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Abstract

Collecting massive 3D scans of real world environments has become a common prac-

tice for many private companies and government agencies. This data represents the

real world accurately and densely enough to provide impressive visualizations. How-

ever, these scans are merely points. To truly tap into the potential that such a precise

digital depiction of the world offers, these scans need to be annotated in terms of ob-

jects these points represent. Manually annotating this data is very costly. Existing

machine-aided methods report high accuracies for object localization and segmen-

tation. However, the central task of annotation, proper label assignment, is still a

challenging task for these approaches.

The goal of this work is to design an interface that streamlines the process of

labeling objects in large 3D point clouds. Since automatic methods are inaccurate

and manual annotation is tedious, this work assumes the necessity of every object’s

label being verified by the annotator, yet puts the effort required from the user to

accomplish the task without loss of accuracy at the center stage.

Inspired by work done in related fields of image, video and text annotation, tech-

niques used in machine learning, and perceptual psychology, this work offers and

evaluates three interaction models and annotation interfaces for object labeling in 3D

LiDAR scans. The first interface leaves the control over the annotation session in

the user’s hands and offers additional tools, such as online prediction updates, group

selection and filtering, to increase the throughput of the information flow from the

user to the machine. In the second interface, the non-essential yet time consuming

tasks (e.g., scene navigation, selection decisions) are relayed onto a machine by em-

ploying an active learning approach to diminish user fatigue and distraction by these

non-essential tasks. Finally, a third hybrid approach is proposed—a group active

interface. It queries objects in groups that are easy to understand and label together

thus aiming to achieve advantages offered by either of the first two interfaces. Em-
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pirical evaluation of this approach indicates an improvement by a factor of 1.7 in

annotation time compared to other methods discussed without loss in accuracy.
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Chapter 1

Introduction

1.1 Motivation and Context

Humans have been actively collecting digital representation of the world for a long

time. Recently, there has been an explosion in the amount of 3D data collected in

urban environments, as several companies (e.g., Google [133, 115], Microsoft [65] and

Navteq [48]) and government agencies (e.g., NASA [107], USGS [114], and NOAA [20])

are continuously collecting LiDAR data using scanners mounted on cars and/or air-

planes. For example, one such data set combining aerial and terrestrial scans of

Ottawa, Canada is shown in Figure 1.1.

LiDAR data is dense and accurate (e.g., as one shown in Figure 1.2), however,

without proper processing this data is just a cloud of points in 3D space. While it

provides immediate opportunity for visualization, its true value is not realized until

semantic objects in the data are segmented and labeled (e.g., as in Figure 1.3). If

a semantically annotated 3D model of a city could be acquired, then applications

such as urban planning, augmented reality maps, virtual tourism, and emergency

response planning can be greatly enhanced. Identifying locations of stop signs, traffic

lights, and street signs can augment electronic maps and help guide navigation of
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Figure 1.1: Scan of 6km2 in downtown Ottawa.
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self-driving cars. Labeling fire hydrants, electrical power boxes, and fire escapes can

help emergency response planning and disaster simulation.

A number of researchers have begun to develop systems aimed at automatic seg-

mentation and labeling of 3D LiDAR point clouds. Due to the large size of collected

point clouds automatic algorithms are preferable to reduce the necessity of expen-

sive and slow human processing [53]. In particular, great progress has been made

over the last several years on recognition of large urban structures [80]. Building

extraction methods are proposed for low resolution aerial scans [17, 35, 72, 86] and

partial scans of buildings [24]. A facades reconstruction algorithm, capable of filling

occluded geometry and texture from densely sampled clouds, is proposed in [41], while

a faster but lower-quality approach is described in [19]. Numerous road extraction

methods were proposed for both aerial scans [28, 54] and terrestrial scans [61, 142]. A

number of foliage detection and reconstruction methods have been proposed as well,

e.g. [131, 137].

Smaller objects, such as cars, signs, and fire hydrants (Figure 1.2), populate en-

vironments and carry useful information about how this environment functions and

how it is used by its inhabitants. Unfortunately, recognition of small objects is more

difficult as indicated by the accuracies of current labeling algorithms being relatively

poor for them. For example, state-of-the-art labeling algorithms based on supervised

machine learning [46, 75, 116] achieve only 42% − 82% accuracies depending on the

number of categories and their generality. This is far lower than the 95 + % that

is required for consumer mapping, augmented reality, and urban simulation applica-

tions. Therefore, to achieve such accuracies using existing approaches a person has to

check and fix the predicted label for every object before a data set can be deployed

to users (a practice common even for large urban structures at most companies that

annotate electronic maps). This effectively undermines the intention of using existing

algorithms for acquiring small object annotations to save human effort.
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Figure 1.2: 3D point cloud of a section of the Ottawa scan. Small object are high-
lighted in red, other points are shown in the colors derived from camera.

Figure 1.3: 3D point cloud with semantic labels of objects represented by color.

4



1.2 Overview

This work has the goal of efficiently acquiring accurate labeling for small objects in

3D point clouds. While sharing the goal with previous works, this work approaches

the problem of object annotation as an interface problem [15]. If a machine cannot

meet the required accuracy and needs continuous guidance and interaction with the

user, as valuable as it is to continue improving the learning component of the system,

it is important to make the existing algorithms efficiently interact with the currently

inevitable human presence in the loop. Even more so since a human is the element

that, depending on expertise and incentives, is expensive, hardest to engage and train,

and prone to fatigue and frustration. Two major factors that contribute to the cost,

motivation to participate, fatigue, and frustration in this case are the effort required

by the interface to convey annotations and the time commitment expected of the

user to annotate entire data sets. Thus to develop an interactive system for high-

throughput and high-accuracy labeling it is important to understand what part of

the annotation of 3D data has to be done by a human to enforce accuracy, and what

can be safely delegated to the machine to improve speed and reduce the interaction

complexity. A good interface should reflect this workload separation and implement

efficient information exchange protocols between a user and the machine.

The approach taken in this work is different from ones in previous systems. First,

the objective of the interfaces is to allow to confirm a label for every object in a

specific data set with as much computer assistance as possible. This is different

than previous work in computer vision focusing on crowd-sourced creation of object

recognition benchmarks where computer assistance is specifically avoided to ensure

unbiased ground truth labels (e.g., [32, 135]). Second, the goal is to minimize the

total time required to provide and/or confirm a label for every object in a data

set. This is different than most previous work on interactive machine learning where

the goal is mainly to maximize the accuracy of a classifier with the fewest training
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examples(e.g.,[101]). Finally, the goal is to label all objects residing in a single 3D

environment, and thus it is possible for the system to show multiple objects to a user

in a single view and ask him/her to label them with a single command (e.g., if they all

require the same label). This is different than almost all previous interactive labeling

and classification systems where objects must be displayed and/or labeled separately.

Following Chapter 2, which provides more thorough exploration of existing work,

this dissertation explores the design space of interfaces for small object annotation in

3D in the following directions. Chapter 3 describes an interactive user-guided(UG)

interface that extends a simple labeling interface by employing an online machine

learning algorithm, keeping the annotator updated on the most current predictions.

This change in turn justifies additional visualization and interface tools aimed at

streamlining the annotation process. The main point of this interface is to provide

users with more information and better tools while keeping them completely in con-

trol of the process and providing annotations according to their liking and preference.

An interface described in Chapter 4 takes a step in the opposite direction by having

the machine guide the annotation sequence. This interface employs an active learn-

ing(AL) approach that selects objects for an annotator to label based on a utility

function derived from the classifier’s uncertainty measure. This interface takes an ex-

treme approach of reducing the involvement of a human user to a bare minimum. An

interface presented in Chapter 5 takes a middle ground between the above two. It ac-

tively queries the user about objects to reduce the interactions required from the user.

However, instead of using the classifier’s evaluations for selection, it uses a human

visual perception model to select groups that can be rapidly recognized and labeled

together. Thus the third interface is named a group active(GA) interface. Finally,

Chapter 6 summarizes the contributions and suggests avenues for future work.
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Chapter 2

Related Work

Interface designs for annotation have been explored in related fields and thus provide

both context and inspiration for this work. Large and growing size of available text,

sound, images, video, and LiDAR scans data has prompted researchers to explore av-

enues for acquiring semantic annotation of entities contained within this data. Often,

employed labels are expected to be useful to and understandable by humans. Thus

many existing approaches rely on human annotators to provide such information,

varying in the amount of effort required from the users and, respectively, how much

of it is delegated to a machine.

This chapter describes the existing approaches to acquiring semantic annotation

of LiDAR point clouds, as well as relevant methods and interfaces for acquisition of

annotation in a broader range of data types (e.g., images, videos and text) ranging

from automatic to fully manual and crowd-sourced interfaces. It also describes the

works that model and evaluate the effort required from human operators when they

perceive and process the unannotated data and convey annotations back to a machine.
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2.1 Massive manual human annotation

The most straightforward way of acquiring a human-understandable annotation of

data is directly requesting humans to provide it. For example, [95] describes a web

tool called LabelMe that acquires image segmentations and labeling from the users

of a web interface. An interface offers contour drawing tools and a menu of labels

and, despite the annotation task with these tools being laborious, due to tapping

into a large pool of online users, it allowed for a very large collection of high quality

annotations. Acquired annotations were good enough to be useful for successful 3D

scene reconstruction in [94]. In a follow-up work [112] the authors extended LabelMe

web tool to allow for video annotation, and explored the influence of the database size

on performance of vision algorithms. Also working with videos, [136] first reconstructs

a scene from motion and then asks a user to interactively fix segmentations and label

objects in the scene on separate video frames, with these corrections then propagated

through the rest of the video.

Considerations of not only acquiring the annotation but doing it in a cost-efficient

manner have been investigated as well. In [127, 125] the authors extensively explore

the design space of a large scale video annotation tool. They evaluate strategies for

incentivizing users and allocating monetary budget between paying human annota-

tors and computational costs for inter-frame interpolation algorithms. For collecting

a benchmark for video annotation in [84] non-expert users provided simpler parts of

information by marking object tracking through frames while expert users then la-

beled events. In [109], to improve reliability of information acquired from online users,

the authors proposed to dissect a complex task of annotating objects in images into

three simple atomic tasks. Different users either provided localization of an object of

requested category by drawing a box around it, verified a bounding box provided by

someone else, or checked that all objects of a given category in the image had their
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own box. All three tasks required much simpler decisions and interactions from any

single user and allowed to improve both reliability and throughput of the interface.

Alternatively to motivating users monetarily for doing routine or complex tasks,

games with purpose were introduced. The first work in this domain [124] proposed to

acquire image annotation by making users try to agree on a label. Another example,

the Bubble game proposed in [33], allows users to select a small circular area of a

blurred image to see it sharper with the goal of identifying what exactly is shown in

the image in smallest number of such interactions. Observations of human activity

allowed an algorithm to learn what elements are relevant to humans in understanding

and discerning fine-grain categories, such as bird species.

Methods referenced above focus on accurate and reliable annotation acquisition

and aim to achieve scalability by dispersing the task to many users, either incen-

tivizing them to be reliable or algorithmically accommodating for lack of reliability.

The data sets acquired by these methods were shown to indeed be large and accurate

since humans actually put most of the work into providing all of them. Because of

this, however, these methods are expensive in man-hours. This is a serious practical

concern. For example, if labels that were used in some annotation are not relevant for

a small set of data consumers(e.g., too general for domain specialists), reacquisition

of relevant annotation using the above approaches is prohibitively expensive.
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2.2 Machine-aided interactive annotation

There is a large body of work directed at decreasing the necessary human effort in

annotation by delegating parts of the labeling task to a machine. Some methods

only require a user to provide a batch of training examples and expect the classi-

fier to predict the labeling for the rest of the data. Others take a more interactive

approach, where the annotator is continuously provided with additional information

and feedback to help them better allocate their effort. In such collaborative efforts

communication between the two parties is important and hence the human-computer

interface design becomes as relevant as deciding on the work separation itself.

2.2.1 Batch learning classification and detection

A direct alternative for fully manual annotation is to acquire large portions of labeling

“automatically”, i.e. by employing an algorithm that is either explicitly designed to

detect certain categories of objects (effort placed on the designer of the algorithm) or

has been trained by a set of examples to do that(effort placed on the annotator). An

extensive survey in [80] addresses a wide range of such methods employed for recog-

nition and reconstruction of objects in 3D scans of urban environments. Explicitly

encoding a model directly into an algorithm lacks the generality that can universally

address labeling, given the number of categories and appearance varieties within them

that the real world data offers.

More general methods employ some version of machine learning in the sense that

discriminating ability is trained by a set of examples provided by a human and then

employed to make predictions for a larger data. This approach is an instance of

supervised learning. When training occurs on a batch of labeled instances simultane-

ously it is sometimes referred to as batch learning. The process in this case is usually

separated into a sequence of, first, a batch of training examples being collected by
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a human, then a model trained and predictions are produced. The variety in these

methods usually concerns the kind of information about objects that the algorithms

capture and how a model is built.

A number of batch learning methods proposed take a bottom-up approach to ob-

ject recognition, where a label is assigned to each point based on local properties of

the point cloud around it. In [73] points are labeled using a Bayesian classifier. Sev-

eral works employ Markov Random Fields [5, 110, 134] and their extensions, such as

Associative Markov Network [79, 78], where the label of a point not only depends on

local shape descriptors, but also on the labels of its neighbors. These approaches suc-

cessfully distinguish between such classes as wire, pole, ground, wall, scatter, which

were shown to be useful for mobile robotics. Bottom-up approaches have also been

successfully used for single category detection, or a two-class problem (e.g., distin-

guishing cars from non-cars). [91] investigates an application of recurrent neural

network directly to LiDAR data that arrives in natural temporal order to derive sig-

natures of objects that look like cars; evaluation reports 96% accuracy. Alternatively,

[58] employs SVM with point feature histograms to a similar problem to report 96.7%

accuracy. The last work is an instance of a top-down approach as feature histograms

are collected not over points, but over entire objects that are created during a seg-

mentation phase. A method described in [88] uses bottom-up hypotheses generation

using local spin images [62] and a top-down constellation model verification approach

to allow for a single category (cars) object detection, reporting 92% precision and 74%

recall with a 17 objects training set. Although these methods report high accuracy

of classification, unfortunately, they are only shown to work with a small number

of classes, often having features and algorithms hand-tuned for given categories of

objects.

