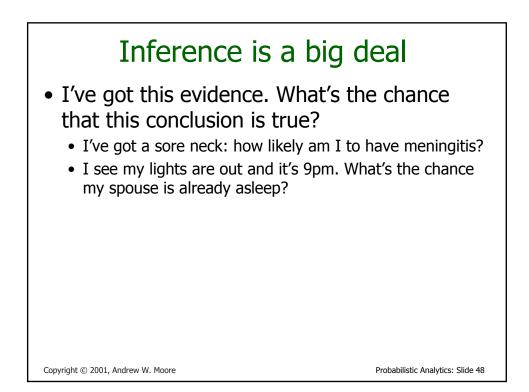


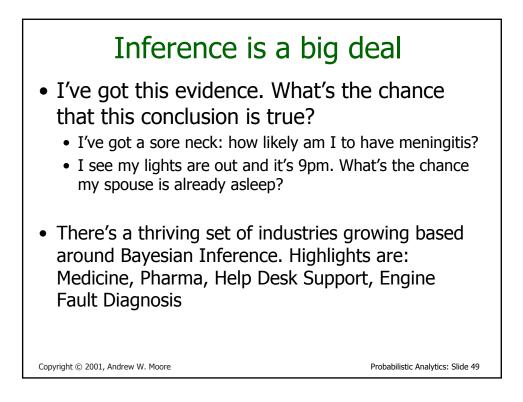
		le a companya de la d		
		hours_worked	poor	0.253122
	i emare	10.40.5	rich	0.0245895
Using the		v1:40.5+	poor	0.0421768
-			rich	0.0116293
Joint	Male	v0:40.5-	poor	0.331313
			rich	0.0971295
		v1:40.5+	poor	0.134106
			rich	0.105933
P(Poor) = 0.7604		P(E		$\sum_{\text{rows matching } E} P(\text{row})$
Copyright © 2001, Andrew W. Moore				Probabilistic Analytics: Slide 44

