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Abstract

The problem of scheduling under bounded uncertainty is addressed. We propose a novel robust optimization methodology, which when
applied to mixed-integer linear programming (MILP) problems produces “robust” solutions which are in a sense immune against bounded
uncertainty. Both the coefficients in the objective function, the left-hand-side parameters and the right-hand-side parameters of the inequalities
are considered. Robust optimization techniques are developed for two types of uncertain data: bounded uncertainty and bounded and symmetric
uncertainty. By introducing a small number of auxiliary variables and constraints, a deterministic robust counterpart problem is formulated to
determine the optimal solution given the (relative) magnitude of uncertain data, feasibility tolerance, and “reliability level” when a probabilistic
measurement is applied. The robust optimization approach is then applied to the scheduling under uncertainty problem. Based on a novel
and effective continuous-time short-term scheduling model proposed by Floudas and coworkers [Ind. Eng. Chem. Res. 37 (1998a) 4341; Ind.
Eng. Chem. Res. 37 (1998b) 4360; Ind. Eng. Chem. Res. 38 (1999) 3446; Comp. Chem. Engng. 25 (2001) 665; Ind. Eng. Chem. Res. 41
(2002) 3884; Ind. Eng. Chem. Res. (2003)], three of the most common sources of bounded uncertainty in scheduling problems are addressed,
namely processing times of tasks, market demands for products, and prices of products and raw materials. Computational results on several
small examples and an industrial case study are presented to demonstrate the effectiveness of the proposed approach.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The research area of production scheduling has received
considerable attention from both the academia and the
chemical processing industries over the past decade. Most of
the work in the literature assumes that all data are determin-
istic, that is, they are of constant known values. However, in
reality, uncertainty is prevalent in the context of scheduling
due to lack of accurate process models and variability of
process and environmental data. Therefore, it is of crucial
importance to develop systematic methods to address the
problem of scheduling under uncertainty, in order to create
efficient and reliable schedules (Floudas & Lin, 2003).

The issue of robustness in scheduling under uncertainty
has received relatively little attention, in spite of its impor-
tance and the fact that there has been a substantial amount
of work to address the problem of design and operation of
batch plants under uncertainty. Most of the existing work has

∗ Corresponding author. Tel.:+1-609-258-4595;
fax: +1-609-258-0211.

E-mail address:floudas@titan.princeton.edu (C.A. Floudas).

followed the scenario-based framework, in which the uncer-
tainty is modeled through the use of a number of scenarios,
using either discrete probability distributions or the dis-
cretization of continuous probability distribution functions,
and the expectation of a certain performance criterion, such
as the expected profit which is optimized with respect to the
scheduling decision variables.Bassett, Pekny, and Reklaitis
(1997) considered process uncertainties in processing
time fluctuations, equipment reliability/availability, process
yields, demands, and manpower changes. They used Monte
Carlo sampling to generate random instances, determined a
schedule for each instance, and generated distribution of ag-
gregated properties to infer operating policies.Ierapetritou
and Pistikopoulos (1996)addressed the scheduling of
single-stage and multistage multiproduct continuous plants
with a single production line at each stage when uncertainty
in product demands is involved. They used Gaussian quadra-
ture integration to evaluate the expected profit and formu-
lated MILP models.Vin and Ierapetritou (2001)considered
demand uncertainty for the short-term scheduling of mul-
tiproduct and multipurpose batch plants. They introduced
several metrics to evaluate the robustness of a schedule and
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proposed a multiperiod programming model using extreme
points of the demand range as scenarios to generate a single
sequence of tasks with the minimal average makespan over
all scenarios.Balasubramanian and Grossmann (2002)pro-
posed a multiperiod MILP model for scheduling multistage
flowshop plants with uncertain processing times. They min-
imized expected makespan and developed a special branch
and bound algorithm with an aggregated probability model.
The scenario-based approaches provide a straightforward
way to implicitly incorporate uncertainty. However, they
inevitably enlarge the size of the problem significantly as
the number of scenarios increases exponentially with the
number of uncertain parameters. This main drawback lim-
its the application of these approaches to solve practical
problems with a large number of uncertain parameters.

Sanmarti, Espuña, and Puigjaner (1997)presented a
different approach for the scheduling of production and
maintenance tasks in multipurpose batch plants in the face
of equipment failure uncertainty. They computed a relia-
bility index for each unit and for each scheduled task and
formulated a nonconvex MINLP model to maximize the
overall schedule reliability. Because of the significant dif-
ficulty in the rigorous solution of the resulting problem, a
heuristic method was developed to find solutions that im-
prove the robustness of an existing schedule. There have
also been attempts to transform a stochastic model to direct
deterministic equivalent representation.Orçun, Altinel, and
Hortaçsu (1996)considered uncertain processing times in
batch processes and employed chance constraints to account
for the risk of violation of timing constraints under certain
conditions such as uniform distribution functions.

An alternative approach for scheduling under uncertainty
is reactive scheduling. It is carried out to adjust a schedule,
which is usually obtained a priori in a deterministic manner,
upon realization of the uncertain parameters or occurrence
of unexpected events. Due to the “on-line” nature of reactive
scheduling, it is required to generate updated schedules in
a timely manner and often, heuristic approaches are devel-
oped for schedule modifications (e.g.,Cott & Macchietto,
1989; Kanakamedala et al., 1994; Sanmarti et al., 1996;
Rodrigues et al., 1996; Honkomp et al., 1999; Vin &
Ierapetritou, 2000). A recent review on scheduling
approaches that includes uncertainty issues can be found in
Floudas & Lin (2003).