More relevant to this dissertation are approaches that address annotation of small

objects in point clouds, designed to support more categories. Work in [98] represents
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point clouds in terms of primitives that fit the points, allowing to reformulate object

detection as a graph search problem. Users then can request the system to detect

given categories as long as they can encode that category using a primitives and

a relationship graph. This approach is versatile, however it has a number of serious

drawbacks. The vocabulary and scale of primitives that define the space of searchable

shapes is provided before the most computationally expensive part of execution—

construction of the graph. If the preexisting vocabulary of primitives is not expressive

enough for some categories, refitting has to be done. Also, the necessity for the

human to encode all categories manually with primitives is tiring and the authors

suggest learning by example as a solution to this drawback. An approach described

in [116] combines bottom-up hypothesis detection and further labeling by a category-

depended voting for the object’s centers. Results are reported for 2 categories of

objects (cars and light poles) and the authors report 66-72% precision and 70-82%

recall.

The approach described in [46] is the closest related to this work. It proposes

a pipeline of separate localization, segmentation and classification stages and the

qualities achieved by a number of algorithms are evaluated for each stage. Results

of annotating objects in 17 categories are detailed in Table 2.1. Specifically, this

work shows that automatic localization and segmentation algorithms achieve high

(above 90%) accuracy in locating and segmenting small objects of various categories,

however, proper label assignment only achieves 58% precision and 65% recall.

As the results presented in related work indicate, the accuracy decreases as number

of categories increases and the differences between employed classes of interest become

more intricate. This means that if such algorithms were employed to produce high

quality annotations, in practice the annotator would be required to sift through the

predictions to find and fix the mistakes. Together with providing a training set, this

results in the user having to eventually go through the entire data set and verify
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Location Segmentation Recognition
Class # in # ( ) # in #

Truth Area Found ( % ) Pr Re Test Area Predicted Pr Re
Short Post 338 328 ( 97 ) 92 99 116 131 79 91
Car 238 179 ( 75 ) 92 77 112 218 50 62
Lamp Post 146 146 (100) 89 98 98 132 70 86
Sign 96 96 (100) 83 100 60 71 58 65
Light Standard 58 57 ( 98 ) 91 92 37 51 45 62
Traffic Light 42 39 ( 93 ) 84 86 36 33 52 47
Newspaper Box 37 34 ( 92 ) 38 93 29 14 0 0
Tall Post 34 33 ( 97 ) 58 96 10 6 67 40
Fire Hydrant 20 17 ( 85 ) 88 100 14 10 30 21
Trash Can 19 18 ( 95 ) 60 100 15 14 57 40
Parking Meters 10 9 ( 90 ) 100 100 0 4 0 0
Traffic Control Box 7 7 (100) 80 100 5 0 0 0
Recycle Bins 7 7 (100) 92 100 3 1 0 0
Advertising Cylinder 6 6 (100) 96 100 3 0 0 0
Mailing Box 3 3 (100) 98 100 1 2 0 0
“A” - frame 2 2 (100) 86 100 0 0 0 0
All 1063 976 ( 92 ) 86 93 539 687 58 65

Table 2.1: Per-class results of the stages of the algorithm presented in [46]. Shown
for each class are: the number of objects in the truth area, number and percent of
truth objects found by the localization algorithm, precision and recall of segmentation,
number of objects in the test area, the number of predictions made by the recognition
algorithm, and the precision and recall rates of recognition.

annotation for each object manually. Furthermore, provision of the training set is a

challenging task on its own for a user of such system. What objects and how many

of them for each category need to be provided to ensure high prediction results?

As Table 2.1 shows, several categories (Parking meters and A-frames) have so few

instances in the data set, that providing them to the training set causes more problems

than it helps. Firstly, an annotator needs to search through the data to find those

few instances. Secondly, providing these instances only results in further confusion of

the classifier and appearance of false positives among predictions in the test set. This

steals from the accuracy of the categories that mispredicted objects actually belonged

to. These observations suggest that, as valuable as it is to improve classification

algorithms, until they cannot reliably provide desired accuracy, focusing on a user

interface that allows to efficiently provide/fix annotations is mandated.
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2.2.2 User-guided interfaces

A number of works that instead take an interactive labeling approach put the user

in the driver’s seat, allowing him or her to decide how to proceed at training the

machine. In one of the early works in this direction a system for training a pixel

classifier called Crayons was introduced [39]. The system uses an incremental version

of a decision tree and allows users to sequentially correct the mistakes the most

current state of the classifier makes. One of the observations made from the user

study showed that the quality of the classifier in users’ experience starts to play an

important role only once the interactive speeds of updating the classifier are achieved.

In [105] a similar approach was taken to allow the users to interactively correct errors

made by a handwriting recognition system as they wrote. In [12, 55] the authors

describe interactive systems where users iteratively train object classifiers in images

by actively demonstrating objects to the system and providing more examples when

the classifier appeared confused.

Interactive user-guided training is used in search applications employing what is

known in data mining as relevance feedback [96]. For example, CueFlik described

in [40] allows a user to interactively train an image search engine to rank images in

terms of a user-defined concept. This work has been further extended by exploring

different ways of presenting users with ranked results in [2] and the effects of the

ability to see consequences of different modifications before committing to one [3].

Interactive methods have also been used for reconstruction and segmentation of

3D point clouds. For example, [56] describes a system that reconstructs 3D structure

from video and then allows user to interactively agglomerate points into primitives,

create repetitive patters and extend these patterns while fitting models to the data.

A similar approach of fitting primitives to data while enforcing relationships between

them is used for rapid reconstruction of architecture from LiDAR scans in [81]. In

[104] an automatic segmentation is followed by an phase where a user can interactively
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correct the automatically generated segmentation of objects directly in the RGBD

data, with the system then populating the scene with matching shapes from a 3D

repository.

In summary, in these systems the cost of human interaction is paid-off by higher

accuracy of the execution of the task. A user can see where the machine makes a

mistake and correct its model and thus improve its predictive power.

2.2.3 Active interfaces

Works in psychology [99, 10] suggest that minimizing interruptions and decreasing the

number of options significantly decrease anxiety and increase efficiency in humans.

Interruptions in annotation, among other things, consists of switching between la-

beling, next sample search, navigation, and selection tasks. To address this issue,

many researchers explored active machine learning methods that delegate the task of

sample selection onto a machine.

Active learning [101] is an approach in machine learning where the system uses

some utility function [42] to select samples from a pool. This function should be such

that it can guide the system to select objects in a manner that, upon user providing

a label for it, would improve system’s model and the quality of the predictions about

unannotated data. This approach has been widely used for various annotation and

retrieval tasks. For example, [126, 138] use active learning to select frames to be

annotated in video, [37, 63, 66, 113, 120] - to select images to train a classifier, and

[29, 70] to train the system to separate noise in keyword search results for an image

dataset construction. In some cases, additional information, such as mutual location

of categories, is relevant. Work in [106] proposes to not only to query the object’s

category but also its contextual relations with the surrounding objects in the image.

When categories are hard to learn due to subtleness of the distinctions or reliance on

very specialized knowledge, several works ([16, 36, 87]) employed active learning to
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acquire the relevant attributes. These systems improve on the amount of questions

a user needs to be asked to produce a good classifier, but disregard that not all

annotations are equally expensive to acquire.

A number of active learning methods explicitly incorporate the notion of cost of

annotation into their framework. [141] use a cost of annotating a frame in a video,

which is a linear function of estimated false positives and false negatives in each

frame, and ask the annotator to fix the most expensive one. The approach described

in [49] optimizes medical diagnostic by making the machine actively decide which

tests need to be performed, given a budget, to produce the most reliable diagnosis.

To model cost in text annotation, [11] use the number of parsing discriminants in a

sentence; and [52] derive a linear cost model as a function of number of tokens and

number of words needing corrections by fitting it to the actual observations of human

annotators. [100] examines annotation costs for four tasks and evaluates how they

differ by annotators, whether they are predictable, and if incorporating predicted

cost into an active learning utility function improves training the classifier. Several

papers use a value of information (VOI ) [69] framework that chooses the samples by

balancing the risk of mislabeling a sample with the cost of acquiring the annotation.

For example, [67] uses the length of a voicemail in time as the cost of annotating it.

The cost of labeling a single object in an image in [122] is linear in the number of

objects present in it. This work is further extended in [119] where machine learning is

used to learn the actual cost model of annotations, in [121], where at each iteration the

system selects a set of samples without exceeding a given budget, and in [123], where

the authors summarize their findings into a single framework and provide more results

showing robustness of their approach. Work in [64] replaces the usual interface where

a label has to be found in a menu with an interface that at each iteration demonstrates

a pair of images instead. The label of one of the images is known and the other is an

unknown label, and the user is required to say if they belong to the same category. It
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also uses a VOI framework evaluating the cost as a scaled expected number of binary

questions that need to be asked until a match answer is received, showing that asking

several binary recognition questions from a human is faster than making them sift

through a large menu searching for a label.

2.3 Perception and interaction with groups

Human vision and their ability to efficiently comprehend what they see in the enor-

mous stream of incoming visual information is what allows them to be good an-

notators. It is thus no surprise that models of human visual attention have been

introduced and successfully used in computer vision, mobile robotics, and cognitive

systems [14].

The human visual system is capable of rapidly grasping the gist of images after

exposure of as little 100ms [97, 92]. Furthermore, humans can answer some questions

about the contents of the images after very short exposure [111, 31], even when they

are distracted with other tasks [74].

Other studies show that humans exhibit ability to rapidly [25] and robustly [26, 51]

capture objects in sets of similar items[8], using a mechanism that captures a sum-

mary statistic of the observed set instead of independently processing each object.

Such ensemble representation includes not only appearance but spatial patterns, help-

ing with outlier detection, guiding focus of attention, and facilitating perception of

crowded regions [1].

In 3D point clouds, especially, in man-made environments, like cities, where most

small objects exist, patterns and recognizable groups exist in abundance (e.g., parking

lots of cars or street lights along roads). Since every time a user is presented with a

scene, their visual system already does work on recognizing and evaluating the gist
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of the scene and the groups, an interface that allows a user to efficiently convey as

much of the result of this processing as possible back to the machine is desirable.

One avenue that has been well studied in machine learning community is multiple-

instance learning (MIL) [4, 144, 140]. The core difference from other machine learning

approaches is that instead of receiving a set of labeled instances for training, the

learner receives labels for “bags”. Each bag contains one or more instances, and

having a label assigned to it only means that some instances in that bag are of that

category. First introduced in [34] in application to musk odor prediction, it found

natural applications in image classification using both active [76, 103] and non-active

machine learning approaches [18, 77, 118, 139, 143, 145]. Simply saying, for example,

that an image contains cars is simpler than pointing to every car in it. The drawback,

however, is that in bags that contain more than one object the exact labels of each

object are predicted. This brings up same issues as with other existing methods: if

predictions are of less than desired quality, how to efficiently locate and fix incorrect

instances?

Another approach is to present users with groups of instances and ask them to

manually select examples that can be labeled as positive or negative as done in [40, 2];

or manually verify that objects in the group indeed fit the label as in [32]. These

methods produce confirmed annotations for objects just as we would like. However,

interaction of manually verifying or removing instances one-by-one presents same

shortcomings as other manual annotations. It requires a lot of per-instance manual

interactions, which is costly.
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Chapter 3

User-guided interactive annotation

Understanding real world environments is a natural function of human perception.

Hence, an immediate intuition towards streamlining annotation is to allow the anno-

tator to completely control the process. Existing work in annotation of 3D scans [46,

88, 116] focused on algorithmic parts of the system only mentioning which objects

from an existing annotation are used for training, and which ones—for testing. From

the perspective of an interface these works usually do not impose any constraints. A

batch interface only requires tools to label objects and, once enough training annota-

tions have been made, to request a classifier to be trained and used to predict labels

for the unlabeled objects.

Practical application of such interface for purposes other than academic evalua-

tions, however, contains a number of shortcomings. Given an interface like that and

a new data set, an annotator should be able to estimate which ones and how many

examples of each category the employed classifier requires to provide good predictions

without any hints from the system. Additionally, in a practical setting, even once the

necessary training set has been acquired and the predictions for the unlabeled objects

have been made, the user still needs to sift through the predictions to find and fix the

mistakes that the classifier made to correct them. Since it is the case that to ensure
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accurate labeling of a data set the user needs to go through every object, then the

separation of this process into two stages, with the first batch of labels provided with

no relevant feedback, is practically artificial.

To address this problem, this chapter introduces an interactive user-guided(UG)

interface. It updates the classifier and propagates predictions after every new label

a user submits. This interface yields several advantages. Seeing the current state of

the annotation enables users to choose where to focus their effort. When a prediction

is correct, they can simply confirm it with a uniform keystroke rather than searching

for a label in a menu every time. Constant label updates also allow additional label-

based filtering, which in turn enables single motion selection of several objects. Since

prediction updates happen constantly, these tools can be employed during the entire

annotation process, not only after a single prediction request as a batch learning

interface suggests.
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3.1 Interface

A user-guided interface for object annotations in 3D point clouds is built to meet

the following desired properties. Firstly, it needs to display the point cloud data in

a way that objects that need annotation are visible and identifiable, as well as the

information about label predictions is visible and useful. Secondly, users should be

able to navigate around the data set and select objects that they desire to annotate.

Thirdly, the interface should provide means for efficiently assigning proper labels and

confirming correct predictions to the selected objects.

Figure 3.1: Level of detail representation of the displayed 3D point cloud. Each block
is shown in a different color. Larger blocks store downsampled point clouds. Closer
to the center blocks are smallest and the resolution of points is highest available.

Visualization of the point clouds is the first important step. It is known that

context helps humans understand the objects in a given scene [85]. Hence showing as

much of the context, i.e. points that surround the objects of interest, is important.

