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1 Preliminaries

1.1 Goals

1. Define basic set-up of information theory

2. Derive why entropy is the measure of information capacity.

3. Discuss the basics of mutual information

4. Solve binary symmetric channel

1.2 Probability Theory

• probability distribution relations

joint : P (X,Y ) 6= P (X)× P (Y )

marginal : P (X) =
∑

yiεY

P (X,Y = yi)

conditional : P (X|Y ) =
∑

yiεY

P (Y = yi)P (X,Y = yi)

Bayes ′rule : P (X,Y ) = P (X|Y )× P (Y ) = P (Y |X)× P (X)

• iid = independently and identically distributed

P (X1, X2) = P (X)× P (X)

2 A Simple Example

2.1 Situation A

Pretend we like to buy and sell a particular commodity - how about pork bellies
at the Chicago Mercantile Exchange in 1860. We talk to our trader every day
and tell him one action a day: BUY , SELL or HOLD .

One day we decide that we are going on a trip to Europe but we would like
to keep trading. Because phones don’t exist, we decide on a simple system. We
use a telegraph line to send a Morse code signal of a dot (denoted 0) or a dash

(denoted 1). Here is what we agree on:

• We will BUY and SELL exactly one half of the days; we will never
HOLD .

• We will send a 0 repeatedly if it is a BUY and a 1 repeatedly if it is a
SELL .
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2.2 Qualtitative Analysis of A

• question: what does the trader learn by receiving a 0 or 1?

• before signal: equal chance of a BUY or a SELL but never HOLD .

• after signal: 0,1 denotes with 100% certainty to either BUY or SELL

2.3 Situation B

Same sitaution as above but now let’s say that our telegraph machine is noisy.
Most of the time that we press a 0 or 1, the trader receives a 0 or 1, respectively.
But occasionally, say, 20% of the time, the trader receives the opposite.

2.4 Qualitative Analysis of B

• question: what does the trader learn by receiving a 0 or 1?

• before signal: same as situation A

• after signal: Not 100% certain what order was. However, the trader does
have a good hunch.

2.5 Statements about Classical Information Theory

1. There exists a preset, agreed-upon model between the sender to receiver.

2. Information is usually measured in bits.

• 1 question in the game of 20 questions

3. Information is selection between possible alternatives.

• deep point: the quantity of information does not depend on the
complexity of the preset alternatives.

3 Intuitive Example

Pretend we have a set of possible messages X = {x1, x2, . . . , xN} all with equal
probability {p : pi = p for i = 1, 2, . . . , N}. We plan to send only one message
xi through our channel.

3.1 A Simple Game

Each element of X is labeled with a number j = 1, 2, . . . , N .

• Pretend that you are the sender and you are about to transmit one symbol
xi. Your friend will be the receiver.

• Let your friend try to guess which symbol you will send.

• This game is a formal version of 20 questions.

• conclusion: how many questions does your friend need to select N equally
probable numbers?
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3.2 Define the uncertainty

If the answers to your questions are yes or no, then we attach an equation to
this situations. Let H be the average minimum number of questions your friend
needs to guess which symbol you will send.

2H = N

H = log
2
N

H = − log
2

1

N
H = − log

2
p

We define H as the Shannon entropy.

4 Entropy

1. The Shannon entropy is the one and the same from thermodynamics.

2. Entropy measures the number of possible states in a system.

• equivalent to a measure of uncertainty, variability or even “concen-
tration” in a pdf.

3. In base 2 the units of entropy are bits.

• In many theoretical treatments, base e is measured in gnats.

4. The most general form of entropy for X = {x1, x2, . . . , xN} and P =
{p1, p2, . . . , pN} (non-equal probabilities) is:

H(P (X)) ≡ 〈− log
2
pi〉 = −

N
∑

i

pi log2
pi

5. Entropies can generalize to continuous distributions.

• discrete distributions: H ≥ 0

• continuous distributions: not well defined.

5 Properties of Entropy

5.1 Sending two symbols

The same equiprobable situation as the previous example. However, this time
we will send two symbols xi and xj . What is the entropy of sending two symbols
xi and xj?

H(xi, xj) = −

N
∑

i,j=1

1

N2
log

2

1

N2

H(xi, xj) = log
2
N2

H(xi, xj) = 2 log
2
N

H(xi, xj) = log
2
N + log

2
N
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5.2 Conclusion

1. Information is additive.

2. Entropy grows as more symbols sent.

• Entropy is an extensive quantity.