In this work, we propose a novel robust optimization ap-
proach to address the problem of scheduling under bounded
uncertainty. The underlying framework is based on a robust
optimization methodology first introduced for linear pro-
gramming (LP) problems byBen-Tal and Nemirovski (2000)
and extended in this work for mixed-integer linear program-
ming (MILP) problems. The approach produces “robust” so-
lutions which are in a sense immune against uncertainties in
both the coefficients and right-hand-side parameters of the
inequality constraints. The approach can be applied to ad-
dress the problem of production scheduling with uncertain
processing times, market demands, and/or prices of prod-

ucts and raw materials. The rest of this paper is organized as
follows. We will first define the problem under investigation
and present a motivating example. Then a robust optimiza-
tion approach is proposed for general MILP problems with
uncertain parameters in the inequality constraints. Subse-
quently, the robust optimization approach is further applied
to three classes of scheduling problems with uncertainty in
processing times, product demands, and market prices, re-
spectively. Finally, computational results are presented, fol-
lowed by concluding remarks.

2. Problem statement

The scheduling problem of chemical processes is defined
as follows. Given

(i) production recipes (i.e. the processing times for each
task at the suitable units, and the amount of the mate-
rials required for the production of each product),

(ii) available equipment and the ranges of their capacities,
(iii) material storage policy,
(iv) production requirement, and
(v) time horizon under consideration,

determine

(i) the optimal sequence of tasks taking place in each unit,
(ii) the amount of material being processed at each time in

each unit,
(iii) the processing time of each task in each unit,

so as to optimize a performance criterion, for example, to
minimize the makespan or to maximize the overall profit.

The most common sources of uncertainty in the afore-
mentioned scheduling problem are:

(i) the processing times of tasks,
(ii) the market demands for products, and

(iii) the prices of products and/or raw materials.

An uncertain parameter can be described using discrete or
continuous distributions. In some cases, only limited knowl-
edge about the distribution is available, for example, the
uncertainty is bounded, or the uncertainty is symmetrically
distributed in a certain range. In the best situation, the dis-
tribution function for the uncertain parameter is given, for
instance, as a normal distribution with known mean and
standard deviation. In this paper, we will focus on bounded
uncertainty.

3. A motivating example

Consider the following example process that was first pre-
sented byKondili, Pantelides, and Sargent (1993a)and has
been widely studied in the literature. Two products can be
produced from three feeds according to the State-Task Net-
work as shown inFig. 1 through one heating, three reaction
and one separation tasks, and four intermediate materials.
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Fig. 1. State-Task Network for the motivating example.

Table 1
Data for the motivating example

Units Capacity Suitability Processing time

Heater 100 Heating 1.0
Reactor 1 50 Reactions 1–3 2.0, 2.0, 1.0
Reactor 2 80 Reactions 1–3 2.0, 2.0, 1.0
Separator 200 Separation 2.0

States Storage capacity Initial amount Price

Feed A Unlimited Unlimited 0.0
Feed B Unlimited Unlimited 0.0
Feed C Unlimited Unlimited 0.0
Hot A 100 0.0 0.0
IntAB 200 0.0 0.0
IntBC 150 0.0 0.0
ImpureE 200 0.0 0.0
Product 1 Unlimited 0.0 10.0
Product 2 Unlimited 0.0 10.0

One heater, two reactors and one separator are available, of
which the data is given inTable 1. The data of the states in-
volved is also provided inTable 1. The objective is to max-
imize the profit from sales of products manufactured in a
time horizon of 12 h.

The continuous-time formulation proposed by Floudas
and coworkers(Ierapetritou & Floudas, 1998a,b; Ierapetritou
et al., 1999; Lin & Floudas, 2001; Lin et al., 2002; Lin,
Chajakis, & Floudas, 2003)is used to solve this simple

Fig. 2. Optimal solution with nominal processing times (profit= 3639).

scheduling problem. The “nominal” solution is shown in
Fig. 2, which features intensive utilization of the two reac-
tors and an objective value (profit) of 3639. However, this
solution can become completely infeasible when there is un-
certainty in the processing times of the tasks. That is, when a
task requires longer processing time than its nominal value,
it will not be able to finish processing within the time inter-
val assigned in the nominal schedule. In this example, even
a very small perturbation may make the schedule infeasible
and have a substantial effect on the scheduling decisions. For
instance, if the processing time of each task is increased by
simply 0.1% of its nominal value, then the nominal sched-
ule will become infeasible and the optimal schedule with
the slightly increased processing times will be significantly
different from the nominal schedule, as shown inFig. 3. In
the heater and the separator, the number of tasks as well as
processing amounts changes, while in the two reactors, even
the task sequences are different. Furthermore, the profit is
reduced considerably to 3265.

It is clear that solving a scheduling problem at the nom-
inal values of the uncertain data is not enough. To obtain
reliable and efficient schedules, systematic and effective
approaches to take into account uncertainty are required.
In this work, we propose a new robust optimization frame-
work to generate schedules that are reliable in the presence
of uncertainty arising from various sources. The frame-
work utilizes a continuous-time MILP formulation for the
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Fig. 3. Optimal solution with processing times increased by 0.1% (profit= 3265).

scheduling of general chemical processes proposed by
Floudas and coworkers(Ierapetritou & Floudas, 1998a,b;
Ierapetritou et al., 1999; Lin & Floudas, 2001; Lin et al.,
2002; Lin, Chajakis, & Floudas, 2003).

4. Robust optimization for MILP problems

Consider the following generic mixed-integer linear pro-
gramming (MILP) problem:

Min/Max
x,y

cTx + dTy

s.t. Ex+ Fy = e

Ax+ By ≤ p

x
¯

≤ x ≤ x̄

y = 0,1

(1)

Assume that the uncertainty arises from both the coeffi-
cients and the right-hand-side parameters of the inequality
constraints, namely,alm, blk andpl. We are concerned about
the feasibility of the following inequality.∑
m

almxm +
∑
k

blkyk ≤ pl (2)

As shown in the previous section with the motivating ex-
ample on scheduling, the optimal solution of an MILP pro-
gram may become infeasible, that is, one or more constraints
are violated substantially, if the nominal data is slightly per-
turbed. Our objective here is to develop a robust optimization
methodology to generate “reliable” solutions to the MILP
program, which are immuned against uncertainty. This ro-
bust optimization methodology was first introduced for Lin-
ear Programming (LP) problems with uncertain linear coef-
ficients byBen-Tal and Nemirovski (2000)and is extended
in this work to MILP problems under uncertainty. Two types
of uncertainty are addressed: (i) bounded uncertainty and
(ii) bounded and symmetric uncertainty.