Existing point clouds of natural environments that exhibit enough resolution to sam-

ple smaller objects well require a lot of memory. This poses a challenge of balancing

the extent of the context with the machine’s memory budget. To address this ques-
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tion interfaces presented in this work take the approach of the level of details (LOD)

visualization. Points are loaded at the highest density closer to the “center” (user’s

area of interest) of the scene. Resolution decreases with distance from the center.

This is done by storing points in a multiresolution block hierarchy with decreasing

sampling closer to the top of the hierarchy. The further a given block is from the

center of the scene, the higher in the hierarchy the block is loaded. An illustration of

this mechanism is shown in Figure 3.1.

Figure 3.2: Selected object is highlighted in yellow. Other selectable objects are
shown in their assigned label color - red stands for “Unknown”, not yet assigned a
label. The rest of the points are shown in original color and are shown for context
and are not selectable.

A user can explore the scene by rotating, panning and zooming using a mouse.

A user can select any object that is available for labeling with a mouse as well (Fig-

ure 3.2). To provide most relevant visualization to the user, the center of the scene

(which is not necessarily the center of the screen) follows the user’s selection. Since

not all points belong to objects that are relevant for annotation, the interface visually

separates objects from the rest of the cloud - background points. Selectable objects

are shown in the color of the assigned labels and the user can optionally request the

interface to show the assigned labels in plain text hovering over the objects as shown
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in Figure 3.3. Background points are available to provide context and are presented

in their original color. They can be concealed upon a user request to decrease the

clutter when necessary.

Figure 3.3: Selected object is highlighted in yellow. Other labeled objects are shown
in the color of the label assigned to it. A user can request label superscription.

Figure 3.4: User-guided(UG) annotation interface. The labeling menu on the left
consists of buttons with label names, keyboard shortcuts and a color reference. High
level annotation progress numbers are also provided to the user top right of the menu.

Labels are offered in a translucent menu on the left (Figure 3.4). The menu

constitutes a set of clickable buttons colored according to the label. This allows the
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menu to also serve as a persistent legend for color coding reference. The buttons

contain not only the name of the label but a keyboard shortcut. A label can be

assigned in two ways. If any objects are selected, clicking on a button or using a

respective shortcut assigns that label to the selected objects. If nothing is selected

but a mouse cursor is pointing at an object and a shortcut key is used that maps to

a label, that label is assigned to an object that the cursor is pointing at. If a label

has been assigned to an object by a user this label is considered to be confirmed and

is only used by the machine for training - its label is not changed by predictions.

Figure 3.5: Machine-predicted label for a selected unconfirmed object is hovering
above the center of the screen and its button is expanded in the label menu.

To facilitate confirmations of correct predictions without requiring the user to

search through the menu two enhancements are available. To visually highlight the

prediction, the label is shown hovering over the object and its button is expanded

in the menu (Figure 3.5) to facilitate the search. To further simplify interaction, a

unique confirmation key is available to the user with the sole function of confirming

that predicted label is correct for selected objects.

To avoid spending time on evaluating objects that they already labeled, users can

request them to be hidden from view and cannot be selected. However, sometimes

it may be valuable to see previous labeling decisions e.g., to maintain consistency in

confusing cases. If the confirmed objects are visible, the user-provided and machine-
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predicted objects and their respective superscribed labels are visually separated by

showing the former in bolder style (Figure 3.6).

Figure 3.6: Objects with user-assigned labels and their label name superscripts are
shown in bolder style than those with a machine-predicted label.

The machine incorporating every new annotation and immediately updating the

predictions for the entire data from the very first labeling leads to both an opportu-

nity and a challenge. The opportunity is that the user can see the current state of

annotation and make an informed decision about what objects are still confusing to

the classifier and fix them. Existence of larger categories of objects that are similar

to each other in shape can thus lead to large leaps in accuracies only after a few

instances of these categories are introduced. Figure 3.7 demonstrates how only after

a few annotations several groups of objects are visually recognizable together. They

are visibly separated into different categories by the classifier, even though examples

of some classes have not even been introduced yet. The challenge is that every time

another annotation is provided all unlabeled objects can potentially change their pre-

dictions. If an outlier influences a large subset of the data, this can result in losing

accuracy.

Since humans rather efficiently perceive scenes as a whole and employ ensemble

statistics representation, groups of similar objects are expected to be noticeable to the

annotator (e.g., cars in Figure 3.7). An ability to easily select the entire group would

allow labeling multiple objects with a single label assignments. This can considerably

diminish the effort required to annotate the entire data set. It is hence desirable to
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Figure 3.7: User-guided interface interactively updates predictions. After only 9
annotations groups of objects that share same label are visible, such as cars, street
and sidewalk lights. Background points are concealed for image clarity.

introduce tools that facilitate selection of such groups in as little interactions and

effort as possible. Such tools of group selection are also useful for confirming correct

predictions. Confirmation of labels for multiple objects prevents future flipping of

correct predictions for these objects in the future, since the machine is not allowed

to change their labels.

There are several options of selecting a group on a 2D screen. The most straight-

forward one that UG interface implements is to allow the user to click on each object

in a desired group. Depending on the used keyboard modifier this will add, remove

or replace contents of the current selection. This, however, requires a linear number

of interactions in the size of the group and additional effort of carefully moving the

cursor between objects and aiming at them.

Regional selection tools, such as lasso, are also available. However, the lasso tool

requires even more cursor precision than simply clicking. Another option is a region

selection by dragging a rectangular frame that envelopes all of the objects that fall
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into the frame. Once again, depending on the keyboard modifiers it adds, removes

or replaces the current selection (Figure 3.8a). This option has the advantage of

simplicity - it requires only a single drag motion per group. The disadvantage is that

it is often impossible to find a rectangle that envelopes only the desired objects, yet

leaving the undesired outside (Figure 3.8b). It is an option, of course, to simply select

the entire group in several selections of smaller subgroups. However, the smaller these

subgroups are the less the advantage of frame selection over clicking in each instance.

(a) Selecting a group of cars to label them together.

(b) Selecting a group of cars with a rectangle will include outliers.

Figure 3.8: Rectangle region selection tool is represented by a dashed frame.

When the goal is to provide or confirm a label for multiple objects in a single

action, an undesirable object in the selection is an object that is dissimilar from the
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rest of the objects in a way that is relevant to the annotator. The machine learning

employed in an annotation interface is expected to be able to capture such dissimi-

larities. Under this assumption, to avoid selecting undesirable objects is to prevent

the interface from allowing the selection of objects that the classifier understands to

be different, specifically, the ones that it predicts to be in different categories.

To take advantage of the simplicity of the rectangular region selection while keep-

ing undesired objects from being selected, this interface introduces visibility filters.

Every label is mapped to a user-controlled flag that specifies if objects that are as-

signed that label are shown and selectable. The control over the visibility flags is

executed in several ways. Direct control is available via visibility toggles on each

button in the label menu (Figure 3.9a).

(a) (b)

Figure 3.9: Visibility is controlled either by (a) V(-isibility) toggles in the label menu
or (b) through exclusive visibility with label chosen through the user’s selection of
object.

When selecting a group for a single label it is desirable to have all labels besides the

one in question be invisible. However, switching all of the labels manually to achieve

that is an unnecessarily lengthy effort to request. Hence, an exclusive visibility mode is

also available, which turns off all labels but the desired one (Figure 3.10a). Engaging

exclusive visibility allows for a single motion group selection without catching outliers

(Figure 3.10b). It is engaged using the same visibility toggles (with a keyboard

modifier) on the respective button in the label menu. Additionally, if objects of a
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single category are selected, a keyboard shortcut allows users to enable exclusive

visibility for that category. This is useful when the selection is initiated by a single

seed and a larger group is noticed in the vicinity (Figure 3.9b).

(a) Exclusive visibility enabled on the “car” label.

(b) Selecting a group of cars from Figure 3.8b with a rectangle will now only contain cars.

Figure 3.10: Rectangle region selection tool represented by a dragging motion frame.

It is expected that the classifier will not always be able to make reliable distinc-

tions that will make visibility filtering universally applicable. The UG interface only

provides the tools for the user to leverage it, when possible. Users are also expected

to make mistakes and hence undo and redo commands are available.
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3.2 Machine learning

Now that the functionality of the interface is described, it is important to identify

the machine learning (ML) framework that should serve the purpose of repredictions

at interactive rates. In machine learning, objects that require separating into differ-

ent categories are represented as points (samples) in a feature space. Coordinates

of each object are defined by its features - an n-dimensional vector of evaluations

of descriptor functions that represent this object. Relationships between objects are

defined by the relationships between their respective points. Consistency is often

a desirable property of the feature space, meaning that features and the distances

are chosen so that proximity of points in the feature space reflects the similarity

of the respective objects according to a desired property e.g., label, shape or color.

Machine learning algorithms are then used to extract relevant relationships between

objects through evaluations in the feature space. For example, unsupervised learn-

ing algorithms search for hidden structure in the distribution of objects, allowing, for

example, clustering of the data. Conversely, supervised learning algorithms take addi-

tional input, such as labels of a subset of samples, and use feature space relationships

to predict labels for other objects.

Using different classifiers for different interfaces due to their better applicability

for specific setting is possible. However, if this is the case, it may be hard to separate

advantages granted by the interface and interaction models from those granted by

a machine learning algorithm being better suited for the data. Thus, to provide a

more accurate comparison of the interfaces in this work, a common machine learning

framework (classification algorithm, descriptor features, and feature space distance

metrics) is chosen.

To select a suitable ML algorithm, considerations of the requirements of both a

batch mode annotation and the UG interfaces should be made. By virtue of many

supervised algorithms initially designed and demonstrated to work in a batch mode,
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Precision Recall
Classifier # Predicted Correct (%) Correct (%)
NN1 707 379 (54) 344 (64)
NN5 582 374 (64) 342 (63)
Random Forest 368 288 (78) 270 (50)
SVM 687 400 (58) 351 (65)

Table 3.1: Effects of classifiers on recognition rates from [46].

Batch interface can employ any of them. [46] evaluates several popular machine

learning algorithms with application to labeling small objects in LiDAR scans on

a data set similar to the one used in this work. Their results are summarized in

Table 3.1. The authors use SVM for the final results, motivating it by displaying

the highest recall, however, all presented algorithms are essentially interchangeable

offering only marginal differences, trading off precision for recall.

The UG interface requires a classifier to incorporate new information incremen-

tally. As important as accuracy of the classifier is for obtaining good annotation,

[39] shows that it is more important to the users of an interactive system that the

prediction updates come without delay. Moreover, according to the findings in [2] it

is beneficial to provide users with an ability to preview a result of their actions before

committing to them, or simply put—an ability to undo actions. This requires the

algorithm to both support rapid updates after a new training sample is provided as

well as when a sample is revoked. A transductive learning algorithm [22, 43], which

doesn’t require an additional step of creating generalization rules from training ex-

amples but rather makes predictions directly from these observations, is thus more

suitable. The simplest algorithms among the ones in Table 3.1—K nearest neigh-

bor(kNN ) [30]—meets these requirements and NN1 is chosen as the classification

algorithm for all interfaces presented in this work.

The same considerations of prioritizing simplicity are made in selecting of descrip-

tor features. A number of shape descriptors have been used as features for identi-

fying objects in point clouds, such as spin images [62], splash features [59], shape
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Precision Recall
Feature # Predicted Correct (%) Correct (%)
Shape Features 568 313 (58) 298 (55)
+ Multiple Segs 591 336 (59) 314 (59)
+ Context 586 360 (64) 327 (61)

Table 3.2: Effect of features on recognition rates.

histograms [7], and a variety of coarser geometric descriptors, e.g. [58]. Sometimes

some of them are used together to form an expanded feature vector or in tandem

with higher level structures, e.g. constellation models [88]. Often, these works eval-

uate features that they offer together with a specific algorithm and evaluate using a

specific, often unique to the given work, point cloud. A comparison of some of these

features without variations of other factors is done in [45]. The authors incrementally

add more shape descriptors to a feature vector and evaluate how much it improves

the accuracy. Specifically, they start with simple geometric features, such as volume

and point distribution along principal axes, then spin images are added. Further, the

above features are computed for a set of clouds extracted using several segmentation

algorithms and concatenated together. Finally, contextual features that describe rel-

ative locations of objects of given category with respect to other objects are added.

Evaluation results are summarized in Table 3.2. The features are added in order of

increasing complexity of their computation: point distributions for a single set of

points is easier to compute than for multiple segmentations, and contextual features

require iterating over predictions until convergence. However, this added complexity

once again only yields marginal benefit. Since in this work machine learning is only

an aid while the convenience of the annotation interface is the priority, this work opts

for using a simple 6-dimensional feature vector. Specifically, the features used are: (1-

3) the 5% trimmed spread, median, and median absolute deviation of Z-coordinates

(Z is up), (4) the 5% trimmed maximum distance of a point from the centroid in
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the XY plane, and (5-6) the variances of points distribution in the two principle axis

directions in the XY-plane.

The last matter that needs definition is the structure of the feature space. A

NN1 algorithm applied in a space with Euclidean distances, in essence, splits the

space into Voronoi cells [9] centered at training instances. All unlabeled samples

get assigned a label of the centroid of the cell they are in. This means that only

the distribution of the labeled instances defines the classifiers predictions. Semi-

supervised learning [21], which incorporates information about distributions of not

only the labeled samples but the unlabeled data as well, has been shown to improve

prediction accuracy [22]. Warping space to reflect structure intrinsic to the data

allows us to directly apply supervised learning algorithms in a semi-supervised fashion

[108]. Density-based clustering [71] algorithms, such as OPTICS[6] and DBSCAN[38],

capture structure of the data based on the observation that samples found in the sets

of same densities are more likely to be similar. To leverage the density information

in a semi-supervised setting with a supervised learning algorithm the feature space

in this work is defined by density-sensitive distances.