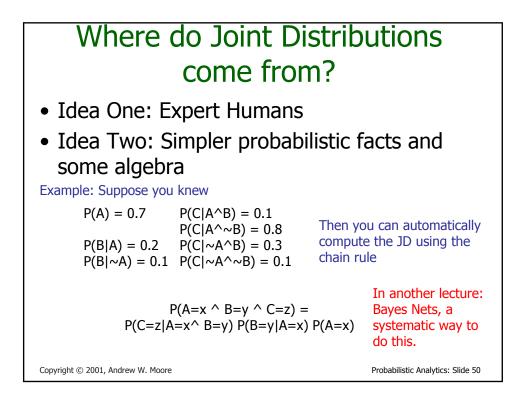


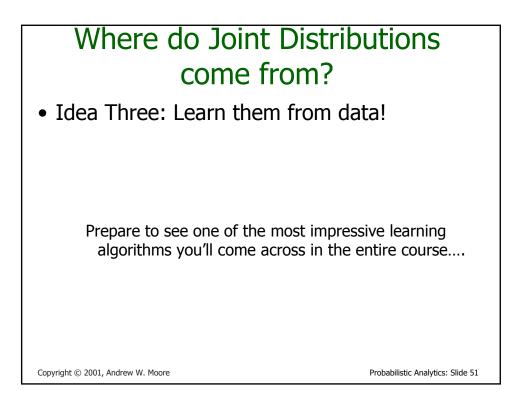


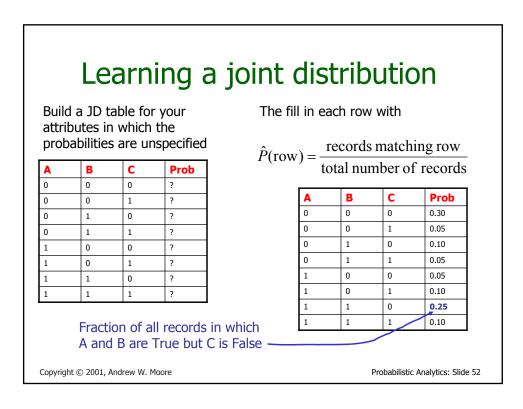


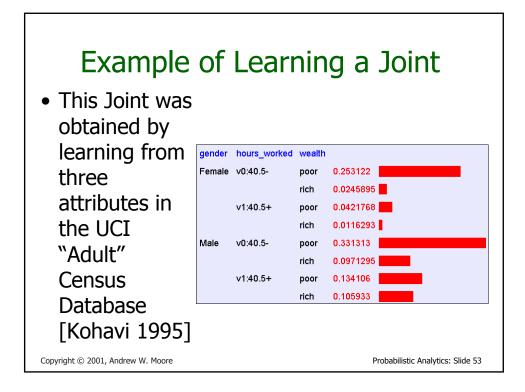


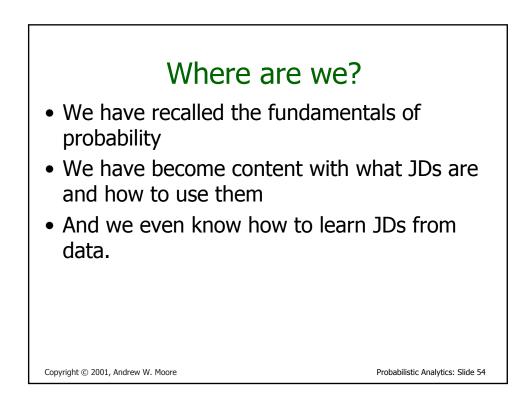


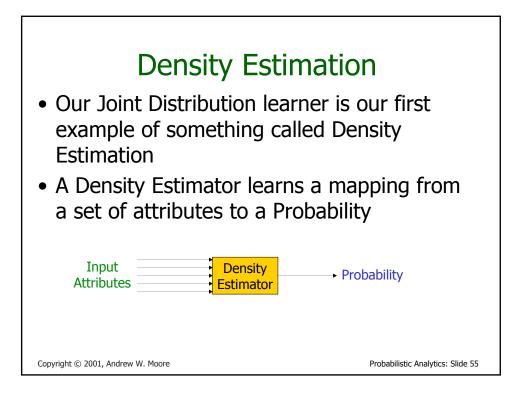


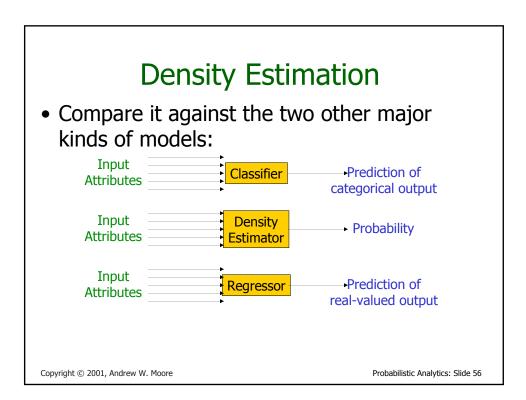


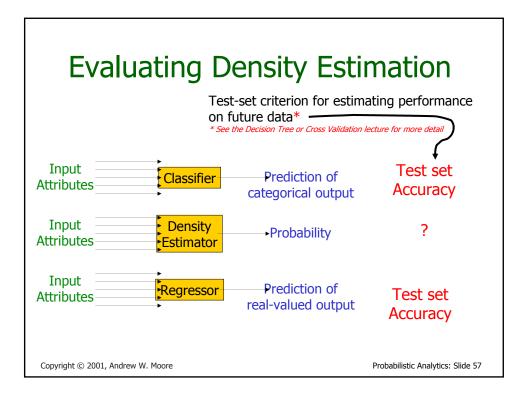


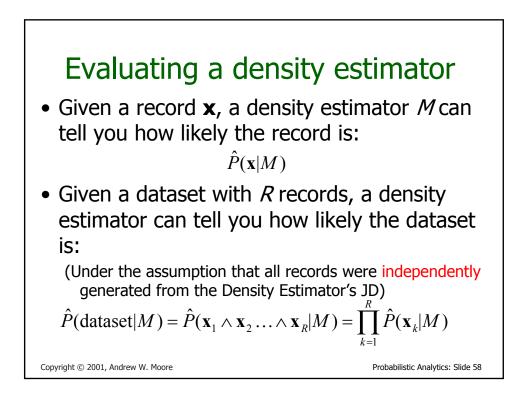


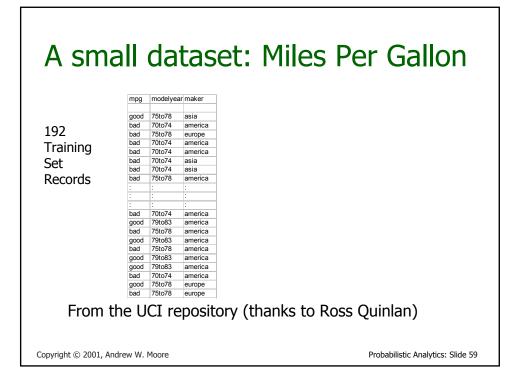


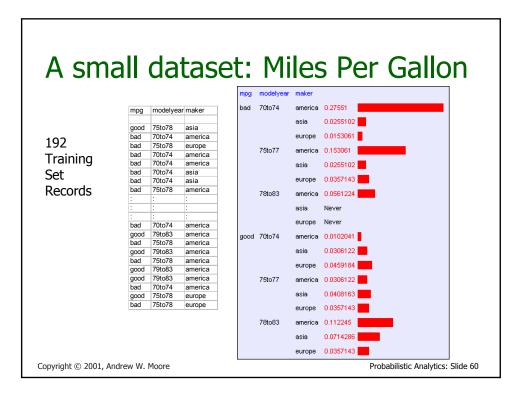


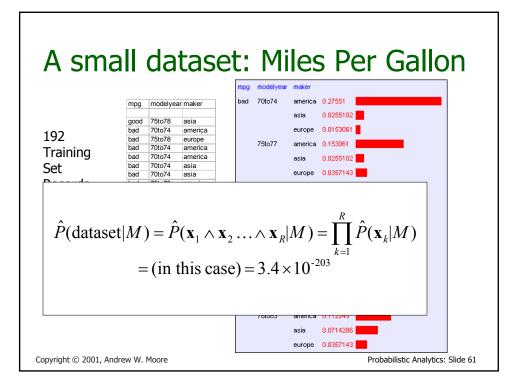


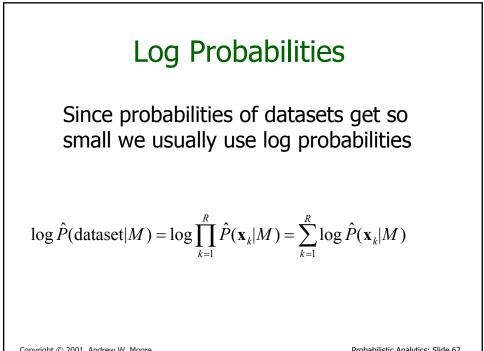






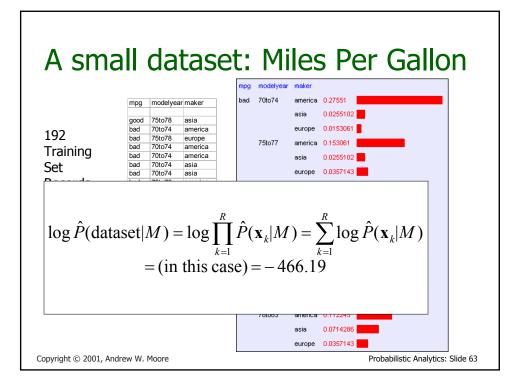


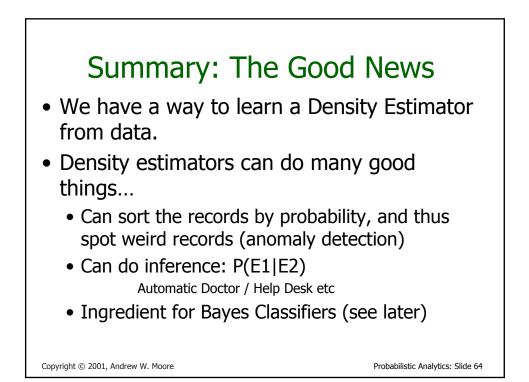


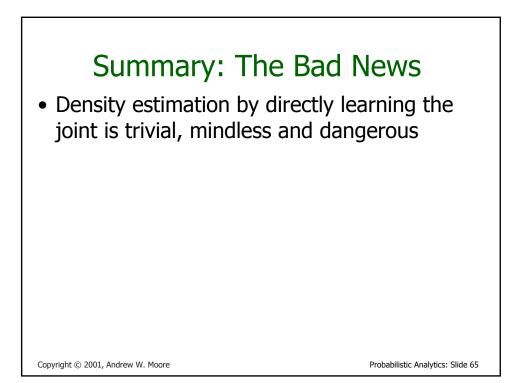


Copyright © 2001, Andrew W. Moore

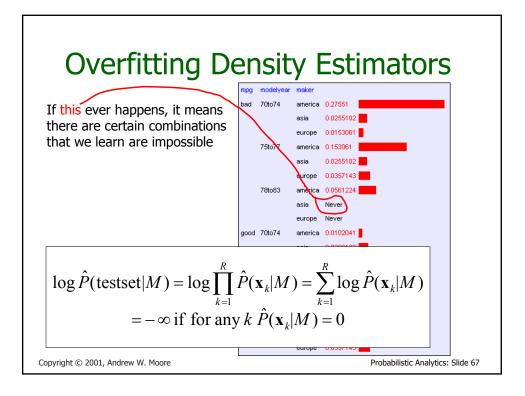
Probabilistic Analytics: Slide 62







	Usin	a a t	est set	
		<u> </u>		
		Set Size	Log likelihood	