4.1. Bounded uncertainty

Suppose that the uncertain data range in the following
intervals:

|ãlm − alm| ≤ ε|alm|, |b̃lk − blk| ≤ ε|blk|,
|p̃l − pl| ≤ ε|pl| (3)

where ãlm, b̃lk and p̃l are the “true” values,alm, blk and
pl are the nominal values, andε > 0 is a given (relative)
uncertainty level.

We call a solution(x, y) robust if it satisfies the following
conditions:

(i) (x, y) is feasible for the nominal problem;
(ii) whatever are the true values of the coefficients and

right-hand-side parameters within the corresponding in-
tervals,(x, y) must satisfy thel-th inequality constraint
with an error of at mostδmax[1, |pl|], whereδ is a given
infeasibility tolerance.

Theorem 1. Given an infeasibility tolerance(δ), to generate
robust solutions, the following so-called(ε, δ)-Interval Ro-
bust Counterpart(IRC[ε, δ]) of the original uncertain MILP
problem can be derived.

Min/Max
x,y,u

cTx + dTy

s.t. Ex+ Fy = e

Ax+ By ≤ p∑
m

almxm + ε
∑
m∈Ml

|alm|um +
∑
k/∈Kl

blkyk

+
∑
k∈Kl

(blk + ε|blk|)yk
≤ pl − ε|pl| + δmax[1, |pl|], ∀l
− um ≤ xm ≤ um, ∀m
x
¯

≤ x ≤ x̄

yk = 0,1, ∀k

(4)

whereMl andKl are the set of indices of the x and y vari-
ables, respectively, with uncertain coefficients in the l-th in-
equality constraint.

Proof. We want to find a robust solution(x, y) which sat-
isfies condition (i) and condition (ii), that is:

∀l ∀(ãlm : |ãlm − alm| ≤ ε|alm|, b̃lk : |b̃lk − blk| ≤ ε|blk|,
andp̃l : |p̃l − pl| ≤ ε|pl|)

:
∑
m/∈Ml

almxm +
∑
m∈Ml

ãlmxm +
∑
k/∈Kl

blkyk +
∑
k∈Kl

b̃lkyk

≤ p̃l + δmax[1, |pl|] (5)
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whereMl andKl are the set of indices of thex andy vari-
ables, respectively, with uncertain coefficients in thel-th in-
equality constraint.

Using the worst-case values of the uncertain parameters:

ãlmxm ≤ almxm + ε|alm||xm|, b̃lkyk ≤ blkyk + ε|blk|yk,
and p̃l ≥ pl − ε|pl| (6)

and substituting intoEq. (5)and rearranging terms, it is clear
that a solution(x, y) is robust if and only if it is a feasible
solution of the following optimization problem:

Min/Max
x,y

cTx + dTy

s.t. Ex+ Fy = e

Ax+ By ≤ p∑
m

almxm + ε
∑
m∈Ml

|alm||xm| +
∑
k/∈Kl

blkyk

+
∑
k∈Kl

(blk + ε|blk|)yk
≤ pl − ε|pl| + δmax[1, |pl|], ∀l
x
¯

≤ x ≤ x̄

yk = 0,1, ∀k.

(7)

The above problem is equivalent to problem (4) which
represents the absolute value operator with a set of auxiliary
variables (um) and a set of additional constraints. �

For each inequality constraint that involves uncertain co-
efficients and/or right-hand-side parameters, an additional
constraint is introduced to incorporate the uncertainty and
maintain the relationships among the relevant binary and
continuous variables under the uncertainty level and the
given infeasibility tolerance. Essentially, this constraint con-
siders the worst case values of the uncertain parameters
which make the inequality the most difficult to maintain; at
the same time, a certain degree of relaxation is introduced
to allow tolerable violations of the constraint.

Note that mathematical model (4) remains an MILP
model. Compared to the original deterministic MILP prob-
lem, the robust counterpart has a set of auxiliary variables
(um) and a set of additional constraints relating the variables
xm andum.

4.2. Bounded and symmetric uncertainty

Now assume that the uncertain data are distributed around
the nominal values randomly and symmetrically as follows.

ãlm = (1 + εξlm)alm, b̃lk = (1 + εξlk)blk,

p̃l = (1 + εξl)pl (8)

whereξlm, ξlk andξl are random variables distributed sym-
metrically in the interval [−1,1].

In this situation, it makes sense to define a probabilistic
version of the condition (ii) in the previous section for a

robust solution as follows: (ii′) For the l-th inequality, the
probability of the event of constraint violation, i.e.∑
m

ãlmxm +
∑
k

b̃lkyk > pl + δmax[1, |pl|],

is at mostκ, whereδ > 0 is a given feasibility tolerance and
κ > 0 is a given “reliability level”.

The following lemma is used in the proof of next theo-
rem, Theorem 2, which gives the (ε, δ, κ)-Robust Counter-
part (RC[ε, δ, κ]) of the original uncertain MILP problem
for the case of bounded and symmetric uncertainty.

Lemma 1. Let qh be given reals andηh be independent
random variables symmetrically distributed in[−1,1]. Then
for everyΩ > 0 the following inequality holds:

Pr

∑
h

ηhqh > Ω

√∑
h

q2
h

 ≤ exp{−Ω2/2}. (9)

For the sake of completeness, we provide here the proof
of Lemma 1presented byBen-Tal and Nemirovski (2000).
By homogeneity arguments, it suffices to consider the case
of

∑
h q

2
h = 1. In this case

Pr

{∑
h

ηhqh > Ω

}
≤︸︷︷︸
(a)

exp{−Ω2}E
{

exp

{
Ω

∑
h

ηhqh

}}
=︸︷︷︸
(b)

exp{−Ω2} ∏
h E{exp{Ωηhqh}}

≤︸︷︷︸
(c)

exp{−Ω2} ∏
h

[ ∞∑
r=0

(Ωqh)
2r

(2r)!

]

≤ exp{−Ω2} ∏
h

[ ∞∑
r=0

(Ω2q2
h/2)

r

r!