In this work, the system first computes density-sensitive distances between all

samples in the data using the formulations similar to those in [23, 146]. The main in-

tention of this computation is to squeeze together points in dense regions and distance

them in low density areas. To do this a K nearest neighbors graph GKNN = (V,E) is

defined over the data points in the feature space with edges weighted by the pairwise

distances between respective points d(vi, vj). The value of K in this work is the small-

est value that allows GKNN to be connected. Two points are considered to be similar

if they are connected by a chain of points P = p1, ..., pl along the edges of GKNN that

are in a dense region. If Pij is the set of all paths in GKNN that connects data points

vi and vj then the density-sensitive distance between these points is defined as
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D(vi, vj) =
1

ρ
ln

(
1 + min

P∈Pij

l−1∑
k=1

(
eρd(pk,pk+1) − 1

))
(3.1)

Intuitively, this expression results in increasing contributions of the longest edges

on all the paths between two points, thus characterizing each of the paths by the

sparsest region it traverses. Choosing the smallest of these characterizes the path

that goes through the densest region available. Hence D(vi, vj) between two points

reflects whether these two points belong to a single cluster of similar density or if

they are separated by sparser regions. Parameter ρ determines how soft this effect is:

if ρ → 0 D(vi, vj) simply becomes the length of the shortest path and if ρ → ∞ it

becomes the length of the shortest among all paths longest edge.

Using this definition of distance in the feature space, a simple NN1 classifier be-

comes more respectful of the intrinsic data structure without sacrificing its simplicity.
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3.3 User study

3.3.1 Batch interface

To evaluate the efficiency of the UG interface against the task of annotating objects in

3D point clouds, it needs to be compared to an interface used in previous works. The

closest related work, however, does not address the design of the interface. Hence

in this work a straw man Batch interface is developed in a manner that it meets

the operational mode and necessary functionality implied from the related works.

Specifically, it needs to display point clouds, and allow a user to select objects and

label them. Once the training set is collected, the user needs to request the training

of a model and reprediction of labels to the rest of the objects.

The difference between the UG interface and the straw man Batch interface con-

sists of the following. Firstly, the classifier does not update predictions after each

label provision. Instead, the user that assembled a sufficient training set should re-

quest a reprediction. At that point, all provided annotations are incorporated into

the model and predictions for the unlabeled objects are produced. For the purpose of

accurate simulation of a batch learning setting, this operation may only occur once

and cannot be undone. Second, the frame selection and visibility filtering tools are

disabled, since they are not an integral part of the batch learning setting in related

works.

All other features and the machine learning algorithm are same for both the UG

and Batch interfaces. This set of tools covers the requirements for a Batch learning

annotation interface implicitly suggested in the related work. To allow for comparison

of the entire session, it also provides additional tools to complete the annotation

process after training set collection and label predictions.
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3.3.2 Experimental set-up

Evaluation and comparison of the Batch and UG interfaces is done against the goal

of this work - efficient and accurate annotation of small objects in point clouds. Both

interfaces are designed to completely rely on a human user in driving the annotation

process: deciding what objects and when to label or confirm. Hence, to compare

fitness and advantages of either of them a human user study has been conducted.

For evaluation, a point cloud captured with 4 terrestrial (car-mounted) and 1 aerial

(airplane-mounted) LiDAR scanners within a 6 km2 section of downtown Ottawa,

Canada [82] was used (Figure 1.1). The data set contains approximately 1 billion

points. Each point is represented by a 3D position, RGB color, and scalar intensity.

The colors and intensities of terrestrial points are very noisy and thus were not used.

The data set was chosen because it is has been used for evaluation by previous systems

for recognition of small objects in LiDAR scans of cities. In particular, it was first

used in [46], which reported approximately 58% precision and 65% recall using fully

automatic algorithms to recognize 1,063 objects in 17 semantic categories in a 0.3km2

evaluation area. The tests in this work are conducted on a similar set of 18 object

categories (bush, fire hydrant, mailbox, newspaper box, parking meter, advertising

kiosk, garbage can, recycle bin, phone booth, traffic sign, highway sign, A-frame sign,

sidewalk light, street light, traffic light, short fence post, tall fence post, and car)

in the same evaluation area of Ottawa, using a slightly expanded ground-truth set

of 1,224 objects (Figure 3.11). Additionally, a training area has been allocated in a

different part of the point cloud with 163 objects in same categories. It is used to

train inexperienced users to work with the interface and point cloud data prior to an

actual annotation session.

To acquire objects in this ground truth set the LiDAR points were first segmented

into objects using the algorithms described in [45, 46]. Specifically, plane extraction

algorithms were used to remove the points associated with major planar structures in
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Figure 3.11: Test data set used in this work is a point cloud collected with LiDAR
scanners in Ottawa. This image highlights the 1,224 small objects that users were
asked to label in the experiments. Objects are colored according to their ground truth
labels.

the environment (ground and buildings), and then hierarchical clustering and graph

cut algorithms were used to detect the locations of potential objects and cluster

points into objects. The results of these automatic segmentations were improved

interactively with a simple tool that allows a user to specify points inside and/or

outside any object and then resolves the object segmentation boundary with a graph

cut. These improved segmentations were used in the tests – the user only had to

provide a label for each object.

The choice of creating segmentations as a pre-processing step is motivated by sev-

eral reasons. First, most small objects in a LiDAR scan of a city can be segmented

automatically with high accuracy (∼ 90% in [46]), and so the segmentations used in

the evaluations are quite representative of those created with state-of-the-art algo-

rithms. Second, segmentations can often be refined automatically after objects have

been labeled – e.g., using an algorithm that aligns objects of the same type to form
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a consensus of the correct appearance to improve segmentations [68]. So, precise

pre-segmentations may not be necessary. Of course, there are complicated interplays

between the accuracy of the segmentations with the effectiveness of the shape-based

classifiers, the robustness of the consensus algorithms, the ability of people to rec-

ognize objects, the quality of the data, and so on. These investigations, however,

are outside the scope of this work, which focuses on improving a labeling interface.

Finally, the interfaces presented in this work are not specific to labeling LiDAR data.

They rather address general ideas for labeling any kind of data that can be shown in

naturally occurring environments (e.g., cells in stained microscopic images or tumors

in medical images). The segmentation challenges for each of those types of data is

different. Hence, using pre-segmented objects avoids mixing evaluations of the an-

notation interface metaphors with the specific challenges of segmenting a particular

data sets.

A group of 8 users has been recruited for the evaluation. Participants were ran-

domly split into two sets of four users. One set of participants were assigned the Batch

interface, and the other the UG one. The order of assigning participants to one of

these two conditions was random, and no participant was aware of which condition

was the control. Their task was to label all objects in the ground-truth set using their

assigned interface. Each group ended up consisting of 3 males and 1 female between

the ages of 20 and 40.

Each participant was given written instructions describing the goal of the ex-

periment together with tools and commands relevant to their interface. They were

further presented with definitions of the labels used in the experiment as well as pho-

tographic and point cloud appearance examples of the types of objects to be labeled.

Both the instructions and the label references were available to the users throughout

the experiments. After getting familiar with the descriptions, the users were asked to

practice using their respective interface by executing a short interactive tutorial. It
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consisted of annotating 163 objects in the training area with the interface they had

been assigned with. However, in this stage the interfaces provided users with im-

mediate feedback if any label was assigned incorrectly and only accepted the correct

labels for every object.

Once the tutorial was completed, the participant proceeded to provide or con-

firm the label for all 1,224 objects in the evaluation area without any feedback or

guidance other than instruction clarifying questions. Users of the Batch interface

were requested to first produce annotations for a sufficient (according to their under-

standing) training set, then request reprediction, followed by confirming or correcting

predicted labels for the rest of the objects. Once done labeling all objects, users

completed an exit questionnaire.

User sessions have been recorded in two ways. First, all commands that were

issued by users, such as selections, label assignments, confirmations and visibility

changes, were recorded along with time records of those commands and information

on changes in the selection sets and labels assignments. Secondly, periodic records

of the current states of human and machine assignments as well as evaluations of

precision, recall and F-measure against the ground truth have been recorded.

3.3.3 Results

The main question that needs to be answered is whether one interface displayed

significant advantage in terms of annotation progress over the other. Figure 3.12

shows the dynamics of the average F-measures of respective interfaces as the function

of the session times. It shows that in the earlier stages of the process, before the users

of the Batch interface requested reprediction, the UG interface users display higher

values due to the machine learning predictions. However, once the predictions are

requested by all users of the Batch interface as well, the dynamics of both interfaces

closely follow each other along a slowly growing plateau. The UG interface users
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finished a little sooner but with a lower accuracy, however, both differences are not

statistically significant.

Figure 3.12: Average F-measure for users of the Batch and UG interfaces as a function
of time.

Neither interface exhibits significant advantage in terms of the total session time.

Differences in both the final F-measure and the finishing times are not statistically

significant: Batch interface sessions lasted 4537(σ = 743) seconds yielding 96(σ = 1)%

F-measure and UG interface sessions lasted 4401(σ = 787) seconds with final F-

measure values of 94(σ = 1)%. To understand why this is the case several parallel

observations are made.

Accuracy dynamics as a function of user interactions instead of time in Figure 3.13

offers insight. First, it shows that UG interface, despite the users engaging in addi-

tional interactions of visibility filtering changes that are not available in Batch in-

terface, require almost half as many interactions to complete the process. Second, it

is interesting to observe that Batch interface users request predictions rather soon—

between 200 and just over 500 interactions were enough for all 4 users to accumulate
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what they believed to be a representative training set. In light of the entire process

taking 2700 interactions on average this shows that actual users of such interface

function differently in practice than modeled by previous works, in which half of the

data or more were provided for the training set. Thirdly, this plot shows that al-

though both interfaces are largely on par early in the process the tail of the sessions

where corrections and confirmations of predictions take place in both interfaces, UG

interface requires significantly fewer interactions, which suggests that many objects

are indeed labeled or confirmed together.

Figure 3.13: Average F-measure for users of the Batch and UG interfaces as a function
of number of user interactions (selections, labeling, confirmation, visibility changes).

The observation that users were indeed capable of using the group selection tools

and reliably conveying information about objects in them to the system is further

confirmed in Figure 3.14, which shows distribution of correct and erroneous (as per

ground truth) labeling by the size of the selection group when a label is confirmed.

Only a little over 400 objects (∼ 1/3 of the data set) on average were labeled alone.

This means that the vast majority of objects have been labeled by groups, some as
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large as 268 objects. An important observation that can be made from this plot is

that the size of the group does not correlate with the amount of incorrect labeling a

user provides. As a matter of fact, vast majority of the mistakes are made objects

1-by-1, followed by small groups of up to 5 objects, while larger groups exhibited very

few mistakes occurring.

Figure 3.14: User mistakes distribution by group sizes for the UG interface. Average
number of objects whose label was submitted in groups of given sizes is represented
by the total height of respective bars. The height of the red fractions of the bars are
average number of these objects that users mislabeled per ground truth.

F-measure plots demonstrate the joint evaluation of users’ annotation efficiency

and classifier’s ability to correctly capture and propagate the differences between

categories, however seeing the dynamic of users’ sole contribution is relevant to un-

derstanding what causes the observed results of using the interfaces. Figure 3.15a

shows average amount of time required to confirm labels for given fractions of the

entire data set. It shows that although early in the process Batch interface users were

slower to confirm objects, closer to the end of annotation the angle of the UG plot

becomes worse indicating that users of the UG interface needed increasingly longer
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(a) Average times needed to confirm given fractions of objects in the data set.

(b) Average number of user interactions needed to confirm given fractions of objects in the
data set.

Figure 3.15: Dynamic of the label confirmations.

times to proceed. The same dynamic also appears in the plot in Figure 3.15b, which

instead of time shows the average number of interactions necessary to confirm given

fraction of objects. Here the increase of the angle of the UG plot persists. This tells
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us that it wasn’t simply taking longer closer to the end because users were tired, but

that they actually increased the number of interactions between confirmations. This

is not the case for the Batch interface. Although the earlier progress in terms of time

for Batch interface users was slower, this was not the result of many interactions but

rather indeed a slow start - users were searching for the objects to add to the data

set. In terms of number of interactions, however, the angle of the line hardly changes

throughout the process. This can be explained by the simplicity of the procedure for

Batch interface - select, confirm or label, repeat.

These observations demonstrate that users could successfully take advantage of

the group selection tools and visibility filters, which indeed diminished the number

of necessary interactions while not hurting accuracy. However, having these tools

available required more action planning by the users, which took additional time

between providing labels. This resulted in the advantage in number of interactions

not reflecting in the overall time lengths of the entire sessions, losing the potential

benefit to the added interface complexity.
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Chapter 4

Active learning annotation

As results of the Chapter 3 suggest, the actions that need to be made between provid-

ing labels—decisions about what objects to label next, camera navigation and object

selection—take much time and effort from the annotator. Yet, label confirmation is

what really requires users’ knowledge and participation. Selecting objects and cen-

tering the virtual camera on the selection is something a machine can do. Also, since

ultimately all objects need to be confirmed, there is no need to decide on what subset

of objects needs to be shown and confirmed. Each one will end up being selected at

some point in the session and hence only the order in which they are selected should

be decided upon.

Active learning is a field of machine learning in which an algorithm interactively

queries the annotator about samples that it deems most relevant to producing good

prediction quality. The algorithms employs logic often guided by a utility function to

choose such objects. In line with this philosophy of the machine making the selection

decisions leaving the user to only provide correct annotation, the interface described

in this chapter that takes advantage of this approach is called Active Learning (AL)

interface.
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4.1 Interface

Delegating the selection to the system offers several advantages that the interface

should cater to. Firstly, it relieves the user from the necessity of constantly switching

from the task of labeling to the task of analyzing multiple objects and making decision

on what to select next before providing a single annotation. Secondly, it removes the

loss of time dedicated to navigating between consequent selections since the virtual

camera can be operated by the machine, which knows the destination object. Thirdly,

this mechanism allows us to greatly simplify the interface by removing all of the

accompanying tools. This further reduces the time it requires the user to provide

labels by diminishing the amount of interaction-related decisions.