6 Mutual Information

• The goal is to formally quantify the reduction in uncertainty by ex-
amining the appropriate subtraction of entropies.

• Let us first look at the probability distributions of the receiver before and
after one symbol is sent.

beforehand: P (X)
afterwards: P (X|Y ) =

∑

i P (Y = yi)P (X|Y = yi)

• By our definition of uncertainty, the reduction in entropy between the two
probability states is defined as the mutual information.

I(X;Y ) = H(P (X))−H(P (X|Y ))

or

I(X;Y ) = H(X)−H(X|Y )

• Mutual information is also measure in bits.

6.1 Relations between entropies

I will just not justify these statements but it is easy to work out. Regardless
of whether one remembers the details of these equations, it is much easier to
remember the Venn diagram in Figure 1.

• mutual information is symmetric I(X;Y ) = I(Y ;X)

• mutual information can be defined many ways

I(X;Y ) = H(X)−H(X|Y )

I(X;Y ) = H(Y )−H(Y |X)

I(X;Y ) = H(X) + H(X)−H(X,Y )

7 Simple Examples, Returned

We will now return full circle and calculate the mutual information I in the
two beginning examples. In other words, we will formally quantify our previous
qualitative notions.
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Figure 1: Venn diagram of relations between 2 variable entropies

7.1 Example A: Returned

X = {BUY,SELL,HOLD} , P (X) =

{

1

2
,
1

2
, 0)

}

The entropy beforehand H(X).

H(X) = −

[

1

2
log

2

1

2
+

1

2
log

2

1

2
+ 0 log

2
0

]

But notice that 0 log
2
0 is not finite. This brings up the complicated issue of sup-

port which authors go a great length to address. The simple, ad-hoc way avoid-
ing these proofs is just to state in the context of information theory 0 logb 0 ≡ 0.

H(X) = −

[

1

2
log

2

1

2
+

1

2
log

2

1

2
+ 0

]

=
1

2
[1 + 1]

= 1

Before calculating H(X|Y ), we need to compute P (X|Y ).

P (X|Y = 0) = {1, 0, 0}

P (X|Y = 1) = {0, 1, 0}

Now we can compute the associated entropy.

H(X|Y ) = P (Y = 0)H(X|Y = 0) + P (Y = 1)H(X|Y = 1) = 0 + 0 = 0

Therefore, the mutual information is I(X;Y ) = H(X) −H(X|Y ) = 1 − 0 = 1
bit.
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Mutual Information in a binary symmetric channel

Figure 2: Mutual information in a binary symmetric channel

7.2 Example B: Returned

First of all, I need to state beforehand that this problem is a famous first chapter
problem in any information theory textbook. It is often called the binary

symmetric channel or more colloquially the noisy typewriter.
Let’s just state all of the probability distributions before calculating the

entorpies. Let the variable p = 0.2 be the probability of incorrect transmission.

P (X) =

{

1

2
,
1

2
, 0

}

P (X|Y = 0) = {1− p, p, 0}

P (X|Y = 1) = {p, 1− p, 0}

We can now calculate all of the entropies.

H(X) = 1

H(X|Y = 0) = − [(1− p) log
2
(1− p) + p log

2
(p)] = (1− p) log

2

1

1− p
+ p log

2

1

p

H(X|Y = 1) = − [(1− p) log
2
(1− p) + p log

2
(p)] = (1− p) log

2

1

1− p
+ p log

2

1

p

Finally we can calculate the mutual information.

I(X;Y ) = H(X)− [P (Y = 0)H(X|Y = 0) + P (Y = 1)H(Y = 1)]

I(X;Y ) = 1−

[(

1

2

)(

(1− p) log
2

1

1− p
+ p log

2

1

p

)

+

(

1

2

)(

(1− p) log
2

1

1− p
+ p log

2

1

p

)]

I(X;Y ) = 1−

[

(1− p) log
2

1

1− p
+ p log

2

1

p

]
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As a consistency check, notice that if p = 0, we recover the solution for Example
A of 1 bit. This function is plotted in figure 2.

8 Conclusions

1. Classical information theory requires a set probability model.

2. Information is selection between possibilities.

3. Entropy is an extensive measure of uncertainty.

4. food for thought: if entropy is an extensive quantity, what is an invari-

ant of a system?
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