]
=︸︷︷︸
(d)

exp{−Ω2} ∏
h exp{Ω2q2

h/2}

=︸︷︷︸
(e)

exp{−Ω2/2}

with

(a) Tschebyshev inequality;
(b) independence ofηh;
(c) Taylor’s expansion and symmetric distribution ofηh ∈

[−1,1];
(d) Taylor’s expansion;
(e)

∑
h q

2
h = 1.

Theorem 2. Given an infeasibility tolerance(δ) and a reli-
ability level (κ), to generate robust solutions, the following
(ε, δ, κ)-Robust Counterpart(RC[ε, δ, κ]) of the original un-
certain MILP problem can be derived.

Min/Max
x,y,u,z

cTx + dTy

s.t. Ex+ Fy = e

Ax+ By ≤ p
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∑
m

almxm +
∑
k

blkyk + ε

 ∑
m∈Ml

|alm|ulm

+Ω
√ ∑
m∈Ml

a2
lmz

2
lm +

∑
k∈Kl

b2
lkyk + p2

l


≤ pl + δmax[1, |pl|], ∀l

− ulm ≤ xm − zlm ≤ ulm, ∀l, m
x
¯

≤ x ≤ x̄

yk = 0,1, ∀k

(10)

whereΩ is a positive parameter withκ = exp{−Ω2/2}.

Proof. We introduce two sets of variables,ulm andzlm, and
let (x, y, u, z) satisfy:

∑
m

almxm +
∑
k

blkyk

+ ε

 ∑
m∈Ml

|alm|ulm+Ω
√ ∑
m∈Ml

a2
lmz

2
lm +

∑
k∈Kl

b2
lkyk+p2

l


≤ pl + δmax[1, |pl|], ∀l (11)

−ulm ≤ xm − zlm ≤ ulm, ∀l, m (12)

whereΩ is a positive parameter withκ = exp{−Ω2/2}.
Note that (11) is equivalent to:

εΩ

√ ∑
m∈Ml

a2
lmz

2
lm +

∑
k∈Kl

b2
lkyk + p2

l ≤ pl + δmax[1, |pl|]

−
∑
m

almxm − ε
∑
m∈Ml

|alm|ulm −
∑
k

blkyk, ∀l (13)

and (12) leads to:

ξlm(xm − zlm) ≤ ulm ⇒ ξlmxm ≤ ξlmzlm + ulm (14)

Then

Pr

{∑
m

ãlmxm +
∑
k

b̃lkyk > p̃l + δmax[1, |pl|]
}

= Pr

∑
m

almxm + ε
∑
m∈Ml

ξlm|alm|xm +
∑
k

blkyk

+ ε
∑
k∈Kl

ξlk|blk|yk > pl + εξl|pl| + δmax[1, |pl|]


≤︸︷︷︸
(14)

Pr

∑
m

almxm + ε
∑
m∈Ml

ξlm|alm|zlm

+ ε
∑
m∈Ml

|alm|ulm +
∑
k

blkyk

+ ε
∑
k∈Kl

ξlk|blk|yk − εξl|pl| > pl

+ δmax[1, |pl|]
}

= Pr

ε

 ∑
m∈Ml

ξlm|alm|zlm+
∑
k∈Kl

ξlk|blk|yk−ξl|pl|


> pl + δmax[1, |pl|] −
∑
m

almxm

− ε
∑
m∈Ml

|alm|ulm −
∑
k

blkyk


≤︸︷︷︸
(13)

Pr

 ∑
m∈Ml

ξlm|alm|zlm+
∑
k∈Kl

ξlk|blk|yk−ξl|pl|

> Ω

√ ∑
m∈Ml

a2
lmz

2
lm +

∑
k∈Kl

b2
lkyk + p2

l


≤︸︷︷︸
(9)

exp{−Ω2/2}. �

Note the last step is based on the fact thaty2
k = yk, as

yk = 0,1∀k.
Therefore, assume that(x, y) can be extended to a feasible

solution(x, y, u, z) of problem (10), then(x, y) is a robust
solution that satisfies (i) and (ii′) with κ = exp{−Ω2/2}.

Note that (10) is a convex MINLP problem with additional
auxiliary variables (ulm andzlm), which can still be solved
efficiently using MINOPT(Schweiger & Floudas, 1998)or
GAMS/DICOPT(Viswanathan & Grossmann, 1990).

It should be pointed out that inLemma 1concerning the
probability estimation, the inequality is desirably tight only
when a large number of random variables are involved and
hence, the above robust counterpart problem is effective,
that is, it generates solutions that are not too conservative
only when a large number of uncertain parameters, includ-
ing both coefficients and right-hand-sides, appear in each
inequality constraint under uncertainty. Under this circum-
stance, RC[ε, δ, κ] is “less conservative” than IRC[ε, δ].

In the discussion above, for simplicity, we have assumed
that there is a single common uncertainty level (ε), infea-
sibility tolerance (δ), and reliability level (κ) in each MILP
problem with uncertain parameters. The proposed robust op-
timization techniques can be easily extended to account for
the more general case in which the uncertainty level varies
from one parameter to another and the infeasibility toler-
ance and reliability level are dependent on the constraint of
interest. Furthermore, note that for each type of uncertainty
addressed above, one additional constraint is introduced for
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each inequality constraint that contains uncertain parame-
ter(s) and auxiliary variables are added if needed. Because
the transformation is carried out at the level of constraints, in
principle, the two robust optimization techniques presented
can be applied to a single MILP problem involving different
types of uncertainties. More specifically, for each inequality
constraint, as long as all of its uncertain parameters are of
the same type, an additional constraint that corresponds to
the uncertainty type can be introduced to obtain the deter-
ministic counterpart problem.

Note that the aforementioned robust optimization method-
ology circumvents any need for explicit or implicit dis-
cretization or sampling of the uncertain data, avoiding un-
desirable increase of the problem size. This renders the
methodology capable of handling problems with a large
number of uncertain parameters.

