# Introduction to Stochastic Simulation with the Gillespie Method

David Karig April 18, 2005

### **Stochastic Systems**



- Many systems driven by random, discrete interactions
- Traditional deterministic models may not accurately describe such systems

# Example: The Lambda Switch

#### Virus Decision Dictated by Noise



# Example: The Lambda Switch

#### Virus Decision Dictated by Noise



# Example: The Lambda Switch

#### Virus Decision Dictated by Noise



#### Outline

- Deterministic rate reaction model
- Gillespie method
- Examples
  - Lambda phage
  - Epidemiology
- Optimizations

## **Deterministic Model**



 Given initial conditions, integrate the coupled equations for some period of time

#### **Problem Statement**



If we start with N species which can interact through one of M reactions at a given time, what will be the population levels of species after a given period of time?

### **Deterministic Solution**



- Continuous
- Average kinetic rates represent reaction probabilities

#### Validity of Deterministic Solution

 $\mathsf{A} + \mathsf{B} \xrightarrow{} \mathsf{C}$ 







#### Validity of Deterministic Solution





#### **Reaction Probabilities**

- c<sub>μ</sub> dt = average probability that a *particular* combination of reactants will react according to R<sub>μ</sub> in the next time interval dt
- $h_{\mu}$  = number of reactant combinations
- $h_{\mu}c_{\mu} dt = a_{\mu} dt = average probability that an R_{\mu}$ reaction will occur somewhere inside V in the next time interval dt

#### **Reaction Probabilities**

- c<sub>μ</sub> dt = average probability that a *particular* combination of reactants will react according to R<sub>μ</sub> in the next time interval dt
- $h_{\mu}$  = number of reactant combinations
- $h_{\mu}c_{\mu} dt = a_{\mu} dt = average probability that an R_{\mu}$ reaction will occur somewhere inside V in the next time interval dt

R<sub>1</sub>: A + B  $\rightarrow$  C X molecules of A Y molecules of B  $h_1 = XY$  reactant combinations

 $XYc_1 dt =$  probability that an  $R_1$  reaction will occur somewhere inside V in the next time interval dt

#### **Exact Stochastic Simulation**

- Avoid averaging assumptions
- Probabilistic formulation
  - When does next reaction occur?
  - Which reaction occurs next?
- Reaction probability density function:

 $P(\tau,\mu)d\tau = probability at time t that the next reaction$  $is R<sub>u</sub> and occurs in interval (t+<math>\tau$ ,t+ $\tau$ +d $\tau$ )



#### System State:

|  |   | t | t+τ |
|--|---|---|-----|
|  | А | 1 | 2   |
|  | В | 1 | 2   |
|  | С | 8 | 7   |

#### **Deriving Reaction PDF**



 $P(\tau,\mu)d\tau = P_0(\tau) \underset{\text{probability that reaction } \mu \text{ occurs during } (t+\tau, t+\tau+d\tau)$ 

#### Deriving $P_0(\tau)$ for Reaction PDF



 Probability that none of the reactions occur in any of the K subintervals:

$$P_0(\tau) = \left[1 - \sum_{i=1}^M h_i c_i \varepsilon\right]^K = \lim_{K \to \infty} \left[1 - \frac{\sum_{i=1}^M h_i c_i \tau}{K}\right]^K = e^{-\sum_{i=1}^M h_i c_i \tau}$$

#### Direct Method for Generating $P(\tau,\mu)$

$$P(\tau,\mu) = h_{\mu}c_{\mu}P_{0}(\tau) = h_{\mu}c_{\mu}e^{-\sum_{i=1}^{M}h_{i}c_{i}\tau}$$
$$= a_{\mu}e^{-a_{0}\tau}$$
$$= \left(a_{0}e^{-a_{0}\tau}\right)\left(\frac{a_{\mu}}{a_{0}}\right) = P(\tau) \cdot P(\mu|\tau)$$

whenwhichnextreactionreactionoccursoccurs



 $\mathbf{a}_0 = \sum_{\mu=1}^M a_\mu$ 

#### Direct Method for Generating $P(\tau,\mu)$



 $\tau = (1/a_0) \ln(1/rand_1)$ 

 $\mu$  is the integer for which  $\sum_{i=1}^{\mu-1} a_i < rand_2 a_o < \sum_{i=1}^{\mu} a_i$ 

### **Stochastic Simulation Algorithm**

- 1. Initialization
  - Set values of  $c_{\mu}$  for the M reactions.
  - Set initial population sizes
- 2. Calculate the M values  $a_{\mu}$  and  $a_0 = \Sigma a_{\mu}$ .
- 3. Generate  $(\tau, \mu)$  based on  $P(\tau, \mu)$
- 4. Adjust population levels according to the reaction  $R_{\mu}$ , and increase t by  $\tau$
- 5. Return to Step 2

#### Lambda Phage Developmental Pathway



- Regulatory circuit exploits stochastic noise to produce different outcomes
- Stochastic model can predict statistics of regulatory outcomes

#### Lambda Phage: Regulatory Circuit



- CI and Cro competitively bind  $O_{R1}$ ,  $O_{R2}$ ,  $O_{R3}$
- Cro represses  $P_R$  and  $P_{RM}$
- CI represses P<sub>R</sub>, can activate P<sub>RM</sub>