The simplification of the interface that immediately follows from the active learn-

ing strategy is the removal of the selection tools, both the single object and the frame

group ones. Since the user does not need to take care of this, neither are the visibility

selection tools necessary anymore.

This simplification, however, opens a question of how the machine should present

the objects that it selects and handle the transition between selections. As exit

questionnaire answers suggest, individual shapes of objects are as important for an-

notator’s understanding of the label of the objects as their local context. With UG

and Batch interfaces, the user controls the virtual camera while navigating between

objects and making selections. This allows the user to maintain context awareness

as well as acquire the necessary zoom for shape recognition at the level of their own

comfort and desire. With the machine making selections, the way selected objects

are shown needs to be chosen.

Possible approaches to addressing transition need to balance providing a zoom

level that reveals the individual shape of the selected objects with exposing enough

relevant context. Maintaining the entirety of the context available to the user is one

extreme of this spectrum, requiring a zoom level that is often too small to understand
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Figure 4.1: Two objects that the AL interface selected immediately one after the
other are too far apart to reliably show their individual shapes in a common context.

individual shapes as can be seen in Figure 4.1. Showing only the selected objects runs

into the risk of preventing the user from seeing contextual cues. This is especially

relevant when recognizing point clouds in which appearance is confusing to the an-

notator due to occlusion, noise or low sampling as shown in Figure 4.2. Certainly,

sequentially selected objects can be close to each other to make full context exposure

feasible; and for many objects the shape is descriptive enough that the context will

not matter, allowing the maximum close-up to work. However, neither of these ex-

tremes are universally applicable as the illustrations show and hence a more flexible

approach is desirable.

One option is to create smooth transition animations with the virtual camera,

which allow both continuous context observation as well as ultimate zoom on the

target object. This, however, introduces a complex challenge of balancing the limi-

tations of the temporal properties of human attention [117] with the additional time

it takes to play the transition animations. Camera transition time investment is fur-

ther questionable because only local context matters for understanding of an object

as opposed to knowing what objects are located two city blocks away. Thus ani-
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Figure 4.2: Context matters in point clouds annotation. Top row shows fire hydrant
and bottom row shows a short post. Left column shows maximum zoom close-ups
and right column shows the same objects within their local context.

mated transitions over larger distances will be mostly ignored either due to temporal

attention limitation or due to irrelevancy, meanwhile consuming time.

Furthermore, however the transition is carried out, the view angle under which the

objects are exposed are also important. If the selected point of view is not exposing

relevant features, then the user will need to switch from labeling task into a navigation

task to look for a better view. This is especially not favorable for expert users who use

keyboard shortcuts for label assignments and thus switching to mouse to navigate and

back to keyboard to label is an additional irritating distraction. Diminishing the need

for these interactions is thus desirable as well. Virtual camera planning algorithms [27]

that aim to expose the shape of 3D objects on 2D displays is an active research area.

To expose the shape of objects various cues have been proposed in literature [83, 90],

such as shading, texture and highlights. However, scans of natural scenes are not well

48



suited for many of these. In addition to often missing scans of parts of surfaces due

occlusion, point clouds do not contain topology information and extracting surface

from them to compute these properties is a challenging open problem of its own

(e.g., [47]).

One cue, however, which is readily available without carrying out complex pre-

computations, is motion and the AL interface takes advantage of it by employing

the following selection display strategy. Once the system has decided on what object

should be selected next, the interface centers on that object. Zoom level is chosen

such that the sphere that bounds the axis-aligned bounding box of the object com-

pletely fits into the region of the screen not obscured by the control elements such as

the label buttons. This approach zooms further for the larger objects whose bounding

boxes are broader and zoom closer to smaller ones, which often require more detailed

evaluation of intricate details. Once the virtual camera is positioned in this man-

ner it automatically engages orbital rotation around the selection. The polar angle

smoothly oscillates between 0 and π
2

with the angular velocity inversely proportional

to the distance between the camera and the object.

This approach addresses the desired features listed above. The transition from one

local context to another is immediate thus is not wasting time and user’s attention on

irrelevant information. Yet the trajectory of the camera exposes multiple projections

of the selected object on the screen as well as varying size and direction of local

context in a short period of time without the user having to perform any interactions

(Figure 4.3). Decreasing the angular velocity at larger distances from the objects

accounts for the camera capturing more local context, which takes longer to visually

analyze. If for some objects this still misses relevant information or more context is

required, the user can regain control by simply engaging in mouse manipulations or

freeze camera motion with a keyboard shortcut. However, this is reserved for unusual

or complicated cases.
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Figure 4.3: Some frames which an orbiting camera captures after an object is selected.
Changing polar angle exhibits different projections of the object and local context.

In summary, the AL interface differs from the UG and the Batch interfaces in

removing the unnecessary selection tools and adding centering of the camera and

its orbiting around the newly selected object. All other tools including labeling,

process(undo/redo operations), and navigation controls remain. Also, the textual

hints of the currently assigned label name hovering over the current selection as well

as the predicted label stressed in the label menu are all left intact.
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4.2 Sampling strategies

The AL interface requires the machine to have a strategy to choose which object to

select next. What strategy should it be? If all objects are to be selected at some

point or the other is there a difference in showing them in any particular order? From

the point of view of the total number of interactions - no. However, the better the

classifier’s predictions are and the sooner they become good, the less the annotator

has to correct a label. Correcting a prediction means either sifting through the label

menu and pointing at the right one with a mouse or finding the proper keyboard

shortcut, while confirming it means simply pressing the confirmation key. Producing

better predictions earlier also has the additional benefit of having higher accuracy if

the user interrupts the session early—a property outside of the formulated goal of

this work but nevertheless a good feature for a practical annotation system.

A variety of approaches have been suggested in machine learning literature for

choosing samples that a user should annotate [42, 101]. These methods range from

simplest ones of identifying the most beneficial objects using prediction uncertainty,

to more costly methods that estimate improvement that labeling specific objects can

yield to the measure of prediction accuracy, to maintaining a committee of differently

parametrized predictors and letting them vote for the most desirable samples. All

of these methods require a utility function that should be chosen such that values

that it produces for each object could be used to decide on the sample that ends up

being queried. The utility function is chosen depending on the desired goal, intended

usage case and computational complexity constraints. As described in greater detail

in Section 2.2.3, practically these functions are designed with the goal of improving

the prediction of the classifier algorithm most with less samples being annotated.

Since the goal of this work is annotation of the entire data set and the accuracy of

the classifier is secondary, there is no incentive to employ the most computationally

expensive methods.
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This work considers the most common uncertainty sampling utility functions:

choosing objects that exhibit the least prediction confidence, highest prediction en-

tropy and the local density weighted versions of the above. Classifiers usually produce

not only the prediction labels for a sample x but also assign each prediction label l

a confidence value P (l|x), which is often formulated and treated as a likelihood that

x belongs to category l. In these terms it is now possible to describe each of the

mentioned utility functions. The least confidence strategy selects a sample x∗LC such

that:

x∗LC = arg max
x

(1− P (l∗|x))) (4.1)

where l∗ = arg maxl P (l|x) is the label with the highest likelihood. This is the easiest

function to compute, however, it only considers the most likely label. To include

information about other labels into consideration, the object with the highest entropy

x∗E is chosen:

x∗E = arg max
x

∑
i

P (li|x) logP (li|x)) (4.2)

Uncertainty sampling chooses the most “confusing” samples, considering them most

informative. Under an assumption that the objects proximate in feature space look

alike and thus likely share a label, this means that it focuses on the exploration of

the feature space by putting emphasis on disambiguating the least certain objects.

Querying for objects in such a fashion results in sampling bias [13] with the algorithm

focusing on samples along the class boundary, or simply querying outliers rather than

representative samples, which is a problem for training a good classifier. This bias

is often addressed by weighting the uncertainty values by a measure of representa-

tiveness. One such method, proposed in [102] and considered in this work, is density

weighting. It postulates that most informative samples are not only the most uncer-

tain ones, but also ones that are representative of the underlying distribution. Under

this assumption, such sampling chooses sample x∗DW,φ according to the following for-
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mulation:

x∗DW,φ = arg max
x

(φ(x)(
1

U

U∑
u=1

sim(x, xu))
β). (4.3)

Here, φ(x) is the uncertainty sampling function of choice (such as least confidence or

entropy), U is the size of unlabeled samples, sim(x, xu) is a function that quantifies

similarity between the current sample x and all other unlabeled samples xu, and β is

a parameter that controls the importance of the density weighting.

To make results indicative of the advantages of the interface and interaction model

rather than comparing machine learning algorithms, the NN1 classifier described in

Section 3.2 is used as well. However it needs to produce likelihoods P (l|x) that are

used to define the sampling functions described above. To produce these values, the

algorithm not only assigns the label l of the closest labeled neighbor xlNN(x) to a given

sample x, but keeps track of the closest labeled instances of every known other label

xliNN(x). Specifically, it starts with D(x, xliNN(x)) as it is defined in Equation 3.1. To

normalize for local densities, the distances are first shifted down so that the closest K

nearest neighbors of every object are 0. This introduces asymmetry, which is restored

for every pair of objects xi, xj by taking the largest shifted density-sensitive distance

between xi → xj and xj → xi. This locally-normalized distance is further denoted as

DLN(xi, xj). The distances are converted into affinities between objects in the feature

space

AFS(oi, oj) =
1

1 +DLN(xi, xj))
(4.4)

so that closer neighbors result in higher values. And finally, the likelihoods are pro-

duced by normalizing the distribution of affinities for all known labels:

P (li|x) =
AFS(x, xliNN(x))∑
lj
AFS(x, x

lj
NN(x))

. (4.5)
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4.3 Results

Evaluation of the AL interface is done against the same goal - improving the time

that it requires a human annotator to label the entire data set. To be able to com-

pare the observations of the improvement against the Batch and the UG interfaces

presented in Chapter 3, evaluations are carried out on the same data set with the

same experimental set-up as described in Section 3.3.2.

The AL interface takes care of the user navigation, however, a good sample selec-

tion strategy needs to be chosen. As [100] points out, applicability of active learning

is task-dependent, and although it results in the reduction of necessary labeling to

achieve a given level of accuracy in the majority of reported results, in some cases it

has been shown to perform worse than random sampling (e.g., [44, 50]). Acquiring

the necessary pool of human users to carry out evaluations is expensive and is not

justified, since training the classifier is not the primary objective of the proposed inter-

faces. The mode of operation of the AL interface, however, actually requires nothing

from the user but providing labels. Having ground truth labels available for the eval-

uation data allows us to replace human users with algorithmically simulated ones.

Simulating users permits carrying out preliminary evaluations of the interface, such

as selection of the sampling strategy that improves the classifier better on the given

data. It is faster and cheaper than hiring actual users and it removes the variability

in human annotators. Simulated user evaluations are presented in Section 4.3.1.

The answer to the main question on whether this interface improves the overall

annotation time without deteriorating the quality still can only be answered by an

evaluation with human users. It is not trivial for simulated users to give insight into

how much visual interface and presentation factors impact the rapidness of label-

ing. Hence, a human user study with the interface operated by the chosen sampling

strategy is conducted and results are presented in Section 4.3.2.
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4.3.1 Simulated user evaluations

Simulating a user of the AL interface with available ground truth labels consists of

substituting human input with a function that for each queried sample returns its

ground truth label. It is faster and cheaper than hiring human users and allows for

more annotation session trials, which are sometimes required since ties in utility are

broken by choosing any of the candidates randomly. It also isolates the evaluation of

the algorithm from including human factors such as errors, fatigue and variation in

the level of engagement.

It is hard to fully simulate a human user with respect to actual time the entire

annotation session lasts. Thus in these preliminary evaluations it is assumed that

labeling all objects takes the same constant amount of time and thus number of

interactions is taken as a proxy for the session time.

The desired winning sampling strategy should overcome the others in the following

criteria to be useful for our goal. First, it should predominantly exceed or be on par

with the level of accuracy demonstrated by other sampling strategies at the same stage

of the session. This criterion is motivated by more labels being correctly predicted for

the unconfirmed objects resulting in users more often confirming instead of searching

for a correct label. Secondly, it is desirable that 100% accuracy is achieved sooner

than by competitors (a special case of the first criterion).

Results from simulating the uncertainty sampling strategies described above are

presented in Figure 4.4. In addition to the least confidence, highest entropy and

density-weighted versions thereof, this plot contains two other control strategies. One

is random sampling with no machine-generated predictions, in which case any order

of labeling is equivalent to another as one interaction results in exactly one object

acquiring a correct label. This is a baseline for the worst case scenario when all predic-

tions are always wrong. The other one is random sampling with machine predictions

enabled.
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Figure 4.4: Average F-measure as function of number of interactions for simulated
users of active learning driven by different sampling strategies.

From this plot it can be seen that the least confidence sampling consistently

maintains the highest prediction accuracy. It is closely trailed by the random sampling

throughout the first part of the process, however gains advantage later. The highest

entropy strategy starts out on par with the leaders, however, very early loses accuracy

and never regains it in the later stages. Density-weighted strategies are doing worst

throughout most of the process. They also exhibit leap-plateau cycles, suggesting

that these strategies are very reluctant to switch to samples from a different cluster

until current clusters are exhausted. This explains that the magnitudes of the leaps

get smaller further in the process: first the largest and the densest cluster is sampled

until its density matches the second densest cluster and so on.

According to the first criteria of the desired sampling strategy, the results indicate

that least confidence is the preferable sampling strategy. However, it is hard to

evaluate how much they meet the second criterion not only due to all plots converging
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and hard to tell apart in the upper right corner, but also because the length of all

tails is defined by the longest session among all the runs in the group.

Figure 4.5: Average number of interactions to achieve certain level of annotation
accuracy for simulated users of active learning driven by different sampling strategies.

To better explore performance with respect to earlier termination, Figure 4.5

shows the average number of interactions it took to achieve levels of accuracy be-

tween 80% and 100%. This plot shows that the least confidence strategy consistently

achieves high levels of F-measure in less interactions than others. It reaches 100%

accuracy after labeling on average 1197 ± 1 interactions on a 1224 objects data set

while others - at 1218 and higher. These observations motivate the choice of the least

confidence sampling strategy to be used in the human user studies.