5. Robust optimization for scheduling under
uncertainty

The robust optimization methodology proposed in the
previous section can be applied to address the problem
of scheduling under uncertainty. In this work, we employ
the continuous-time formulation presented by Floudas and
coworkers(Ierapetritou & Floudas, 1998a,b; Ierapetritou
et al., 1999; Lin & Floudas, 2001), which leads to MILP
models (seeAppendix A for the complete scheduling for-
mulation), to develop new robust scheduling approaches for
the following three classes of uncertainties:

(i) uncertainty in processing times/rates of tasks,
(ii) uncertainty in market demands for products,

(iii) uncertainty in market prices of products and raw ma-
terials.

5.1. Uncertainty in processing times

The parameters of processing times/rates of tasks partic-
ipate in the duration constraint as linear coefficients of the
binary variable (i.e.,αij ) and the continuous variable (i.e.,
βij ):

T f (i, j, n)− T s(i, j, n) = αij · wv(i, n)+ βij · b(i, j, n)
(15)

wherewv(i, n) is a binary variable indicating whether or not
task (i) starts at event point (n); b(i, j, n) is a continuous vari-
able determining the batch-size of the task;T s(i, j, n) and
T f (i, j, n) are continuous variables representing the starting
and finishing time of the task, respectively. Note that this
is an equality constraint. To apply the robust optimization
techniques proposed in the previous section for inequality
constraints with uncertain parameters, two approaches are
developed.

5.1.1. Approach 1
In the first approach, the duration constraint is relaxed to

an inequality constraint as follows:

T f (i, j, n)− T s(i, j, n) ≥ αij · wv(i, n)+ βij · bij . (16)

Consequently, the variableT f (i, j, n) represents the lower
bound on the finishing time of the task, instead of the exact
finishing time as determined by the original duration con-
straint. Now the various robust optimization techniques can
be applied to this inequality constraint with uncertain pa-
rametersαij andβij .

For example, consider a task with parametersαij andβij

exhibiting bounded uncertainty in the following ranges:

αL
ij ≤ α̃ij ≤ αU

ij , βL
ij ≤ β̃ij ≤ βU

ij . (17)

According toTheorem 1, to obtain the deterministic robust
counterpart problem, the following constraint is added to the
original scheduling model:

T f (i, j, n)− T s(i, j, n) ≥ αU
ij · wv(i, n)+ βU

ij · b(i, j, n)− δ.

(18)

Note that no auxiliary variables need to be introduced
because the variableb(i, j, n) (batch-size of the task) is
non-negative by definition.

5.1.2. Approach 2
In the second approach, the original duration constraint

(15) is eliminated from the scheduling model and the vari-
ableT f (i, j, n) is substituted as follows:

T f (i, j, n) = T s(i, j, n)+ αij · wv(i, n)+ βij · b(i, j, n).
(19)

The constraints related to the variableT f (i, j, n) include
the sequencing constraints and the time horizon constraints:

T s(i, j, n+ 1) ≥ T f (i, j, n) ∀i ∈ I, j ∈ Ji, n ∈ N, n �≡ N.

(20)

T s(i, j, n+ 1) ≥ T f (i′, j, n)−H [1 − wv(i′, n)]
∀j ∈ J, i ∈ Ij, i

′ ∈ Ij, i �≡ i′, n ∈ N, n �≡ N. (21)

T s(i, j, n+ 1) ≥ T f (i′, j′, n)−H [1 − wv(i′, n)],
∀j, j′ ∈ J, i ∈ Ij, i

′ ∈ Ij′ , i �≡ i′, n ∈ N, n �≡ N. (22)

T f (i, j, n) ≤ H, ∀i ∈ I, j ∈ Ji, n ∈ N. (23)

After the substitution, they become:

T s(i, j, n+ 1) ≥ T s(i, j, n)+ αij · wv(i, n)+ βij · b(i, j, n),
∀i ∈ I, j ∈ Ji, n ∈ N, n �≡ N. (24)

T s(i, j, n+ 1) ≥ T s(i′, j, n)+ αi′j · wv(i′, n)
+βi′j · b(i′, j, n)−H [1 − wv(i′, n)],

∀j ∈ J, i ∈ Ij, i
′ ∈ Ij, i �≡ i′, n ∈ N, n �≡ N. (25)
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T s(i, j, n+ 1) ≥ T s(i′, j′, n)+ αi′j′ · wv(i′, n)
+βi′j′ · b(i′, j′, n)−H [1 − wv(i′, n)],

∀j, j′ ∈ J, i ∈ Ij, i
′ ∈ Ij′ , i �≡ i′, n ∈ N, n �≡ N. (26)

T s(i, j, n)+ αij · wv(i, n)+ βij · b(i, j, n) ≤ H,

∀i ∈ I, j ∈ Ji, n ∈ N. (27)

Now the uncertain parametersαij andβij participate in these
inequality constraints and the robust optimization techniques
can be readily applied.

5.2. Uncertainty in product demands

The parameters of product demands (i.e., dems) appear as
the right-hand-side parameters in the demand constraints:

STF(s) ≥ dems, ∀s ∈ Sp (28)

where STF(s) is a continuous variable representing the
amount of state (s) accumulated at the end of the time
horizon andSp is the set of final products.

The robust optimization techniques can be directly applied
to these inequality constraints with uncertain parameters.
For example, in the case of bounded uncertainty:

demL
s ≤ d̃ems ≤ demU

s , (29)

according toTheorem 1, the constraint to be added to the
original scheduling model to derive the deterministic robust
counterpart problem is as follows:

STF(s) ≥ demU
s − δ. (30)

5.3. Uncertainty in market prices

The parameters of market prices (i.e.,ps) participate in
the objective function for the calculation of the overall profit:

Maximize Profit=
∑
s∈Sp

ps · STF(s)−
∑
s∈Sr

ps · STI(s)

(31)

where Sp and Sr are the sets of final products and raw
materials, respectively; STI(s) and STF(s) are continuous
variables representing the initial amount of state (s) at the
beginning and the final amount of state (s) at the end, re-
spectively. This objective function can be expressed in an
equivalent way as follows:

Maximize Profit

s.t. Profit ≤
∑
s∈Sp

ps · STF(s)−
∑
s∈Sr

ps · STI(s).

