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Stochastic Systems

« Many systems driven by random, discrete
Interactions

 Traditional deterministic models may not
accurately describe such systems



Example: The Lambda Switch

Virus Decision Dictated by Noise

Arkin, Ross, McAdams, Genetics (1998)
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Outline

Deterministic rate reaction model
Gillespie method

Examples

— Lambda phage
— Epidemiology
Optimizations



Deterministic Model

Reactions: ODE'’s:

A+BXy, C dA/dt = -k *A*B + k,*C — k*A
C%» A+B j dB/dt = -K,*A*B + k,*C + K *A
Af’ B dC/dt = k,*A*B — k,*C - k,*C
C—

o Given Initial conditions, integrate the
coupled equations for some period of time



Problem Statement

Q. ©\ ®
Q/aan ‘/ &

If we start with N species which can interact
through one of M reactions at a given time,

what will be the population levels of species
after a given period of time?



Deterministic Solution

A+B—->C

C—>A+B
A—->B
C-

dA/dt = K *A*B + K,*C — Kk *A
dB/dt = -k, *A*B + k,*C + k3*A
dC/dt = k*A*B — k,*C — k,*C

e Continuous

 Average Kinetic rates represent
reaction probabilities
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Validity of Deterministic Solution

Q.

A+B—->C
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Validity of Deterministic Solution
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Reaction Probabilities

* c,dt =average probability that a particular combination
of reactants will react according to R, in the next
time interval dt

. hH: number of reactant combinations

* hc, dt=a dt= average pr_obability thatan R, -
reaction will occur somewhere inside V
In the next time interval dt



Reaction Probabilities

* c,dt =average probability that a particular combination
of reactants will react according to R, in the next
time interval dt

. h“: number of reactant combinations

* hc, dt=a dt= average pr_obability thatan R, -
reaction will occur somewhere inside V
In the next time interval dt

R: A+B>C

X molecules of A .
h, = XY reactant combinations
Y molecules of B

XYc, dt = probability that an R, reaction will occur somewhere
Inside V in the next time interval dt



Exact Stochastic Simulation

e Avoid averaging assumptions

 Probabilistic formulation
— When does next reaction occur?
— Which reaction occurs next?

* Reaction probability density function:

P(t,u)dt = probabillity at time t that the next reaction
Is R, and occurs in interval (t+z,t+t+dr)

System State:

Ry t t+1
/\ R, C>A+B| [A]1L |2
: B — Bl1 |2
t t+t  t+t+drt cls |7




Deriving Reaction PDF

L t+t  t+r+dre

P(t,n)dt = Py(1) \hucudf

¥
\—Y—} probability that reaction p occurs during (t+t, t+t+dr)

probability that no reaction occurs during (t,t+7)




Deriving P,(t) for Reaction PDF

« Divide (t,t+1) into K e
subintervals of width ¢ .

E=—
K

 Probability that none of the reactions occur in any of
the K subintervals:

- —K
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Direct Method for Generating P(t,u)
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Direct Method for Generating P(t,u)

M

—Zhicir
P(z',,u)z hﬂCﬂPO(z'): hﬂcﬂe =l
. —a,T
—aﬂe 0
—ayT ay
= (a,e ™) = |=P(@)- P(ur)
a0 \ I
when which
next reaction
reaction occurs
oCccurs

T = (1/a,)In(1/rand,)

p—1 M
u is the integer for which ZH a, <rand,a, < Zizl a;



Stochastic Simulation Algorithm

1. Initialization
— Set values of C, for the M reactions.

— Set initial population sizes
2. Calculate the M values a, and a; = 2 a,,.
. Generate (t,u) based on P(t,)

4. Adjust population levels according to the
reaction R , and increase t by 1

5. Return to Step 2

w



Lambda Phage Developmental Pathway
Arkin, Ross, McAdams, Genetics (1998)

* Regqulatory circuit

@ . .
o exploits stochastic
noise to produce
S different outcomes
/M\ » Stochastic model
COES,  Json can predict
Q : 5 statistics of

} winsueren } |
- A regulatory
— C@) outcomes




Lambda Phage: Regulatory Circuit

R2

3 L  Cland Cro
ooy l t competitively
I bind Og;, Oy,
R ORB
* Crorepresses Pg
and Py,

* Cl represses P,
can activate Pg,,



Nanomolar

Nanomolar

Lambda Phage: Regulatory Circuit
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 Cland Cro
competitively
bind Og,, Og,,
OR3

e Cro represses Pg
and Pg,,

e Cl represses Py,
can activate Py,



Time Evolution of Two Runs

Lysogeny

CI-Cl (nM)

Cro-Cro (nM})
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# infected # susceptibles

# recovered

Epidemiology Example
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Evaluation of Stochastic Simulation

 Advantages
— continuous time, discrete population changes
— captures effects of noise
— simple implementation
— small memory requirements

e Disadvantages
— CPU intensive
— typically must simulate many runs

— must use good random number generator
 periodicity affects size of simulation
 resolution limits range of probabilities



Computational Requirements

« Memory (N +2M + 1)
— N species populations
— c and a values for each of M reactions; a,

e Total time scales with number of reactions that occur

« Operations per reaction:

Generate 2 random numbers

Calcu

ate a,

Calcu

ate t

Searc

N

Calcu

ate a values

} o(M)

O(M)
O(M)



Optimized Direct Method (ODM)

Y. Cao, H. Li, L. Petzold. 2004. J. Chem. Phys. 121:4059-4067

Reduce cost of searching > a, <rand,a, <> a
for index w - .

Observation: Reactions )
are typically multiscale in
a large system. Subset
will frequently occur.

Sort iIndex of reactions
based on how often they
occur

«—rand,a,




Optimized Direct Method (ODM)

e Reduce cost of
calculating all a,

« Dependency graph

 Reduce cost of
summing all a, to
calculate a,

* Modify a, by
subtracting old
values, adding new Gibson and Bruck, 2000




Conclusion

Provides means of studying role of noise in
complex systems

Can predict statistics (Lambda phage)

Can depict behavior that deterministic
simulations do not capture (epidemiology
example)

Enhancing performance an active area of
iInvestigation
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Comparing to Experimental Results

« Compare predicted percent lysogenization to
experimental results at different infection levels

* Average phage input (API) = ratio of phage particles to
cells at time of infection

« Multiplicity of infection (MOI) = phage particles per cell

« Poisson probability that a given cell will be infected with

MOI=M when API=A
Al\/l
P(M,A)=——¢™"

« EXxpected fraction of lysogens:

Iysogens Z P M A )



Comparing to Experimental Results
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Example (deterministic assumptions)

%:klxlx2
R,: S +S,—528, [ > ;:
8_’[2: Ky X)X,

Average rate of R, in dt per unit volume:
(X, X,e) (X X,)c,

V V
Using concentrations x; = Xi/V and dividing by density of
reactants:
(XX, )CV

=

(X )(%2)

Deterministic assumption:
K=cV



Master equation

0
ot P(X19°°-9 X\ ;t): Zil [Bﬂ B aﬂP(Xl,..., Xy ;t)]

B, dt = probability that single R reaction brings us to state
Xl,---,XN

a, dt = hM(:H dt , where hH IS the number of reactant
combinations

Often difficult to solve analytically and even numerically

—>Instead simulate individual trajectories using Monte
Carlo algorithm