57



4.3.2 Human user study

For evaluation of the AL interface with human users, 5 participants between ages

of 20 and 40, 4 males and 1 female, were recruited. The experiment was set up as

described in Section 3.3.2. Users were provided with instructions for the interface,

examples and description of labels used, as well as requested to annotate all objects

in a smaller data set in the user training mode of the AL interface.

Figure 4.6: Average F-measure as a function of session time.

Figures 4.6 shows the dynamic of the average accuracies achieved by the users

of the AL interface compared to those of the UG and Batch interfaces. Throughout

most of the session, the average F-measure achieved by the users of the AL interface

is consistently higher than that of users of other interfaces at any given time. To

better illustrate the dynamic of the later fraction of the sessions Figure 4.7 depicts

the average times required to achieve given levels of F-measure above 80%. The plot

indicates that the users of AL interface were able to consistently achieve high levels

of accuracy faster. It also shows that one of the users of the AL interface was able to

achieve the highest accuracy still faster than any user of other interfaces. However,
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Figure 4.7: Average time required to achieve given levels of accuracy between 80%
and 100%.

the average final accuracy of 96(σ = 1)% was not significantly different from that of

users of other interfaces.

The average completions time of 3855(σ = 837) seconds for the users of the AL

interface users is almost 10 minutes less than the next smallest time shown by the users

of the UG interface. AL interface yields 15% and 13% improvement to the average

completion times over the Batch and the UG interfaces, respectively. However, due

to spreads in the completion times, this advantage is not significantly different either

(p-value � 0.05).

Active learning significantly decreases the necessary number of user interactions

as Figure 4.8a illustrates. Just as the case with Batch interface, the confirmation

dynamic is linear, however, the number of interactions is expectedly halved, since

Batch interface requires additional selection interactions. The plot also indicates that

the AL interface requires less interactions than the UG interface. Although the UG
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interface saves time by bulk selection and labeling, in the end the added contribution

of other interactions (e.g., filtering) results in greater than one interaction per object.

(a) Average number of interactions required to confirm labels for given fraction of objects
in data set.

(b) Average time required to confirm labels for given fraction of objects in data set.

Figure 4.8: Dynamic of the label confirmations.
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The advantage in the number of interactions, however, does not fully transfer into

a consistent advantage in the time scale as shown in Figure 4.8b. Most of the time the

line representing the AL interface trails that of the Batch interface. This is explained

by both of these interfaces providing the tools to only annotate one object at a time.

When there are many unlabeled objects, finding a nearby object to label is not hard

and does not require as much effort from the users of the Batch interface either. This

dynamic changes towards the end of the session, where the AL becomes more time

efficient than either of the other interfaces. At this point the data set is mostly labeled

and it becomes more and more challenging for the users of the user-guided interfaces

to find and navigate to the objects that are still not confirmed. Meanwhile for the AL

interface, tail of the process is “business as usual”: it simply takes the user directly

to the next object instantly as it has throughout the session. This allows the users to

maintain their pace and avoids the slowdown towards the end that is present in both

the UG and the Batch interfaces.

Although the AL interface offers a very streamlined approach to annotation, it is

limited to annotating one object at a time. Hence the process is inevitably linear in

terms of minimal time required from a human to perform all cognitive tasks related

to understanding an object and its context. This results in an existing, yet not

drastically decisive advantage that the AL interface allows to achieve with respect to

the overall annotation time.
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Chapter 5

Group active learning annotation

As the literature summarized in Section 2.3 indicates, humans are very good at recog-

nizing entire scenes. Human vision picks up on groups of similar objects, maintaining

a summary statistic of what it sees instead of focusing on one object at a time. This

allows humans to rapidly evaluate complex scenes in a glance.

For the purpose of an annotation system, however, simply being able to rapidly

understand what is on the screen is not enough. Providing the means for rapidly

conveying the information about the objects that are seen is as important. More-

over, since the human visual system is very good at recognizing objects, providing

annotations in a manner that a machine can understand is actually the bottleneck,

since this is the phase that involves mechanical manipulations with the input devices

and the latencies that come with them. The better the effort analyzing every object

on the screen is translated into providing information to the system, the higher the

throughput of the interface is.

Earlier chapters shown that the two approaches - user-guided and machine-driven

- to annotation offer their unique advantages to facilitate the process, yet both have

disadvantages. The UG interface takes advantage of the human ability to analyze

groups of objects and convey the label in kind. However, the added burden of making
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selection and navigation decisions and performing respective interactions, as well as

additional tools and elements of the interface that the user needs to use eat away

most of that advantage. The AL interface addresses this problem by taking on all

the selection tasks and the majority of the navigation ones, which allows in turn to

simplify the interface as well. However, at the same time it loses the ability to fully

leverage the perception capacities of users to acquire annotations in bulk where it is

possible.

A hybrid Group Active (GA) interface is designed to reconcile these two ap-

proaches. It maintains the active approach to annotations, having the system make

the selection decisions and perform most navigation for the user. However, instead of

selecting objects in accordance to a classifier utility, it chooses groups that both are

easy for the user to recognize and are likely sharing a label. Operating in this manner

allows users to submit a label for entire groups of objects in a single action without

having to spend much effort on manipulations to assemble these groups manually.

To build groups, the system uses a perceptual psychology motivated model. This

model works in collaboration with the machine learning algorithm and leverages infor-

mation received from previous user interactions. Annotations that the user provides,

as in other interfaces, help the model to estimate the likelihood that objects share

a label. Suggested groups can be labeled or rejected via contraction or expansion

requests. Contractions and expansions allow the system to adjust its level of con-

servativeness in its future group suggestions. The following section describes these

mechanisms in details as well as elements of the user interface that enable users to

efficiently interact with this annotation system.
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5.1 Interface

The GA interface operates in the following manner. It iteratively selects groups of

objects, shows them to the user (drawn in bright yellow from a spinning centered view

as shown in Figure 5.1), predicts a single label for all objects in the group (shown in

text above the group), and then asks the user to execute one of three actions. The

user can either confirm the predicted label (hit the space bar), specify a new label

(select a label from a menu on the left of the screen or hit an alphanumeric character

associated with the label), or ask the system to contract or expand the group (left-

arrow or right-arrow key, respectively). If the user confirms or specifies a label for

the group, then all objects within the group are assigned that label and subsequently

displayed in the color associated with the label. Otherwise, a new group is shown to

the user. The system iterates this group labeling interaction until labels have been

confirmed or specified for all objects in the data set.

Since the GA interface, akin to AL, makes selections for the users, the necessary

tool set and the mode of operation are similar. There is, however, one important

distinction. The GA interface suggests groups automatically according to its internal

understanding of the world at a given moment. It will inevitably make mistakes due

to incorrect assumptions - either showing a group that doesn’t share a label or a

group that a user deems too large or too small for another reason. There needs to be

a tool that allows the users to remedy such situations efficiently.

A straightforward approach to allow for these corrections is to let the user directly

remove outliers or add missing objects with tools similar to those of the UG interface

(visibility filters and region or single click selection). This approach, however, requires

a user to analyze a group and then perform manual selection manipulations similar

to those in the UG interface, which has been shown inefficient.

The GA interface instead takes an alternative approach. It is built naturally on

the ability to suggest groups that fit the criterion of similarity and ease of perception.
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(a) 149 short posts (b) 210 cars

(c) 33 tall fence posts (d) 23 street lights

Figure 5.1: Screenshots of the groups suggested by the GA interface. Selected objects
are highlighted in yellow, other objects are colored according to their labels.

If the system can select such groups from scratch in the data set, then selecting a

supergroup or subgroup that best meets these criteria is a special case of the original

function. This approach allows the user to alternate the groups in a simpler manner

than performing tedious detailed manipulations. Respective commands—contract

and expand—can be easily mapped to both keyboard shortcuts and visual interface

buttons as shown in Figure 5.1.

Aside from additional group manipulation functionality, the visual interface is

similar to the AL. It automatically centers on the selected objects and orbits the

group. As the Figure 5.1, some groups are large and user may need additional time

and even manipulations to carefully evaluate them. However, for larger groups the

loss of time for mouse manipulation is compensated by the savings on the amount of

labeling information gained when the entire group is labeled.
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5.2 Attention model for group assembly

The main research challenge in implementing the GA interface is to develop effective

methods for selecting groups to be annotated by a user at each step of an interactive

labeling session.

(a) Pattern exists (b) No pattern (c) Outlier

Figure 5.2: Groups that illustrate the desired properties that the suggestions of the
interface should meet. From left to right: (a) recognizable patterns in spatial orga-
nization of objects is helpful; (b) lack of such patterns is hindering; (c) presence of
an outlier turns showing any group into a wasted effort since a single label cannot be
provided to the group.

Ideally, selected groups should contain very large number of objects, all of which

require the same label, most of which have not been previously labeled, and all of

which are arranged in patterns quickly recognizable by a person – then, large groups of

objects could be labeled quickly and easily. Figures 5.1 and 5.2 show several possible

groups that illustrate what kind of groups the GA interface should and should not

produce. Figure 5.2a shows a small group of cars neatly parked alongside a curb in

a rather regular pattern. This group is fast to evaluate and the label confirmation

in one action is possible, and is further facilitated by the correct prediction for the

group—a simple space bar keystroke is necessary. It is different from a small group

of streetlights shown in Figure 5.2b. They are very similar in shape, however, they

appear dispersed throughout screen, not creating a visual group. This makes it harder

to even identify which objects are selected, let alone efficiently compare their shape

without much effort and manual camera manipulations. Requiring this amount of

interaction from the annotator at the expectation of only 5 objects being labeled is not

efficient. A much vaster group with many more streetlights is shown in Figure 5.1d.
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This group is better for the purposes of annotation, since the objects form a naturally

meaningful patter of streetlights along a single street and are thus easier to visually

evaluate. An even larger and more dispersed group of cars is shown in Figure 5.1b

and is also deemed beneficial. Although the group occupies a vaster area, it consists

of regularly positioned cars that form groups that are easily recognized as cars parked

along streets or in parking lots. Even though the user likely needs several zoom-ins

and some additional navigation to verify that indeed all of the objects are cars, the

advantage of acquiring confirmation of labels for 210 objects in a single action is worth

the effort. Finally, a case that should be avoided at all cost is shown in Figure 5.2c.

Regardless of how well a group is exhibiting an easy and recognizable pattern and

how easy it is to visually understand what the objects in the group are, if there is an

outlier present, the time spent analyzing yields no annotation benefit.

Building groups with these properties is non-trivial. Since the labels of objects

are not known in advance, the system must predict them and model the probability

that a group contains objects of the same type. Since different groups of objects

require different amounts of time for a user to recognize their labels, the system must

employ a model of human perception to estimate the cost of asking the user about a

group. These considerations must be encoded into an objective function that models

the benefit (time savings) of labeling objects in a group.

The objective function B(G,L) that the GA interface employs estimates the ex-

pected benefit (time savings) of asking a user to select a label from a set L for a group

of objects G (rather than annotating the objects one-by-one). Specifically, B(G,L)

is defined as:

B(G,L) = PLabel(G)T1×1(G,L)− TGroup(G,L) (5.1)

where TGroup(G,L) is the expected time it will take a user to provide a response for

a group G; PLabel(G) is the expected probability that the user will provide a label for
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the group G (rather than contract or expand it); and T1×1(G,L) is the expected time

it would take a user to label all objects in G one-by-one (without group annotation).

This benefit formulation reflects the fact that the total time for the annotation

session is reduced by T1×1(G,L) time if the user provides a label for the group, which

occurs with probability PLabel(G). TGroup(G,L) time is added to the session for the

user to process the group, regardless of whether a label is provided or not. So,

intuitively, B(G,L) is higher if groups are larger (T1×1(G,L) is higher), more likely

to contain objects of the same label (PLabel(G) is higher), and faster for a person to

recognize the label (TGroup(G,L) is lower).

While this formulation is nice theoretically, it requires estimating three terms

(PLabel(G), TGroup(G,L), and T1×1(G,L)), all of which depend on unknowns (object

labels, user behavior, etc.). The following subsections provide details for how the

system estimates values for those terms.

5.2.1 Likelihood of group sharing a label

The first challenge is to estimate PLabel(G), the probability that the user will provide

a label for a given group G – i.e., confirm the predicted label or provide a new one

explicitly. This can occur only if all objects in G belong to the same category (require

the same label). Thus, PLabel(G) is computed by estimating the joint probability that

all objects oi ∈ G belong to the same category.

The challenge in estimating the joint probability is that the label that will be

assigned by the user is unknown. In fact, it is possible that no instances of the

correct label for a group have been previously entered by the user, or in fact that no

labels have been entered at all. Therefore it is not always possible to simply train a

classifier to estimate the probability of assigning any given label based on previous

training data.
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Instead, the system employs an estimator for the probability PLabel(oi, oj) that any

two objects oi and oj have the same label, and then combine those probabilities to

estimate the joint probability of a single label for all objects in the group. To do this,

we compute the product of |G| − 1 pairwise probabilities, where the pairs are chosen

to be the highest probability ones that span all objects in G. That is, if MSTLabel is

the minimum spanning tree of a fully-connected graph, where nodes represent objects

and edges represent 1− PLabel(oi, oj), then:

PLabel(G) =
∏

(oi,oj)∈MSTLabel

PLabel(oi, oj) (5.2)

This method for combining the pairwise probabilities is based on two assumptions.

First, the pairwise probabilities, PLabel(oi, oj), are more reliable for high probability

pairs than for any other (i.e., long-range distances in the feature space should not

be trusted), and thus combining probabilities for pairs of objects connected in the

MST is more reliable than using other pairs at all. Second, the pairwise probabilities

for pairs of objects in the MST are independent, and thus they can be multiplied to

estimate the joint probability.