(32)

Now the uncertain parametersps appear as linear coef-
ficients in the above inequality constraint and the robust

optimization techniques can be easily applied. For example,
if the uncertainty is bounded and symmetric:

p̃s = (1 + εξs)ps (33)

whereξs is distributed symmetrically in [−1,1], then ac-
cording toTheorem 2, the deterministic robust counterpart
problem can be obtained by introducing the following con-
straint to the original scheduling model:

−
∑
s∈Sp

ps · STF(s)+
∑
s∈Sr

ps · STI(s)+ Profit(1 − δ)

+ ε

∑
s∈Sr

psy(s)+
∑
s∈Sp

psy(s)

+Ω

√∑
s∈Sr

p2
s z(s)

2 +
∑
s∈Sp

p2
s z(s)

2

 ≤ 0 (34)

−y(s) ≤ STI(s)− z(s) ≤ y(s), ∀s ∈ Sr

−y(s) ≤ STF(s)− z(s) ≤ y(s), ∀s ∈ Sp

whereκ = exp{−Ω2/2}. Note that the additional constraint
(34) is convex and hence the resulting problem is a convex
MINLP problem.

6. Computational studies

The above robust optimization formulation is applied to
three examples. The first two examples are implemented
with GAMS (Brooke, Kendrick, & Meeraus, 1988) and the
third is implemented with MINOPT(Schweiger & Floudas,
1998). The MILP problems are solved using CPLEX 7.0
while the MINLP problems are solved using DICOPT
(Viswanathan & Grossmann, 1990). All computations are
done on a HP-J2240 workstation.

6.1. Motivating example: bounded uncertainty in
processing times

Let us revisit the motivating example inSection 3. Assume
that the uncertainty of the processing times is bounded and
the (relative) uncertainty level (ε) is 15%, that is,

0.85α ≤ α̃ ≤ 1.15α (35)

and the infeasibility tolerance level (δ) is 10%.
By solving the IRC[ε, δ] problem, a “robust” schedule

is obtained, as shown inFig. 4, which takes into account
uncertainty in the processing times. The nominal schedule
can be seen inFig. 2 in Section 3.

Compared to the nominal solution which is obtained at
the nominal values of the processing times, the robust solu-
tion exhibits very different scheduling strategies, such as in
task-unit assignments and task timings. For example, even
the sequences of tasks in the two reactors inFig. 4 deviates
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Fig. 4. Robust solution of the motivating example (ε = 15%, δ = 10%, profit= 2887.19).

Table 2
Model and solution statistics of the motivating example

Nominal solution Robust solution

Profit 3638.75 2887.19
CPU time (s) 2.68 114.47
Binary variables 96 96
Continuous variables 378 378
Constraints 553 713

significantly from those in the nominal solution inFig. 2.
The robust solution ensures that the robust schedule obtained
is feasible with the specified uncertainty level and infeasibil-
ity tolerance. However, the resulting profit is reduced, from
3638.75 to 2887.19, which reflects the effect of uncertainty
on overall production. A comparison of the model and so-
lution statistics for the nominal and robust solutions can be
found inTable 2.

Fig. 5 summarizes the results of the IRC problem with
three different levels of uncertainty. It is shown that with a
given infeasibility tolerance, the maximal profit that can be
achieved decreases as the uncertainty level increases, which
indicates more “conservative” scheduling decisions because

Fig. 5. Profit vs. infeasibility tolerance at different uncertainty levels.

of the existence of uncertainty. On the other hand, at a
given uncertainty level, the profit increases as the infeasibil-
ity tolerance is increased, which means more “aggressive”
scheduling arrangements can be incorporated if violations
of related timing constraints can be tolerated to a larger ex-
tent. These results are consistent with intuition and other ap-
proaches, however, with the robust optimization approach,
the effects of uncertainty and the trade-offs between con-
flicting objectives are quantified rigorously and efficiently.
It should be noted that at a given uncertainty level, the ob-
jective value of profit as well as the corresponding schedule
changes dramatically at discrete points as the infeasibility
tolerance increases. This results from the following charac-
teristics of the example problem: the time horizon and the
processing times of tasks are both fixed.

6.2. Example 2: bounded and symmetric uncertainty in
market prices

In this example, we consider bounded and symmetric
uncertainty in market prices for the same process in the
motivating example. However, the processing time parame-
ters are taken from Example 2 inIerapetritou and Floudas
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Fig. 6. Nominal solution of example 2 (profit: 1088.75).

(1998a)(i.e., the mean processing times are the same as
those inTable 1and they vary between 2/3 and 4/3 of their
mean values) and the time horizon is 8 h. Assume that the
nominal prices of the three raw materials and the two prod-
ucts are 5.0, 5.0, 5.0, 10.0, and 15.0, respectively. The uncer-
tainty level isε = 5%; the infeasibility tolerance isδ = 0%;
and the reliability levelκ = 10%. The nominal schedule is
shown inFig. 6 with a profit of 1088.75. The robust sched-
ule is obtained by solving the robust counterpart problem, as
shown inFig. 7, and the corresponding profit is 961.73. By
executing this schedule, the profit is guaranteed to be above
961.73 with a probability of 90% in the presence of the 5%
uncertainty in the prices of the raw materials and products.
A comparison of the model and solution statistics for the
nominal and robust solutions can be found inTable 3.

The results for different uncertainty levels at a given in-
feasibility tolerance and reliability level are shown inFig. 8.
The higher the uncertainty level is, the lower the achiev-
able profit becomes. By applying the robust optimization
methodology, the effect of the uncertainty on the schedule
is clearly quantified.

6.3. An industrial case study

6.3.1. Problem description
This example is based on an industrial case study pre-

sented byLin, Floudas, Modi, and Juhasz (2002)for a
multiproduct chemical plant that manufactures ten different
products according to a basic three-stage recipe and its vari-
ations by employing ten pieces of equipment. We consider
the first sub-horizon in the original case study that consists
of five days and involves eight different products. The ob-
jective function is the maximization of overall production
defined by the weighted sum of materials accumulated at

Fig. 7. Robust solution of example 2 (profit: 961.73).