	Training Set	196	-466.1905	
	Test Set	196	-614.6157	
·	billion quinti		rs has a worse lo tillion quintillion o	2
Density est estimator is th			d the full joint deall!	ensity
pyright © 2001, Andrew \	N. Moore			Probabilistic Ana



Using a test set							
		Set Size	Log likelihood				
	Training Set	196	-466.1905				
	Test Set	196	-614.6157				
,			In't score -infinity a probability of a				
We need Density Estimators that are less prone							
to overfitting							
Copyright © 2001, Andrew V	N. Moore		Р	robabilistic Analytics: Slide 68			

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

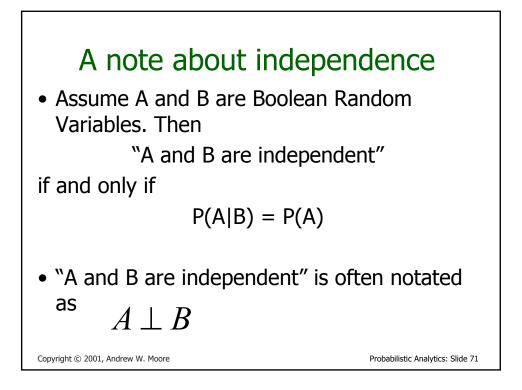
The naïve model generalizes strongly:

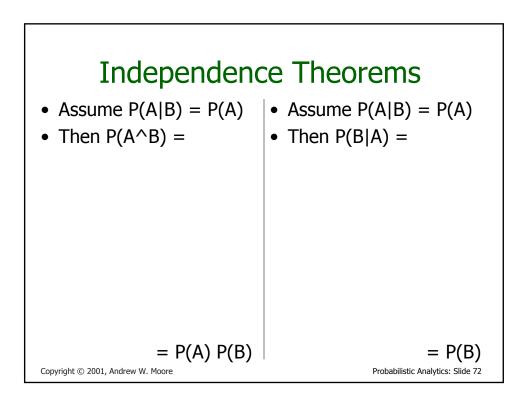
Probabilistic Analytics: Slide 69

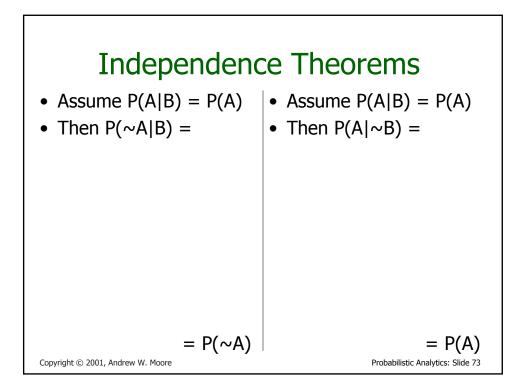
Assume that each attribute is distributed independently of any of the other attributes.