#### Lambda Phage: Regulatory Circuit



- CI and Cro competitively bind O<sub>R1</sub>, O<sub>R2</sub>, O<sub>R3</sub>
- Cro represses  $\mathsf{P}_\mathsf{R}$  and  $\mathsf{P}_\mathsf{RM}$
- CI represses P<sub>R</sub>, can activate P<sub>RM</sub>

#### **Time Evolution of Two Runs**



#### **Epidemiology Example**



#### **Evaluation of Stochastic Simulation**

#### • Advantages

- continuous time, discrete population changes
- captures effects of noise
- simple implementation
- small memory requirements
- Disadvantages
  - CPU intensive
  - typically must simulate many runs
  - must use good random number generator
    - periodicity affects size of simulation
    - resolution limits range of probabilities

### **Computational Requirements**

- Memory (N + 2M + 1)
  - N species populations
  - -c and *a* values for each of M reactions;  $a_0$
- Total time scales with number of reactions that occur
- Operations per reaction:



#### **Optimized Direct Method (ODM)**

Y. Cao, H. Li, L. Petzold. 2004. J. Chem. Phys. 121:4059-4067

- Reduce cost of searching for index μ
- Observation: Reactions are typically multiscale in a large system. Subset will frequently occur.
- Sort index of reactions based on how often they occur

$$\sum\nolimits_{i=1}^{\mu-1} a_i < rand_2 a_o < \sum\nolimits_{i=1}^{\mu} a_i$$



### **Optimized Direct Method (ODM)**

- Reduce cost of calculating all a<sub>μ</sub>
- Dependency graph
- Reduce cost of summing all  $a_{\mu}$  to calculate  $a_0$
- Modify a<sub>0</sub> by subtracting old values, adding new



Gibson and Bruck, 2000

#### Conclusion

- Provides means of studying role of noise in complex systems
- Can predict statistics (Lambda phage)
- Can depict behavior that deterministic simulations do not capture (epidemiology example)
- Enhancing performance an active area of investigation

#### Useful References / Further Study

#### • Implementations

- STOCKS: http://www.sysbio.pl/stocks/stocks1.html
- BioNetS: https://users.biospice.org/toolsumm.php?id=2
- http://www.staff.ncl.ac.uk/d.j.wilkinson/software/

#### Algorithms/optimizations

- D.T. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. 1976. *J Comput Phys* 22:403-434.
- D.T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. 1977. J Phys Chem 81:2340-2361
- M.A. Gibson and J. Bruck. 2000. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J Phys Chem 104:1876-1889
- D.T. Gillespie. 2001. Approximate accelerated stochastic simulation of chemically reacting systems. *J. Chem. Phys.* 115:1716-1733.
- Y. Cao, H. Li and L. Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting system. 2004. *J Chem Phys* 121:4059-4067
- Y. Cao, D. Gillespie, L. Petzold, The slow-scale stochastic simulation algorithm. 2005. *J Chem Phys* 122(1).
- A. Chatterjee and D.G. Vlachos. Binomial distribution based  $\tau$ -leap accelerated stochastic simulation. 2005. *J Chem Phys* 122:024112

#### • Example Uses

- A. Arkin, J. Ross, H. McAdams. Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in λ Phage-Infected *Escherichia coli* Cells. 1998. *Genetics* 149:1633-1648
- J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn. Dynamical resonance can account for seasonality of influenza epidemics. 2004 *PNAS*.
- S. Hooshangi, S. Thiberge, R. Weiss. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. 2005. PNAS 102:3581-3586

#### Acknowledgements

- Ron Weiss and the Weiss group
- PICASso
  - Steven Kleinstein
  - J.P. Singh



#### **Comparing to Experimental Results**

- Compare predicted percent lysogenization to experimental results at different infection levels
- Average phage input (API) = ratio of phage particles to cells at time of infection
- Multiplicity of infection (MOI) = phage particles per cell
- Poisson probability that a given cell will be infected with MOI=M when API=A

$$P(M,A) = \frac{A^M}{A!}e^{-A}$$

• Expected fraction of lysogens:

$$F_{lysogens}(A) = \sum_{M} P(M, A) \cdot F(M)$$

#### **Comparing to Experimental Results**



#### Example (deterministic assumptions)



Average rate of  $R_1$  in dt per unit volume:

$$\frac{\left\langle X_1 X_2 c_1 \right\rangle}{V} = \frac{\left\langle X_1 X_2 \right\rangle c_1}{V}$$

Using concentrations  $x_i = X_i/V$  and dividing by density of reactants:

$$k_{1} = \frac{\langle x_{1} x_{2} \rangle c_{1} V}{\langle x_{1} \rangle \langle x_{2} \rangle}$$

Deterministic assumption:

$$k_1 = c_1 V$$

#### Master equation

$$\frac{\partial}{\partial t} P(X_1, \dots, X_N; t) = \sum_{\mu=1}^M \left[ B_\mu - a_\mu P(X_1, \dots, X_N; t) \right]$$

- B<sub>μ</sub> dt = probability that single R reaction brings us to state X<sub>1</sub>,...,X<sub>N</sub>
- $a_{\mu} dt = h_{\mu}c_{\mu} dt$ , where  $h_{\mu}$  is the number of reactant combinations
- Often difficult to solve analytically and even numerically
- →Instead simulate individual trajectories using Monte Carlo algorithm