Table 3
Model and solution statistics for example 2

Nominal solution Robust solution

Profit 1088.75 961.73
CPU time (s) 0.11 1.15
Binary variables 60 60
Continuous variables 280 290
Constraints 334 377

the end of the sub-horizon minus a penalty term for not
meeting demands at the intermediate due dates. For each of
the eight products, one of the processing recipes shown in
Fig. 9 is applied.

Corresponding to the three basic operations, the plant has
three types of units: four type 1 units (units 1–4) for oper-
ation 1, three type 2 units (units 5–7) for operation 2, and
three type 3 units (units 8–10) for operation 3. Type 1 units
and type 3 units are utilized in batch mode, while type 2
units are operated in a continuous mode. The nominal pro-
cessing time or processing rate of each task in its suitable
units is shown inTable 4.

To determine the form of the uncertainties in process-
ing times/rates, actual plant data was analyzed. Due to the
wide variability between parameters, bounded uncertainty
was chosen and the range of each uncertain parameter de-
termined. There are a total of twenty-seven uncertain pa-
rameters identified. Eight in units 1–4, five in units 5–7, and
fourteen in units 8–10. The summary of the nominal val-
ues and ranges for each uncertain parameter are presented
in Table 5.

Approach 2 for uncertainty in processing times/rates in
Section 5.1is applied for this case study. In addition to
the basic sequencing constraints, the processing time also
appears in two additional constraints related to the timing
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Fig. 8. Profit vs. uncertainty level (δ = 0%, κ = 10%).

of operation 1 tasks.

T s(i, j, n+ 1)≤ T f (i, j, n)+H(2 − wv(i, j, n)

−wv(i, j, n+ 1)),

∀i ∈ Ir, j ∈ Ji, n ∈ N, n �≡ N (36)

T s(i, j, n+ 1)≤ T f (i′, j, n)+ tclii ′ +H(2 − wv(i, j, n)

−wv(i′, j, n+ 1)),

∀j ∈ Jr, i ∈ Ij, i
′ ∈ Ij, i �≡ i′, n ∈ N, n �≡ N (37)

where Ir is the set of operation 1 tasks andJr is the set
of type 1 units suitable for operation 1 tasks. Upon substi-

Table 4
Nominal processing times and rates in the case study

Task Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

1 0 0 0 9.5 – – – – – –
2 – – – – 0 0 0.95 – – –
3 – – – – – – – 12 12.8 12.5
4 0 10 10 10 – – – – – –
5 – – – – 0.575 0.575 0.725 – – –
6 – – – – – – – 12 12.8 12.5
7 6.09 6.09 6.09 11.1 – – – – – –
8 – – – – 0.6 0.6 0.8 – – –
9 – – – – – – – 12.5 13.8 12.9

10 6.09 6.09 6.09 11.1 – – – – – –
11 – – – – 0.6 0.6 0.8 – – –
12 – – – – – – – 12.5 13.8 12.9
13 6.09 6.09 6.09 11.1 – – – – – –
14 – – – – 0.6 0.6 0.8 – – –
15 – – – – – – – 12.5 13.8 12.9
16 – – – – 0.6 0.6 0.8 – – –
17 – – – – – – – 12.5 13.8 12.9
18 0 8.5 8.5 0 – – – – – –
19 – – – – – – – 0 15 16
20 0 0 8.38 9.5 – – – – – –

tution of theT f (i, j, n) variables, the following additional
constraints are introduced to obtain the robust counterpart
problem.

T s(i, j, n+ 1)− T s(i, j, n)

≤ αL
ij · wv(i, j, n)+ βL

ij · B(i, j, n)+H(2 − wv(i, j, n)

−wv(i, j, n+ 1))+ δ2 (38)

T s(i, j, n+ 1)− T s(i′, j, n)
≤ αL

i′j · wv(i′, j, n)+ βL
i′j · B(i′, j, n)+ tclii ′

+H(2 − wv(i, j, n)− wv(i′, j, n+ 1))+ δ2 (39)
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Fig. 9. State-Task Network of production recipes in the case study.
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Table 5
Bounded uncertainty in processing times/rates for the case study

Task Unit Nominal value Range

1 4 9.5 8.00–10.6
7, 10, 13 1–3 6.09 5.09–7.75
7, 10, 13 4 11.1 10.1–11.3
20 3 8.38 8.00–10.42
2 7 0.95 0.947–0.991
8, 11, 14, 16 5–6 0.60 0.344–0.853
3, 6 9 12.8 10.5–19.3
9, 12, 15, 17 8 12.5 11.5–19.8
9, 12, 15, 17 9 13.8 12.0–16.3
9, 12, 15, 17 10 12.9 10.8–15.8

where δ2 is defined as a variable and correlates as fol-
lows with parameterδ that participates in the addi-
tional constraints corresponding to the basic sequencing
constraints:

δ+ δ2 = αU − αL or δ+ δ2 = βU − βL . (40)

The objective function for this problem is the maximiza-
tion of production in terms of the relative value of all states
minus a penalty term for not meeting demands at the inter-
mediate due dates.

γ
∑
s

valdsvalpsvalmsSTF(s)

−
∑
s

∑
n

prisnSL(s, n), ∀s ∈ S, n ∈ N (41)

where valds is the relative value of the corresponding
product indicating its importance to fulfill future demands,
valps is the relative value of the corresponding product
indicating its priority, valms is is the relative value of
state (s) in the sequence of materials for the correspond-
ing product, STF(s) is the amount of state (s) at the end
of the horizon, prisn is the priority of demand for state
(s) at event point (n), SL(s, n) is a slack variable for
the amount of state (s) not meeting the demand at event
point (n), and γ is a constant coefficient used to bal-
ance the relative value of the two terms in the objective
function.