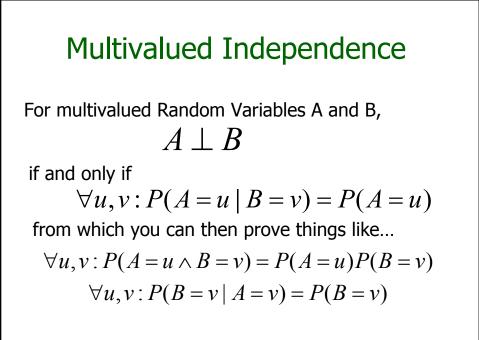
Copyright \circledast 2001, Andrew W. Moore

Distributed Data
 Let x[i] denote the /th field of record x.
 The independently distributed assumption says that for any i, v, u₁ u₂... u_{i-1} u_{i+1}... u_M
 \$\mathbf{(i=\interim} |x[1]=\mathbf{u}_1,x[2]=\mathbf{u}_2,...x[i-1]=\mathbf{u}_{i-1},x[i+1]=\mathbf{u}_{i+1},...x[M]=\mathbf{u}_{n}(x[1])=\mathbf{u}_{n}

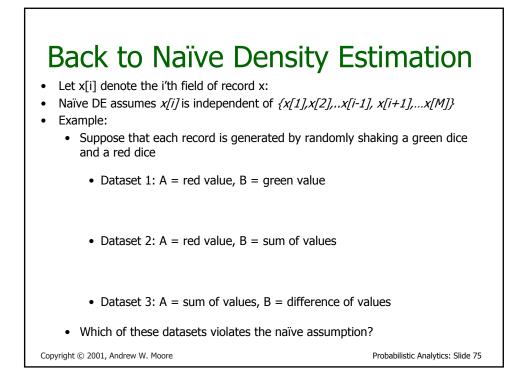


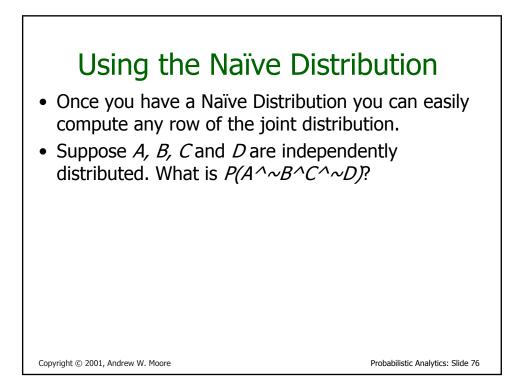


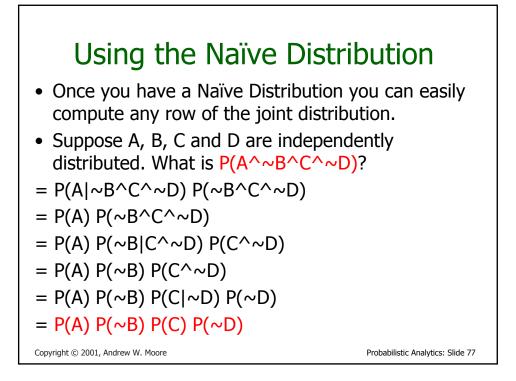




Copyright © 2001, Andrew W. Moore





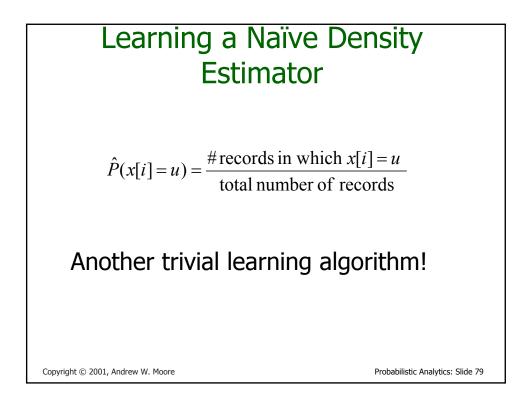


Naïve Distribution General Case

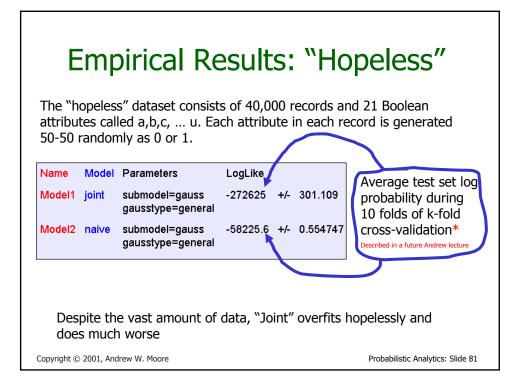
• Suppose *x[1], x[2], ... x[M]* are independently distributed.