This formulation for PLabel(G) requires estimation of the PLabel(oi, oj), the proba-

bility that any two objects oi and oj have the same label. To do this, we follow the

general density-based distance approach used in this work, but with several augmen-

tations appropriate for the setting of this interface.

Equation 4.4 defines the density-sensitive locally normalized affinities AFS(oi, oj)

between two objects in the feature space. This formulation alone, however, is static

and does not account for user’s interactions. Considering prior interactions of labeling

and contraction is especially relevant for the GA interface to avoid repeatedly showing

groups that do not share a label.

69



The probability that two objects will be assigned the same label is defined as:

PLabel(oi, oj) = AFS(oi, oj)C(oi, oj) (5.3)

where C(oi, oj) is a penalty term to account for pairs of objects that have appeared

in groups of objects contracted by the user in previous interactions. If two objects

were part of a group that the user declined to label in the past, they probably should

not be grouped again. Initially, C(oi, oj) for every pair of objects is one. Then, every

time a group is contracted by the user all C(oi, oj) where oi,j ∈ G are multiplied by

1 − 1/|G|. This factor provides a soft penalty for showing poor groups of objects

repeatedly.

To account for objects that have already been assigned a label by the user (e.g.,

in a prior interaction within the same session), the distance DLN(oi, oj) (as defined

in Section 4.2) is set to ∞ if the nearest labeled neighbors of oi and oj are as-

signed different labels. Otherwise, it is set to be the minimum of DLN(oi, oj) and

max(DLN(oi, o
NN
j ), DLN(oj, o

NN
i )), where oNNi and oNNj are the previously labeled

objects (with the same label) that are closest in feature space to oi and oj, respec-

tively. This adjustment creates zero-distance “wormholes” between separated clusters

of objects that share the same label, a method akin to must-link constraints in pre-

vious work on constrained clustering (e.g. [130]). Using this adjusted DLN(oi, oj) in

the computation of the AFS(oi, oj) (Equation 5.3) allows PLabel(oi, oj) to incorporate

the labeling activity provided by the user.

5.2.2 Estimating time for user to provide a response

The next problem that needs to be addressed is developing a model for TGroup(G,L).

It estimates how long it will take a user to provide an annotation response when

shown a selected group G for a given set of candidate labels L.
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Such a model is difficult to estimate accurately, since it depends on the spatial

reasoning aptitudes of individual users and complex factors related to perception of

groups. However, basic principles of perceptual psychology can be applied to form a

simple, approximate model that is adequate for this system. The model used in this

work is a sum of three terms:

TGroup(G,L) = TId(G,L) + TV erify(G) + TCmd(L) (5.4)

where TId(G,L) is the time required to identify a label for the group, TV erify(G) is

the time to verify that all objects in the group require the same label, and TCmd(L)

is the time to convey the response to the system. The second term is zero if there is

only one object in G, and so

T1×1(G,L) = (TId(G,L) + TCmd(L))|G| (5.5)

Predicting the Time to Recognize a Label for a Group

The human visual system is capable of rapidly grasping the gist of images representing

scenes. As mentioned in Section 2.3, after exposure of as little 100ms, people can

answer specific questions about what they saw. The process of recognizing sets of

similar objects is also fast and robust. Since a group of objects can be represented

cognitively with summary statistics [8], recognition times for salient groups can be

extremely rapid. Since items perceived as a group can “pop-out” from clutter [60,

93], they can often be recognized as a whole more quickly and accurately than as

individuals [1, 89].

Accordingly, the time TId(G,L) for a person to identify the label for a group is

modeled as a function that is independent of the size of the group, but dependent

on the numbers of labels to choose from. Specifically, it is estimated as the choice
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reaction time (CRT) of choosing among |L| labels using Hick’s law [57]:

Tid(G,L) = aIdHeq(|L|) (5.6)

where Heq(n) = log2(n+ 1) is the information-theoretic entropy of a decision among

n equiprobable options, and aId is a processing speed constant factor.

Predicting the Time to Search for an Outlier

Although recognizing the label for a group of similar objects is extremely fast, the

process of checking whether there is an outlier within a group can be much slower.

In this work, the time TV erify(G) for a person to verify that the labels of all objects

in the group are the same category is modeled using a sequence of binary decisions,

where each binary decision determines whether two objects within G are in the same

category or not. Since the better the Gestalt pattern of objects the more likely the

visual attention will group them together, this work assumes that when a person

decides whether an object is similar to others in a group he or she will compare it

to the one it appears in the best pattern available in the group. The total time

is estimated as a sum of binary decisions made for pairs of objects connected in a

minimum spanning tree (MSTGest):

TV erify(G) = Σ(oi,oj)∈MSTGest
TV erify(oi, oj, G) (5.7)

where TV erify(oi, oj, G) is the time it takes a person to decide whether two objects

within G have the same label, and MSTGest is a minimum spanning tree constructed

based on a cognitive measure of affinities between objects, AGest, which is defined

below.
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The time it takes for a person to make a decision about whether two objects have

the same label or not TV erify(oi, oj, G) is modeled as a choice reaction time (CRT)

using Hick’s law:

TV erify(oi, oj, G) = aV erify(oi, oj, G)H(PLabel(oi, oj)) (5.8)

where aV erify(oi, oj, G) is a task complexity function that depends on geometric prop-

erties of the object pair within the group G and H(p) = p log2(
1
p
+1)+(1−p) log2(

1
1−p+

1) is the information-theoretic entropy of a binary decision, where p is the probability

of each outcome, in our case modeled as the affinity between the two object shapes

(p = PLabel(oi, oj)).

When estimating the task complexity function, aV erify(oi, oj, G), people are ex-

pected to recognize the match between labels of two objects more quickly if they are

closer to one another and/or are arranged in a regular pattern governed by Gestalt

rules [128, 129]. These factors are combined as follows:

aV erify(oi, oj, G) = TV erify(AGest(oi, oj, G) + (1− AGest)d(oi, oj)) (5.9)

where TV erify is the fastest possible time required to recognize whether two objects

have the same labels, AGest(oi, oj, G) is a measure [0-1] of how much the pair of

objects participates in a group with strong Gestalt principles, and d(oi, oj) is the

distance between the objects in relative units

d(oi, oj) =
|oi − oj|2

max(|oi|∞, |oj|∞)
(5.10)

Intuitively, the value of aV erify(oi, oj, G) is equal to TV erify for objects connected

by strong Gestalt cues (when AGest(oi, oj, G) = 1), and otherwise is larger than TV erify

when Gestalt cues are weaker and/or the distance between objects is larger.
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Estimating the Effects of Gestalt Cues

Gestalt principles of visual perception [128, 129] attempt to describe how people

tend to organize visual elements into groups. These principles include similarity

(objects that look alike are grouped together), proximity (objects that are close to

each other are grouped), continuity (groups form if they are aligned with each other),

and “good Gestalt” (objects are grouped if they are parts of simple regular patterns).

While similarity principle is enforced in the formalism used in the model through

employing PLabel(oi, oj) in Equation 5.8, the principles of proximity, regular pattern

and continuity are enforced via AGest(oi, oj, G):

AGest(oi, oj, G) = R(oi, oj, G)S(oi, oj) (5.11)

where R(oi, oj, G) is a value [0-1] representing how much oi and oj participate in a

regular pattern within G, and S(oi, oj) represents a measure of the proximity of two

objects relative to their sizes.

When estimating R(oi, oj, G), objects are considered to be forming a regular pat-

tern if they are situated along a line and share similar spacing between them. Hence

the smallest size of the group that can exhibit such traits is three, and R(oi, oj) =

R(oi) is set to 1 for all pairs/objects in groups of less than three. To evaluate the

regularity for any three objects oi,j,k the translation between every two is replicated

in either direction and the distances to the third is computed. Then the smallest of

these distances dr(oi, oj, ok) is used to compute regularity score as

R(oi, oj, ok) = exp(−dr(oi, oj, ok)/min(|oi|∞, |ok|∞, |ok|∞)) (5.12)

Regularity available for two objects oi and oj within a group G is defined as:

R(oi, oj, G) = maxok∈G(R(oi, oj, ok)) (5.13)
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S(oi, oj) accounts for the effect that similarities of objects are harder to recognize

when the objects are smaller on the screen. Since the virtual camera is positioned so

that the entire group is within view, objects that are further apart relative to their

sizes in world space appear smaller on the screen after perspective projection. So, the

effects of object proximity also incorporate information about their relative size as:

S(oi, oj) =
1

1 +max(0, d(oi, oj)− c)
(5.14)

Estimating Time for User to Enter a Label

Finally, the time TCmd(L) for a person to provide a label to the system is modeled as

another choice among |L| labels using Hick’s law [57]:

TCmd(L) = aCmdHeq(|L|) (5.15)

where aCmd is a processing speed constant factor.

In summary, this model predicts that groups can be labeled more quickly if they

have objects with more similar shapes, stronger regular patterns, closer proximities

in 3D, larger sizes on the screen, and fewer potential labels.
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5.3 Group assembly

Given the objective function, the main algorithmic task is to select the group of

objects with largest benefit to present to the user at each step of the interactive

labeling process. The overall goal is to construct a sequence of groups that minimize

the total time required by a user to label and/or confirm every object in the data

set. Achieving this goal is NP-Hard. Choosing just one group is an instance of the

optimal subset selection problem, which is NP-hard with simple objective functions

(e.g., [132]), let alone optimally choosing the entire sequence using the described

benefit function that non-linearly depends on the other objects in the group. Hence

to make use of this formalism in an interactive system, the GA interface selects groups

that approximately optimize this goal given current estimates of the object labels and

annotation times.

To limit the search space, first a hierarchical clustering tree T of all objects in the

data set D is constructed. Each node of T represents a group of objects in the leaf

nodes of its subtree. Then, the best group is sought for among its non-root nodes

by evaluating B(G,L) of these groups and picking one with the highest value. This

limits the search space to a set of candidates that is linear in ‖D‖.

Even with this reduced search space, building T is non-trivial. In particular,

hierarchical clustering based onB(G,L) can lead to groups with poor regular patterns,

since decisions made greedily in the early stages of the algorithm are based mainly on

shape similarity and spatial proximity between objects (e.g., when just two objects

are merged into a group) and therefore are likely to form small groups that cannot

later be merged into large ones with good regular patterns. To avoid this, instead of

joining groups according to B(G,L), during the tree construction groups are joined in

the best-first order of AGest(oi, oj,D) - a version of AGest(oi, oj, G) from Equation 5.11

that represents the best possible Gestalt score of a pair oi, oj with any third object

from the entire D, not only from G. Specifically, the algorithm traverses pairs of
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objects oi ∈ Gi, oj ∈ Gj, Gi ∩ Gj = ∅ in a descending order of AGest(oi, oj,D) until

B(Gij, L) ≥ max(B(Gi, L), B(Gj, L)). Once such pair (oj, oj)k is discovered groups

Gi and Gj are merged into Gij. This enforces the priority of joining pairs of objects

that are globally in stronger patterns.

Constructing T in this way still requires evaluating B(G,L) for O(‖D‖2) candidate

groups. It is thus desirable to avoid having to recompute MSTLabel (in Equation 5.2)

and MSTGest(in Equation 5.7) in every evaluation. When a decision to join groups

Gi and Gj into Gij is made during the tree construction, it is mandated by a pair of

objects (oj, oj) in respective groups that appear in a globally strong pattern according

to AGest(oi, oj,D). A set of all such edges {(oj, oj)k} that contributed to the appear-

ance of a group G on T thus forms a spanning tree ST∼(G) over all objects in G with

edges, chosen with the objective of the largest AGest(oi, oj,D) and non-decreasing

benefit. ST∼(G) is not exactly MSTGest due to AGest(oi, oj,D) 6= AGest(oi, oj, G),

however ST∼(G) is readily available without additional computations and allows for

a recursive formulation of TV erify(Gij) from Equation 5.7

T∼V erify(Gij) = TV erify(oi, oj,D) + T∼V erify(Gi) + T∼V erify(Gj) (5.16)

which reuses values previously computed for Gi and Gj. For the same reason of

immediate availability ST∼(G) is used instead of MSTLabel. However, ST∼(G) is

built not directly considering PLabel(oi, oj) at all. Hence, using a product on ST∼(G)

as in Equation 5.2 is likely to over-constrain construction of T and build only very

small groups due to many elements of the product being much smaller than what

they would have been if the actual MSTLabel was used. To adjust, we replace the

product with the minimum, which only estimates the group’s density in the feature

space instead of performing a likelihood computation, in the following fashion:

P∼Label(Gij) = min(PLabel(oi, oj), P
∼
Label(Gi), P

∼
Label(Gj)) (5.17)
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This is also a recursive formulation allowing for reusing of values computed for sub-

groups during the tree construction.

These two approximations were made in the interest of constructing candidate

groups (nodes of T) with large-scale regular patterns at interactive rates. They do

not guarantee optimality of the candidate groups according to B(G,L). However,

B(G,L) is evaluated for each group in the tree T and the group with the highest value

is chosen to be shown to the user. Empirical observations show, that this approach

produces groups with good B(G,L) at interactive rates (∼1 second for constructing

T and evaluating B(G,L) for all nodes).

Additionally, the advantage of constructing T allows for a natural implementation

of contraction and expansion operations. If the user rejects the group that has been

selected by the algorithm, then in case of expansion request the most beneficial node

above the previous one is selected. If the contraction is requested, then the most

beneficial node in the subtree of the current node is chosen. To avoid slow contractions

that remove one object at a time, an exponential falloff is used, i.e. subgroups are

only considered if their size is less than half of the size of the group being contracted.
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5.4 Results

Ultimately, the improvement that the GA interface offers to human annotators can

only be evaluated via human user study, which is described later in this section.

There are, however, a number of parameters that govern the time cost estimation

in the benefit function of the attention model. These parameters are used in both

constructing the tree T and searching for the best group to select in the tree. Setting

these parameters too optimistically will result in the system suggesting groups that

are very unlikely to be labeled together due to the system assuming that the cost

of looking at and then rejecting a group is too low to be of concern. Setting these

parameters too conservatively will result in the system preventing larger groups from

even appearing on T due to even a tiny risk of not sharing a label being penalized by a

significant cost. Deriving these constants through human user studies is prohibitively

expensive. Yet, as is the case with the AL interface, the GA interface makes object

selections itself. Hence with the ground truth available, the necessary estimations

can be carried out using user simulations.

