
COS 226 Algorithms and Data Structures Spring 2024

Midterm Solutions

1. Initialization.

Don’t forget to do this.

2. Heaps and trees.

(a) 35,45

Looking at the before heap, we can tell that the value is at most 50. Looking at the
after heap, the value is at least 30. Alternatively, one can try to replace the ? with each
of the values, simulate the delMax() operation and verify if the resulting heap matches
the after heap.

(b) 50, 70

Substitute each of the answers for the ? to see that 50 and 70 are the only options that
allow for the reconstruction of a BST. If ? = 50, then 50 is the right child of 40 and 60
is the right child of 50. If ? = 70, then 70 is the right child of 40 and 60 is the left child
of 70. Note that a BST is not necessarily complete.

(c) 21, 23, 27

These are the only nodes that can be colored red while satisfying the color invariants
and perfect black balance. To find these nodes, here is an easy way to do so: first note
that 25 and 29 cannot be red, since they correspond to right leaning links, which are
never red. Now, we can observe that 21 needs to be red, otherwise a path going through
node 25 would have a different number of black links when going left versus when going
right. Using the same logic, 27 needs to be red. So the only nodes left are 19 and 23.
By considering paths going through node 23 and then going right, we can see that the
number of black links in the section of the path below node 23 is 2, so the same needs to
apply to a path going left on node 23. Hence, 19 needs to be black. Applying a similar
logic to paths going through node 26, we can conclude that 23 needs to be red.

3. Five sorting algorithms.

D E B F C

D. mergesort just before the last call to merge()

E. quicksort after first partitioning step

B. selection sort after 12 iterations

F. heapsort after heap construction phase and putting 12 keys into place

C. insertion sort after 16 iterations



2 PRINCETON UNIVERSITY

4. Stacks and queues.

(a) A, E

This method goes through the bits of a number in reverse order, so we want to use a
First-In-Last-Out data structure, which is exactly a stack.

(b) Θ(logn)

The values of n inside the loop are n, n2 ,
n
4 ,

n
8 , . . . ,1 (assuming for simplicity that n is a

power of 2). This sequence is of length Θ(logn). Note that when we iterate over a stack,
we are not popping any of the elements.

(c) Θ(log logn)

When we insert m elements to an empty stack, the array expands ∼ log(m) times: the
array expends when we have 1 element, 2 elements, 4 elements, 8 elements, etc. Since
we insert m = Θ(logn) elements, the array expends Θ(log logn) times.

5. Analysis of algorithms and sorting.

(a) ∼ 2n2

Selection sort always makes ∼ 1
2m

2 compares on an array of length m. Here, m = 2n, so
1
2m

2
=

1
2(2n)

2
= 2n2.

(b) ∼ n2

We count the number of exchanges, as for insertion sort the number of compares is at
most the number of exchanges plus the size of the array. Row i below depicts the array
when inserting the element at position i (in bold). The elements exchanged with it are
underlined.

1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8
1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8
1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8
1 2 15 14 3 13 4 12 5 11 6 10 7 9 8 8
1 2 14 15 3 13 4 12 5 11 6 10 7 9 8 8
1 2 3 14 15 13 4 12 5 11 6 10 7 9 8 8
1 2 3 13 14 15 4 12 5 11 6 10 7 9 8 8
1 2 3 4 13 14 15 12 5 11 6 10 7 9 8 8
⋮

We deduce that for a general n, the number of exchanges is

0 + 0 + 1 + 1 + 2 + 2 + 3 + 3 + ⋅ ⋅ ⋅ + (n − 1) + (n − 1) = 2(0 + 1 + 2 + 3 + ⋅ ⋅ ⋅ + (n − 1)).

By the triangle sum, the latter sum is ∼ n2.

(c) ∼ 3
2n log2 n

Consider the “top-most” merge() that merges two subarrays of length n to one array of
length m = 2n. This merge() uses 3

4n compares, as when the right subarray is exhausted,
there are still m

4 elements remaining in the left subarray.