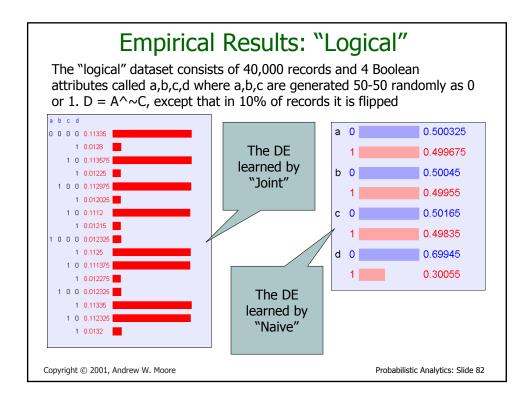
$$P(x[1] = u_1, x[2] = u_2, \dots x[M] = u_M) = \prod_{k=1}^M P(x[k] = u_k)$$

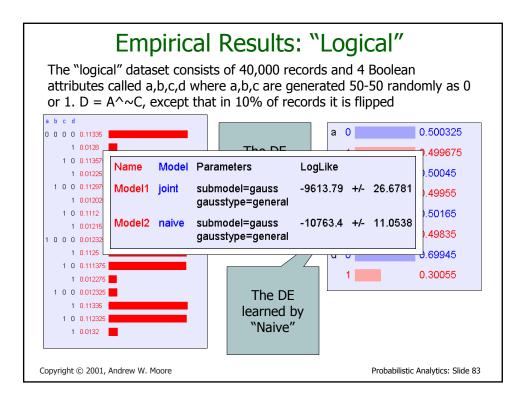
- So if we have a Naïve Distribution we can construct any row of the implied Joint Distribution on demand.
- So we can do any inference
- But how do we learn a Naïve Density Estimator?

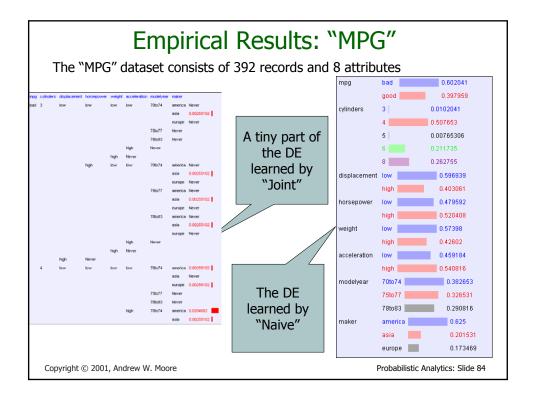


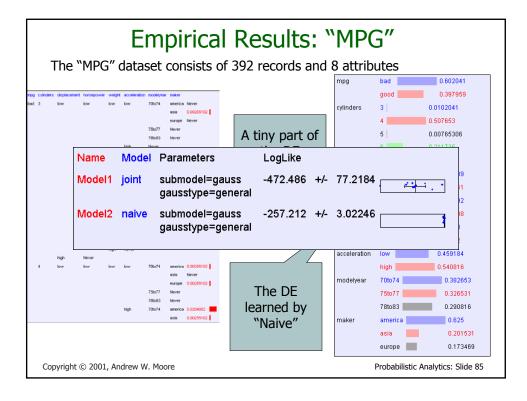
Contrast					
Joint DE	Naïve DE				
Can model anything	Can model only very boring distributions				
No problem to model "C is a noisy copy of A"	Outside Naïve's scope				
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine				