6.3.2. Computational results and discussion
The nominal solution to this problem using the

continuous-time formulation is shown inFig. 10 and the

Table 6
Model and solution statistics for case study

Nominal solution Robust solution

Objective 23.34 21.99
CPU time (s) 4641.8 14721.8
Binary variables 1320 1320
Continuous variables 5036 6156
Constraints 21916 32444

objective function value is 23.34. At a (relative) infeasibil-
ity tolerance level (δ) of 10%, the solution to the interval
robust counterpart problem when all twenty-seven uncer-
tain parameters were considered is shown inFig. 11 and
the objective function value is 21.99. It can be seen that
the processing time of each task is extended to ensure that
the schedule is feasible within the specified uncertainty
level and infeasibility tolerance; however, the objective
function value has decreased. A closer examination of the
terms involved in the objective function indicates that the
objective function value for the robust solution decreased
because the overall production decreased while the rela-
tive values of the violations of the intermediate dues dates
also decreased, but by a smaller amount. A comparison of
the model and solution statistics for the nominal and ro-
bust solutions of the industrial case study can be found in
Table 6.

7. Conclusions

In this work, we propose a new approach to address the
scheduling under uncertainty problem based on a robust opti-
mization methodology, which when applied to mixed-integer
(MILP) problems produces “robust” solutions which are in
a sense immune against uncertainties in both the coefficients
in the objective function, the left-hand-side parameters and
the right-hand-side parameters of the inequality constraints.
A unique feature of the proposed approach is that it can ad-
dress many uncertain parameters. The approach can be ap-
plied to address the problem of production scheduling with
uncertain processing times, market demands, and/or prices
of products and raw materials. Our computational results
show that this approach provides an effective way to address
scheduling problems under uncertainty, producing reliable
schedules and generating helpful insights on the tradeoffs
between conflicting objectives. Furthermore, due to its ef-
ficient transformation, the approach is capable of solving
real-world problems with a large number of uncertain pa-
rameters.
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Appendix A. Continuous-time process scheduling
formulation

This formulation was proposed by Floudas and coworkers
(Ierapetritou & Floudas, 1998a,b; Ierapetritou et al., 1999;
Lin & Floudas, 2001).
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A.1. Nomenclature

B(i, j, n) continuous, amount of material
undertaking task (i) in unit (j) at event
point (n)

dems market demand for state (s) at the end of
the time horizon

H time horizon
i ∈ I tasks
Ij tasks which can be performed in unit (j)
Is tasks which produce or consume state (s)
j ∈ J units
Ji units which are suitable for performing

task (i)
n ∈ N event points representing the beginning

of a task
ps price of state (s)
profit continuous, overall profit
s ∈ S states
Sp states corresponding to final products
Sr states corresponding to raw materials
ST(s, n) continuous, amount of state (s) at event

point (n)
STmax

s available maximum storage capacity for
state (s)

STF(s) continuous, final amount of state (s) at
the end of the time horizon

STI(s) continuous, initial amount of state (s) at
the beginning of the time horizon

T s(i, j, n) continuous, time at which task (i) starts
in unit (j) at event point (n)

T f (i, j, n) continuous, time at which task (i) finishes
in unit (j) while it starts at event point (n)

Vmin
ij minimum amount of material processed

by task (i) required to start operating unit
(j)

Vmax
ij maximum capacity of unit (j) when

processing task (i)
wv(i, n) binary, whether or not task (i) starts at

event point (n)
yv(j, n) binary, whether or not unit (j) is utilized

at event point (n)

Greek letter
αij constant term of processing time of task

(i) in unit (j)
βij variable term of processing time of task

(i) in unit (j) expressing the time
required by the unit to process one unit
of material performing task (i)

ρ
p
si, ρ

c
si proportion of state (s) produced,

consumed by task (i), respectively

A.2. Constraints

Allocation constraints∑
i∈Ij

wv(i, n) = yv(j, n), ∀j ∈ J, n ∈ N

Capacity constraints

Vmin
ij wv(i, n)

≤ B(i, j, n) ≤ Vmax
ij wv(i, n), ∀i ∈ I, j ∈ Ji, n ∈ N

Storage constraints

ST(s, n) ≤ STmax
s , ∀s ∈ S, n ∈ N

Material balances

ST(s, n1st) = STI(s)+
∑
i∈Is

ρc
si

∑
j∈Ji

B(i, j, n1st), ∀s ∈ S

ST(s, n)= ST(s, n− 1)+
∑
i∈Is

ρ
p
si

∑
j∈Ji

B(i, j, n− 1)

+
∑
i∈Is

ρc
si

∑
j∈Ji

B(i, j, n), ∀s ∈ S, n ∈ N

STF(s) = ST(s, nlast)+
∑
i∈Is

ρ
p
si

∑
j∈Ji

B(i, j, nlast), ∀s ∈ S

Demand constraints

STF(s) ≥ dems, ∀s ∈ S

Duration constraints

T f (i, j, n) = T s(i, j, n)+ αijwv(i, n)+ βijB(i, j, n),

∀i ∈ I, j ∈ Ji, n ∈ N

Sequence constraints: same task in the same unit

T s(i, j, n+ 1) ≥ T f (i, j, n),

∀i ∈ I, j ∈ Ji, n ∈ N, n �≡ N

Sequence constraints: different tasks in the same unit

T s(i, j, n+ 1) ≥ T f (i′, j, n)−H [1 − wv(i′, n)],
∀j ∈ J, i ∈ Ij, i

′ ∈ Ij, i �≡ i′, n ∈ N, n �≡ N

Sequence constraints: different tasks in different units

T s(i, j, n+ 1) ≥ T f (i′, j′, n)−H [1 − wv(i′, n)],
∀j, j′ ∈ J, i ∈ Ij, i

′ ∈ Ij′ , i �≡ i′, n ∈ N, n �≡ N

Time horizon constraints

T f (i, j, n) ≤ H, ∀i ∈ I, j ∈ Ji, n ∈ N

T s(i, j, n) ≤ H, ∀i ∈ I, j ∈ Ji, n ∈ N
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A.3. Objective function

Max Profit=
∑
s∈Sp

ps · STF(s)−
∑
s∈Sr

ps · STI(s)
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