5.4.1 Simulated user evaluations

The parameters that heavily influence the group search are processing speed factors

aId and aCmd in Equations 5.6 and 5.15, and the fastest possible time to recognize

that objects share a label TV erify in Equation 5.9. Normally, these coefficients in the

Hick’s law are derived by fitting experimental observations of a simple task to the

function. However, the model used in this work consists of a set of tasks of varying

complexity and fitting observed data to acquire these values is both misleading and

expensive. Furthermore, the tasks the users execute are contingent on the values of

these constants used by the system, creating a loop dependency. Finally, since all

elements of the benefit function in Equation 5.1 that these constants contribute to
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are only needed to estimate the relative benefits of showing one group over another

rather than evaluating exact times, their relative values are more relevant than the

absolute ones.

To acquire a simpler expression for the relationships between aId, aCmd, and

TV erify, Equation 5.1 can be expanded in the following manner:

B(G,L) = PLabel(G)T1×1(G,L)− TGroup(G,L)

= PLabel(G)(TId(G,L) + TCmd(L))|G| − (TId(G,L) + TV erify(G) + TCmd(L))

= (PLabel(G)|G| − 1)(aId + aCmd)Heq(|L|)

− TV erifyΣ(oi,oj)∈MSTGest
(AGest(oi, oj, G) + (1− AGest)d(oi, oj))H(PLabel(oi, oj))

To clarify the point of this operation we assume the following notation:

f1(G,L) = (PLabel(G)|G| − 1)Heq(|L|)

f2(G,L) = Σ(oi,oj)∈MSTGest
(AGest(oi, oj, G) + (1− AGest)d(oi, oj))H(PLabel(oi, oj))

α =
TV erify

aId + aCmd

and B(G,L) scaled by a constant factor (aId + aCmd) takes the following form:

BScaled(G,L) = f1(G,L)− αf2(G,L) (5.18)

Since BScaled(G,L) is the same benefit function scaled by a constant factor it is

interchangeable with B(G,L) for both the purposes of construction of the tree T and

the choice of the group with highest benefit within it. It has, however, the advantage

of only depending on a single important constant α that needs to be decided upon.

Intuitively, smaller α leads to the relative cost of pairwise similarity verifications being

smaller than that of the label identification and provision. Useful values of α within

the provided formalism and T construction algorithm are bounded from above by the
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value of log 3. This is mandated by the fact that for higher values even groups of

two object that are identical by shape and are part of a perfect regular pattern will

show negative benefit, preventing these groups from appearing on T. If groups of

two cannot be formed on the tree, then no larger groups can be formed hierarchically

either, resulting in all available groups consisting of single objects.

Simulated users implement the same logic that a human user is expected to per-

form: given a selected group either label it according to the ground truth if the group

if homogeneous or contract if otherwise. Expansion logic is not implemented in this

simulation for two reasons. First, unlike contraction, modeled by a simple factor of

presence of an outlier, expansion is a risk-taking behavior. Modeling this behavior is

outside of the scope of this work. Second, practical implications of suggested groups

requiring contraction are much more important for building a useful system. Pre-

senting smaller groups that can still be labeled has some benefit while showing larger

groups with outliers is a definite waste of users’ time.

Figure 5.3: Annotation dynamic of simulated users for different α as function of
number of interactions.
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Figure 5.4: Annotation dynamic of simulated users for different α as function of
model-estimated time.

Figure 5.3 shows the dynamic of the annotation process in therms of the number

of interactions required by simulated users to perform. It indicates that higher α

requires less user interactions. It is further supported by the interaction distribution

histograms in Figures 5.5 and 5.6. For smaller α larger groups are suggested and

more interactions are spent on contracting. Figure 5.4 presents the dynamic of the

annotation process in terms of the model-estimated time. This is a self-referential

evaluation, yet some observations about sensitivity of the model to α can be made.

When α drops from 1 to 0.01 the model, although already becoming risky, still cap-

tures the fact that in the end the need for multiple contractions costs more. Yet as α

drops further, the group evaluation costs are so small that the system sees no penalty

for showing groups that need to be contracted most of the time. This is a wasteful

behavior for an annotation system, and thus values of α = 1 are used in the system

during the human user studies.
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Figure 5.5: Distribution of objects that were in groups of given sizes when group was
contracted or labeled for α between 1 and 0.01.
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Figure 5.6: Distribution of objects that were in groups of given sizes when group was
contracted or labeled for α between 10−3 and 10−5.
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5.4.2 Human user study

For user study 5 users between ages of 20 and 40, 3 females and 2 males, were

recruited. The user study was performed on the same data set, using the set-up,

instructions and user training similar to what is described in Section 3.3.2.

Figure 5.7: Annotation session accuracy as function of time for the GA interface
(green) compared to the other interfaces.

Figure 5.7 shows a comparison of the results averaged across all five participants

using the GA interface compared to the results of the users using other interfaces.

This plot indicates that the GA interface provides faster times to task completion

than the other interfaces. The green curve is consistently closer to the top left corner

than any other curve and also terminates earlier. In particular, the average time to

completion is 2281 ± 561 seconds with the GA interface. Compared to 3855 ± 837

seconds shown by the users of the closest second – AL interface – it is a difference

that is statistically significant at the 1% confidence level according to an independent

two-sample two-tailed t-test.
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Figure 5.8: Average time required to achieve given levels of F-measure above 80% for
the GA interface compared to other interfaces.

The results also indicate that the average number of labeling mistakes made by

users of the GA interface is approximately the same as made with other interfaces.

This can be seen from the fact that the F-measure of the rightmost point in all curves

is almost the same in both plots. Specifically, users of the GA interface achieved on

average F-measure of 95%±3% by the end of the session, which closely overlaps with

the levels achieved by the users of other interfaces. A more detailed illustration of the

end of the process is given in Figure 5.8 that shows the average times for all interfaces

to achieve given levels of F-measure above 80%. The tail of the process, which showed

the slowest pace of accuracy improvement for other interfaces, proceeds much faster

with the GA interface. Also, as the rightmost points of the green plot are further

right than rightmost points of any other plot, some users of the GA interface actually

achieved accuracies in excess of 98%, not attained by any of users of the competing

interfaces.
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Figure 5.9: Average fraction of objects in the data set confirmed by the users of
interfaces as function of number of necessary user interactions.

Further analysis of the results allows to understand what contributes to the im-

provement that the GA interface offers. Figure 5.9 shows the progress of confirming

labels for objects by the users of different interfaces for certain number of interac-

tions. It shows that the GA interface offers an overwhelming advantage over other

interfaces. All users were capable to confirming all labels in under 500 interactions.

For a data set consisting of 1224 objects it means that on average a little less than 3

labels were acquired per interaction. This is largely achieved by the fact that around

50% of the objects were confirmed in the first few interactions.

Figure 5.10 further addresses a breakdown of what type of commands users pro-

vided when presented groups of different sizes. The horizontal axis lists of the sizes

of groups shown to the user. The vertical axis represents average numbers of objects

in groups that were labeled/confirmed (green), contracted (red), or expanded (blue)

for each group size. The plot shows that users labeled objects in groups as large as

a few hundred objects at a time. For smaller groups the results show comparable
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Figure 5.10: Average number of objects labeled (green), contracted (red), or expanded
(blue) in groups of different sizes.

frequencies of both labeling and contraction, and closer to the lower sizes of groups

users prefer labeling to contraction. According to exit surveys, the main reasons for

group contraction was impurity of the group; only 1 user mentioned that it was due

to inability to see the entire group in the field of view. As the left-most bar shows,

only ∼20% of objects were labeled on their own, which is not surprising, since some

object categories in this data set (e.g., mailboxes, garbage cans, fire hydrants, etc.)

have instances scattered throughout the city, and thus are not presentable in groups.

The number of objects labeled one-by-one, however, is still lower on average than

that shown by the UG interface (in excess of 400 objects, Figure 3.14).

Does the size of the groups suggested affects the rate of incorrect labeling that

occurs? Unlike the UG interface, where users manually assembled the groups they

wanted to label and thus had an opportunity to analyze the objects as they added

them, the GA interface presents the entire group to the user and the user needs to

analyze it in its entirety. Figure 5.11 addresses this question by showing a breakdown
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Figure 5.11: Average number of objects labeled correctly (green) or incorrectly (red)
in groups of different sizes.

of correct versus incorrect labels provided by users for groups of different sizes. Again,

the horizontal axis lists of the sizes of groups shown to the user. The vertical axis

represents average numbers of objects in groups that were labeled correctly (green) or

incorrectly (red) for each group size. The plot indicates that the fraction of mistakes

is larger for smaller groups. There are two explanations for this observation. First,

some objects are very difficult to recognize – so the user contracts groups containing

them before providing a label, and then sometimes still makes a mistake. Second,

large groups appearing in regular patterns are easier to recognize than individual

objects – the pattern provides context that aids recognition.

Overall, the GA interface helps users label objects in less time and with as much

accuracy as alternative interfaces do.

89



Chapter 6

Conclusion

6.1 Contribution

Several contributions were made in this work. First of all, unlike previous work in

acquiring annotation for objects in 3D point clouds, this work asks the question of

what interface tools and modes of operation allow users to provide high accuracy

annotations more efficiently. Instead of focusing on models and algorithms that are

geared towards annotating data sets with little user input, this work formulated the

goal in a novel way: how an interface can help in acquiring completely confirmed by

a human annotation in as little time as possible.

This work described and evaluated four prototype interactive systems that stress

different approaches to the process of annotating small objects in 3D point clouds,

three of which are introduced in this work. The Batch interface is designed following

the logic of the most closely related works, which however did not describe or evaluate

the properties of their specific interfaces to complete annotation. The UG (user-

guided) interface takes a step in the direction of giving more information to the user

and providing additional tools to empower the users to annotate more efficiently,

while maintaining full control of the process. The AL (active learning) interface took
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a step in a different direction, delegating most of the control over the process to the

machine based on its understanding of the data and letting the user to only focus on

sequential labeling as much as possible. Finally, the GA (group active) interface is a

hybrid approach that still delegates most control to the machine, however, the system

executes this control according to a model of how a human perceives the data.

To make the GA interface work as described a novel visual perception-based model

has been proposed. This model explicitly estimates the relative complexity of the

tasks involved in visual perception of groups of objects by leveraging Gestalt principles

and dissecting complex tasks into microtasks, which it models as choice-reaction times

using Hick’s law. To employ this model in an interface at interactive rates, simplified

recursive algorithms were described.

Finally, the proposed interactive systems have been evaluated in human user stud-

ies. These studies were performed on a large LiDAR point cloud with pre-segmented

objects. Users were requested to perform a complete annotation, i.e. confirm a la-

bel for every object in the data set. This set-up allowed for the evaluation of the

time commitments required from a human to perform an entire annotation session

rather than evaluating the commitment in terms of number of annotations sufficient

to achieve given accuracy of predictions achieved by a machine learning algorithm.
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6.2 Discussion and future work

The results presented in this work are summarized in Table 6.1, which shows average

completion times and final accuracies achieved by the users of the presented interfaces.

Interface Completion (seconds) Final F-measure (%)
Batch 4537± 743 96± 1
UG (User-guided) 4401± 787 94± 1
AL (Active learning) 3855± 837 96± 1
GA (Group active) 2281± 561 95± 3

Table 6.1: Average completion times and final F-measures of all interfaces.

These results show that with a right interface it is possible for novice users to label

1,224 objects with 95% accuracy in approximately 40 minutes after a few minutes

of training. This is the time achieved by the users of the GA interface – that’s

approximately one object every 2 seconds. This is much faster than alternative 3D

labeling interfaces tested. Simply providing the user with more information and

interactive tools alone does not achieve a noticeable advantage because it adds to the

decisions user needs to make and the interactions they need to perform. Taking the

necessity of making navigation and selection decisions away from the user and allowing

them to just label one object at a time requires less interactions. Yet it makes the

process lengthy and tedious, requiring to confirm same labels for very similar objects

over and over. Combining the simplification of the interface with intelligent grouping

that allows for bulk submission of labels creates a very large improvement throughout

the process.

This work provides an initial investigation and thus has many limitations that

open up opportunities for future work. Firstly, the observed results are specific to

the annotation of LiDAR data. However, the ideas and their implications may not be

not specific to only this kind of data. Specifically, perception-based visual grouping

of data for annotation is a general idea. It may be applicable to labeling any kind of

data that can be presented in groups, such as cells in stained microscopic images, tu-
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mors in medical images, snippets of sound. Exploring applicability of the approaches

described in this work is an open question for future work.

Secondly, the proposed systems address only the problem of classification and

thus evaluation is focused only on pre-segmented data. This choice is appropriate

for LiDAR scans of cities because automatic segmentation algorithms can achieve

90+% precision and recall for this type of data [46]. For other types of data (e.g.,

Kinect scans of interior environments, biological imaging) this can be less reliable.

Integration of interactive segmentation into labeling process to fix mistakes of auto-

matic segmentation or produce new ones provides an extra challenge that needs to

be addressed in future work.

Thirdly, the proposed attention model has only been evaluated with respect to

it being able to serve good groups. However, a more direct evaluation of validity of

the model and its underlying assumptions sets a direction for further exploration.

Furthermore, the proposed model is based only on shape similarities and spatial

patterns, but of course other factors (e.g., color) are important as well and should be

considered in further studies.

Finally, an interesting question for future work is to investigate what other types

of group annotation are most helpful. In this work the active interfaces ask a user to

provide a single label for all objects in a group or to indicate that none is possible.

Previous work has asked users to provide a single label for any object in a group

[34] or to explicitly select outliers before providing a label [32]. Different alternatives

provide different levels of information and require different amounts of time from a

user. The method proposed in this work is one interesting point in this design space,

but investigating other alternatives is an important topic for future work.
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