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Stochastic Systems

• Many systems driven by random, discrete 
interactions

• Traditional deterministic models may not 
accurately describe such systems
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Virus Decision Dictated by Noise

Arkin, Ross, McAdams, Genetics (1998)
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Outline

• Deterministic rate reaction model
• Gillespie method
• Examples

– Lambda phage
– Epidemiology

• Optimizations



Deterministic Model

Reactions:
A + B       C 

C       A + B
A B
C    

ODE’s:
dA/dt = -k1*A*B + k2*C – k3*A
dB/dt = -k1*A*B + k2*C + k3*A
dC/dt =  k1*A*B – k2*C - k4*C

• Given initial conditions, integrate the 
coupled equations for some period of time
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Problem Statement

If we start with N species which can interact 
through one of M reactions at a given time,
what will be the population levels of species 
after a given period of time?

p**

☺ p**
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Deterministic Solution

• Continuous
• Average kinetic rates represent 

reaction probabilities

dA/dt = -k1*A*B + k2*C – k3*A
dB/dt = -k1*A*B + k2*C + k3*A
dC/dt =  k1*A*B – k2*C – k4*C

A + B C
C A + B 
A B 
C
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Validity of Deterministic Solution

A + B C
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Validity of Deterministic Solution
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Reaction Probabilities
• cµ dt = average probability that a particular combination 

of reactants will react according to Rµ in the next   
time interval dt

• hµ = number of reactant combinations
• hµcµ dt = aµ dt = average probability that an Rµ

reaction will occur somewhere inside V
in the next time interval dt



Reaction Probabilities
• cµ dt = average probability that a particular combination 

of reactants will react according to Rµ in the next   
time interval dt

• hµ = number of reactant combinations
• hµcµ dt = aµ dt = average probability that an Rµ

reaction will occur somewhere inside V
in the next time interval dt

X molecules of A
Y molecules of B

XYc1 dt = probability that an R1 reaction will occur somewhere
inside V in the next time interval dt

R1: A + B C

h1 = XY reactant combinations



Exact Stochastic Simulation
• Avoid averaging assumptions
• Probabilistic formulation

– When does next reaction occur?
– Which reaction occurs next?

• Reaction probability density function:

t t+τ

P(τ,µ)dτ = probability at time t that the next reaction 
is Rµ and occurs in interval (t+τ,t+τ+dτ) 

t+τ+dτ

Rµ A + B C
C A + B 
A B 
C

R1:
R2:
R3:
R4:

System State:
t+τt

78C
21B
21A



P(τ,µ)dτ = P0(τ) hµcµdτ

probability that no reaction occurs during (t,t+τ)

probability that reaction µ occurs during (t+τ, t+τ+dτ)

Deriving Reaction PDF

t t+τ t+τ+dτ

Rµ



Deriving P0(τ) for Reaction PDF

K
τε =

t t+τ
• Divide (t,t+τ) into K 
subintervals of width ε

• Probability that none of the reactions occur in any of 
the K subintervals:
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Direct Method for Generating P(τ,µ)
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Direct Method for Generating P(τ,µ)
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Stochastic Simulation Algorithm
1. Initialization

– Set values of cµ for the M reactions.
– Set initial population sizes

2. Calculate the M values aµ and a0 = Σ aµ.
3. Generate (τ,µ) based on P(τ,µ)
4. Adjust population levels according to the 

reaction Rµ, and increase t by τ
5. Return to Step 2



Lambda Phage Developmental Pathway
Arkin, Ross, McAdams, Genetics (1998)

• Regulatory circuit 
exploits stochastic 
noise to produce 
different outcomes

• Stochastic model 
can predict 
statistics of 
regulatory 
outcomes



Lambda Phage:  Regulatory Circuit

• CI and Cro
competitively 
bind OR1, OR2, 
OR3

• Cro represses PR
and PRM

• CI represses PR, 
can activate PRM
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• CI and Cro
competitively 
bind OR1, OR2, 
OR3
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and PRM

• CI represses PR, 
can activate PRM



Time Evolution of Two Runs



Epidemiology Example

Susceptible Infected Recovered

p**

☺ p**

p**
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Evaluation of Stochastic Simulation

• Advantages
– continuous time, discrete population changes
– captures effects of noise
– simple implementation
– small memory requirements

• Disadvantages
– CPU intensive
– typically must simulate many runs
– must use good random number generator

• periodicity affects size of simulation
• resolution limits range of probabilities



Computational Requirements
• Memory (N + 2M + 1)

– N species populations
– c and a values for each of M reactions; a0

• Total time scales with number of reactions that occur
• Operations per reaction:

Calculate a values
Search µ
Calculate τ
Calculate a0

Generate 2 random numbers
O(M)

O(M)

O(M)



Optimized Direct Method (ODM)
Y. Cao, H. Li, L. Petzold.  2004. J. Chem. Phys. 121:4059-4067
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• Observation:  Reactions 
are typically multiscale in 
a large system.  Subset 
will frequently occur.

• Sort index of reactions 
based on how often they 
occur
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Optimized Direct Method (ODM)

• Reduce cost of 
calculating all aµ

• Dependency graph
• Reduce cost of 

summing all aµ to 
calculate a0

• Modify a0 by 
subtracting old 
values, adding new Gibson and Bruck, 2000



Conclusion

• Provides means of studying role of noise in 
complex systems 

• Can predict statistics (Lambda phage)
• Can depict behavior that deterministic 

simulations do not capture (epidemiology 
example) 

• Enhancing performance an active area of 
investigation
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Comparing to Experimental Results
• Compare predicted percent lysogenization to 

experimental results at different infection levels
• Average phage input (API) = ratio of phage particles to 

cells at time of infection
• Multiplicity of infection (MOI) = phage particles per cell
• Poisson probability that a given cell will be infected with 

MOI=M when API=A

• Expected fraction of lysogens:
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Comparing to Experimental Results



Example (deterministic assumptions)

Average rate of R1 in dt per unit volume:

V
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Using concentrations xi = Xi/V and dividing by density of 
reactants:
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Master equation

• Bµ dt = probability that single R reaction brings us to state 
X1,…,XN

• aµ dt = hµcµ dt , where hµ is the number of reactant 
combinations

• Often difficult to solve analytically and even numerically 
• Instead simulate individual trajectories using Monte 

Carlo algorithm

( ) ( )[ ]∑ =
−=

∂
∂ M

NN tXXPaBtXXP
t 1 11 ;,...,;,...,

µ µµ