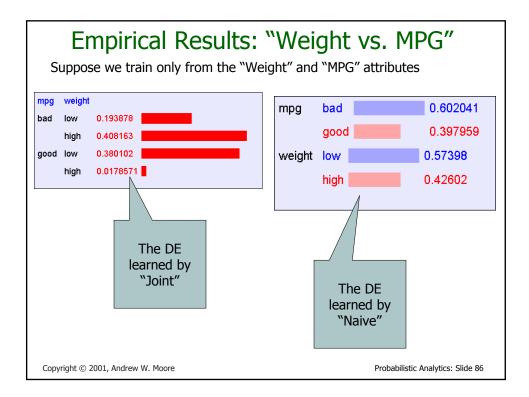




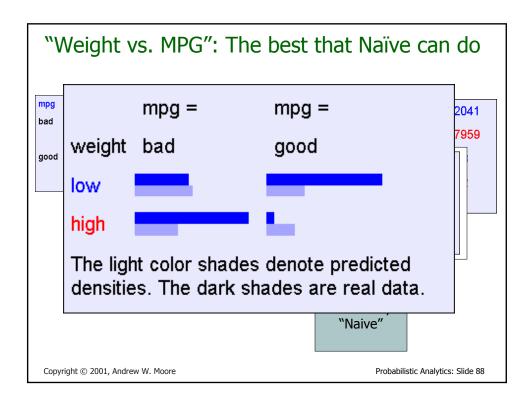


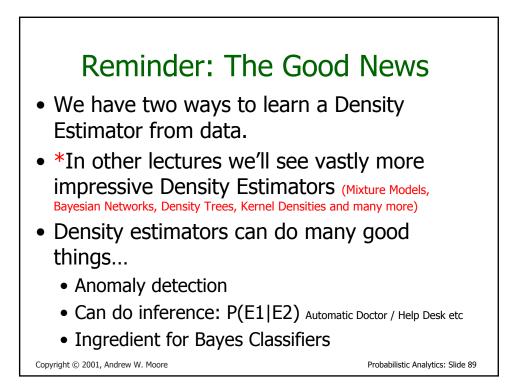


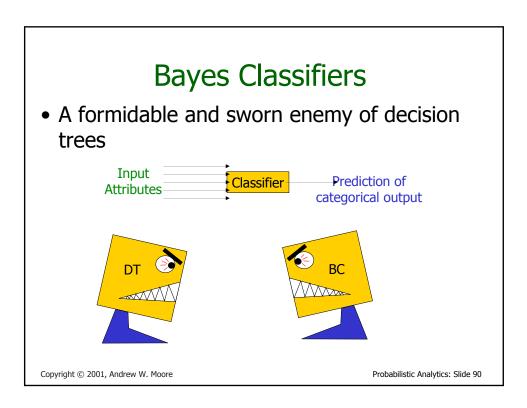


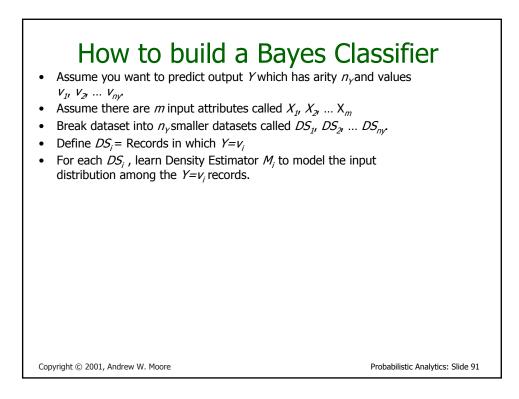


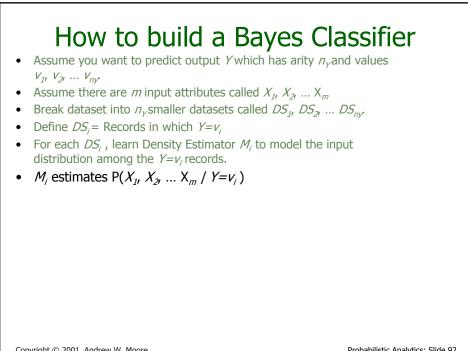




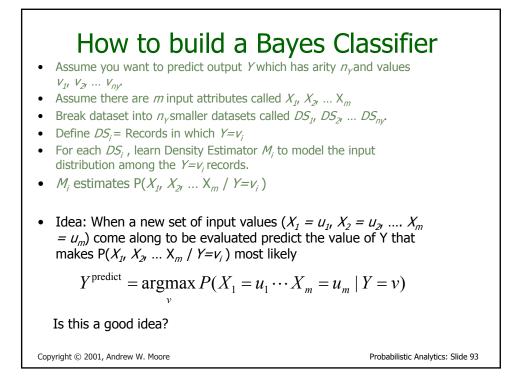


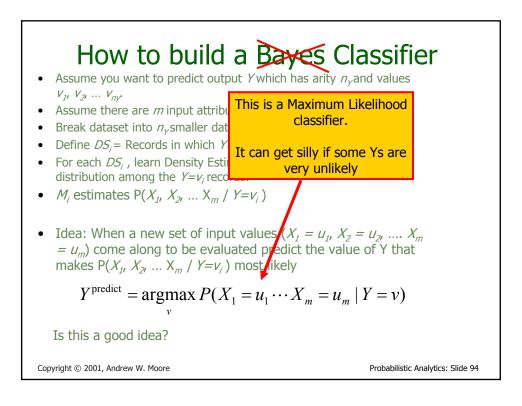


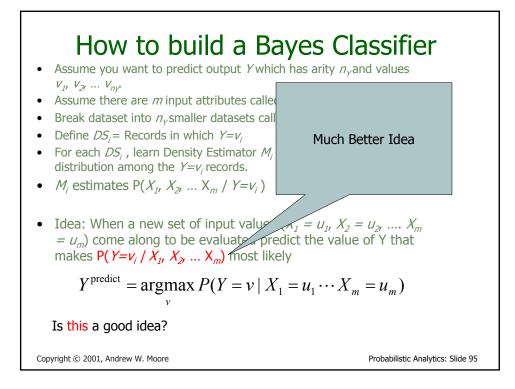


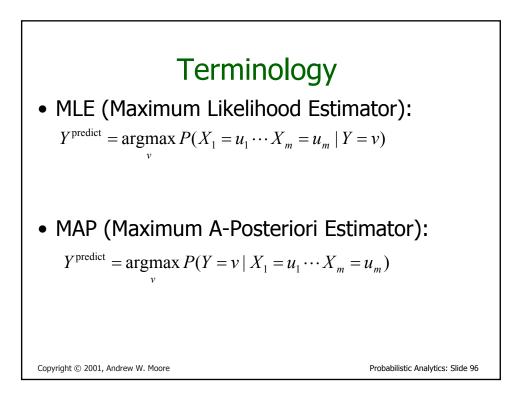


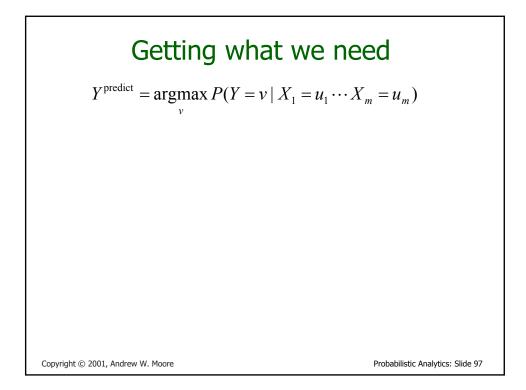
Copyright © 2001, Andrew W. Moore

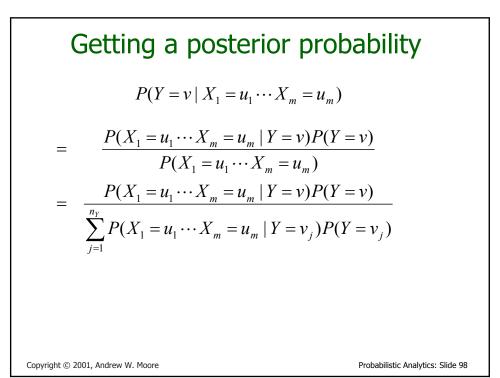


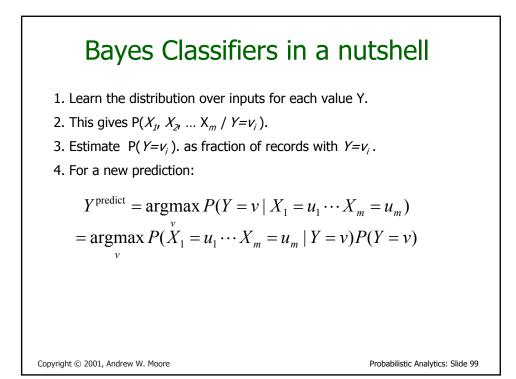


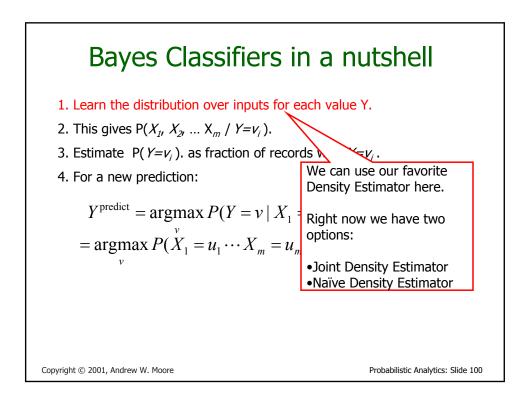


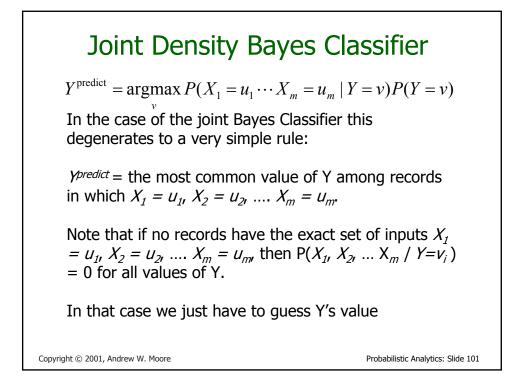


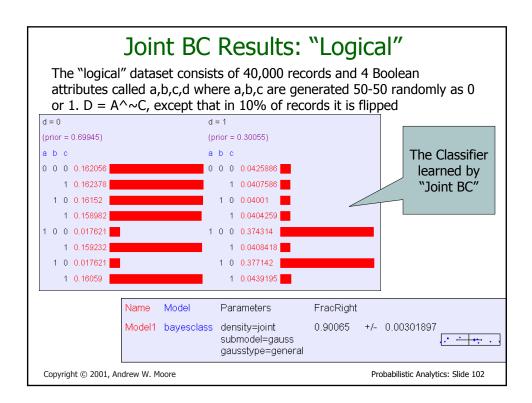




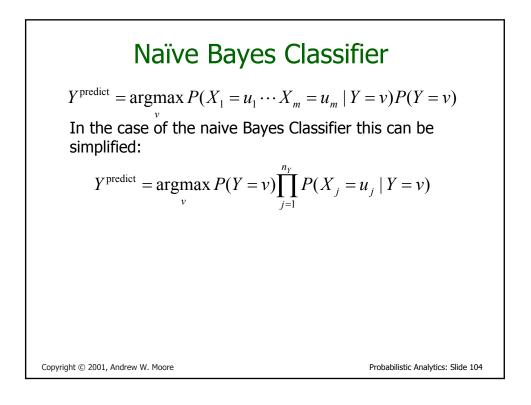


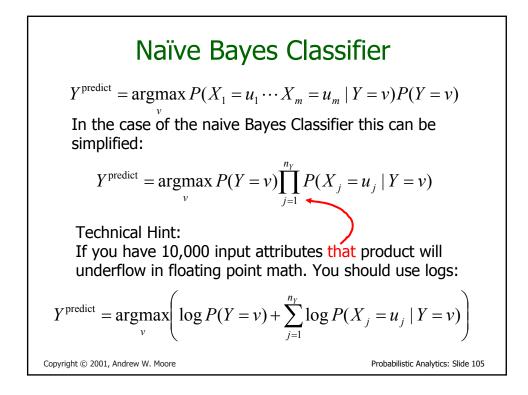


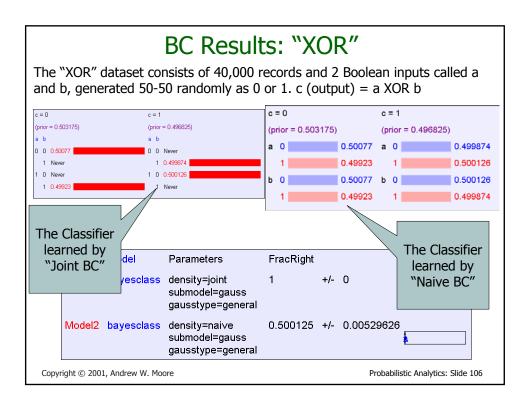


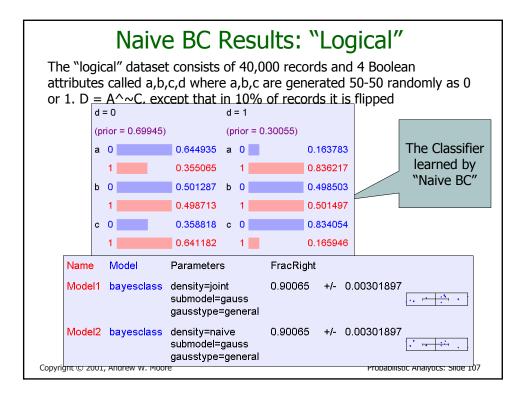


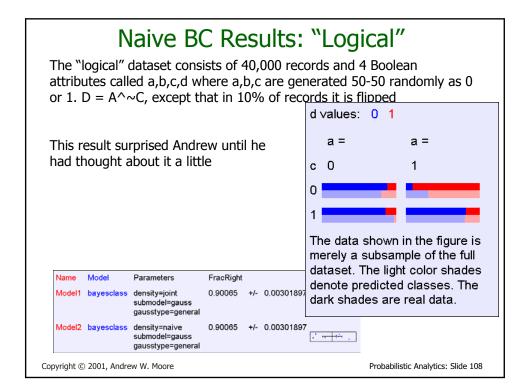
a	Joint BC Results: "All Irrelevant" The "all irrelevant" dataset consists of 40,000 records and 15 Boolean attributes called a,b,c,do where a,b,c are generated 50-50 randomly as 0 or 1. v (output) = 1 with probability 0.75, 0 with prob 0.25						
	Name Model1	Model bayesclass	Parameters density=joint submodel=gauss gausstype=general	FracRight 0.70425	+/-	0.00583537	
Сору	rright © 200	1, Andrew W. Mo	ore			Probabilistic Analytics: Slide	103



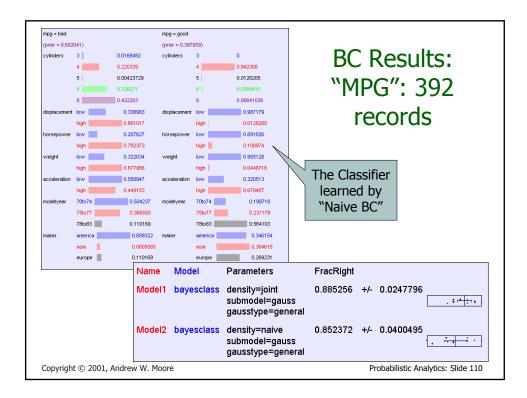


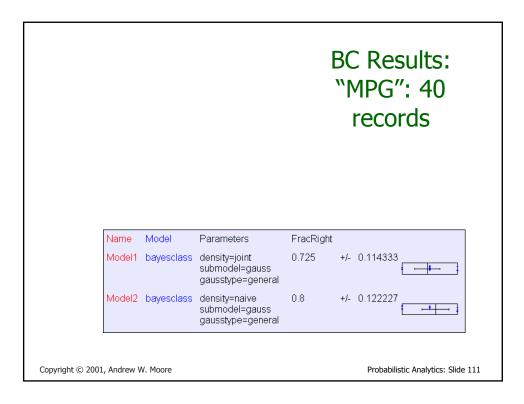


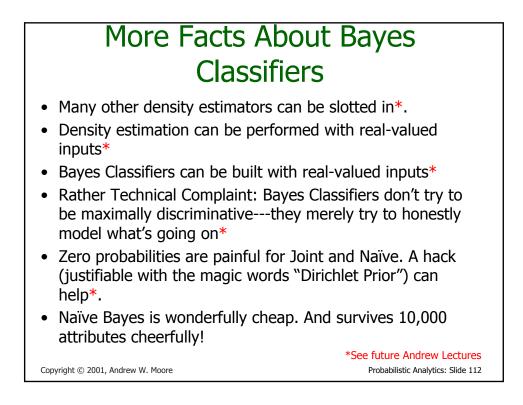




v = 0	v = 1		The Nell invelo		
(prior = 0.7506		= 0.24935)		vant" dataset consists	
a 0	0.500067 a 0	0.501103	of 40,000 records and 15 Boolean attributes called a,b,c,do where a,b,c are generated 50-50 randomly		
1 b 0	0.499933 1 0.5004 b 0	0.498897			
1	0.4996 1				
c 0	0.503031 c 0	0.497493			
1	0.496969 1	0.502507	as 0 or 1. v (output) = 1 with		
d 0	0.501798 d 0	0.505013	probability 0.	75, 0 with prob 0.25	
1	0.498202 1	0.494987		1	
e 0	0.500466 e 0	0.500401	The Classifier		
1	0.499534 1	0.499599			
f 0	0.498335 f 0	0.50401	learned by		
1	0.501665 1	0.49599	"Naive BC"		
		11 5119675			
Name	Model	Parameters	FracRight		
Model1	bayesclass	density=joint	0.70425 +/-	0.00583537	
would	bayesciass	submodel=gaus	••.••	· 0.00000000000000000000000000000000000	
		gausstype=gene			
		gaaboijpe gein			
Model2	bayesclass	•		0.00281976	
		submodel=gaus		***	
		gausstype=gene	eral		







What you should know

- Probability
 - Fundamentals of Probability and Bayes Rule
 - What's a Joint Distribution
 - How to do inference (i.e. P(E1|E2)) once you have a JD
- Density Estimation
 - What is DE and what is it good for
 - How to learn a Joint DE
 - How to learn a naïve DE

Copyright \odot 2001, Andrew W. Moore

Probabilistic Analytics: Slide 113

<section-header><list-item><list-item><list-item><list-item><list-item>

Copyright © 2001, Andrew W. Moore

Interesting Questions

 Suppose you were evaluating NaiveBC, JointBC, and Decision Trees

- Invent a problem where only NaiveBC would do well
- Invent a problem where only Dtree would do well
- Invent a problem where only JointBC would do well
- Invent a problem where only NaiveBC would do poorly
- Invent a problem where only Dtree would do poorly
- Invent a problem where only JointBC would do poorly

Copyright $\ensuremath{\mathbb{C}}$ 2001, Andrew W. Moore