For instance, for n = 8 (i.e., m = 16), the first merge() merges the sorted left half,
1,2,3,4,12,13,14,15, with the sorted right half, 5,6,7,8,8,9,10,11. To this end, it



COS 226 MIDTERM, SPRING 2024 3

first places the left half of the left subarray 1,2,3,4, then the entire right subarray
5,6,7,8,8,9,10,11. At this point 12 = 3

4m elements were placed, each after being com-
pared with one element. Since we exhausted the right subarray, the remaining m

4 ele-
ments in the left subarray are copied over without any compares. The same analysis is
valid for any of the subsequent calls to merge().

So, the number of exchanges satisfies the divide-and-conquer recurrence T (m) = 2T (m/2)+
3
4m. We solve this recurrence and get T (m) = 3

4m log2m =
3
4 ⋅2n log2(2n) =

3
2n(log2(n)+

1), which is ∼ 3
2n log2(n).

(d) Θ(n2
)

This is a worst-case array for quicksort as in every call to partition(), the pivot is
either the smallest or the largest element in the subarray. For instance, when n = 8,
partition() is first called with an array of length 16 and the pivot is 1, which is the
smallest element. It partitions the array to a subarray of length 0 (elements smaller
than 1) and to a subarray of length 15 (elements greater than 1). Next, partition()
is called with an array of length 15 and the pivot is 15, which is the largest element.
It partitions the array to a subarray of length 14 (elements smaller than 15) and to a
subarray of length 0 (elements greater than 15). This continues and in the subsequent
calls to partition() the arrays are of lengths 13,12,11, . . ..

More generally, on the array of length m = 2n, partition() is called with arrays of length
m,m − 1,m − 2, . . . ,1. Since partition() always makes ∼ m compares on an array of
length m, we get that the total number of compares is ∼m + (m − 1) + (m − 2) + . . . + 1.
By the triangle sum, this is Θ(m2

) = Θ(n2
).

6. Asymptotic.

T F F T

T: Denote m = n2. For simplicity assume that m is a power of 2.
At the beginning i =m and j gets the values 0 to m − 1, so hello is printed m times.
Then, i = m

2 and j gets the value 0 to m
2 − 1, so hello is printed m

2 times.
Then, i = m

4 and j gets the value 0 to m
4 − 1, so hello is printed m

4 times.
⋮

We get that hello is printed m + m
2 +

m
4 +

m
8 + . . . times. Using the formula for geometric

sum, the last sum is ∼ 2m. Substitute n2 for m to get ∼ 2n2.

F: We implement binary heaps as arrays for simplicity of coding, to save memory, and to
have better data locality for caching. It is possible to implement a binary heaps using nodes
and links while guaranteeing a running time of O(logn) for both insert and delMax. To do
so, we keep a pointer to the root of the heap as well as to the last leaf. To add an key to
the heap, we use the pointer to the last leaf to find the location where a new leaf holding the
new key should be inserted. We then swim the new key. When deleting the maximum, we
exchange the key at the root of the heap with the key at the last leaf. We then delete the
last leaf, set the last leaf pointer to the previous leaf, and sink the key at the root.

F: Consider the following compare-based sorting algorithm: insert the n elements to a BST
and return the in-order traversal of the BST. Recall that an in-order traversal can be done in
linear time. So, if insert can be done using O(

√

logn) compares in the worst case, the above



4 PRINCETON UNIVERSITY

sorting algorithm uses O(n
√

logn) compares (note that search and delete are not used by
this algorithm), which violates the sorting lower bound.

T: Copy the n × n array to an array of length n2 such that the first line is copied first, then
the second line, etc. Observe that this array is in acceding order and therefore we can use a
binary search. Note that the binary search can also be done in-place (without copying to a
second array).

7. Algorithm design.

We scan both array from left to right using two indices i and j, like in merge(). If the keys
in a[i] and b[j] are different, we increment our count and the index of the smaller key.
Otherwise, we increment both indices. For reference, here is a full Java implementation.

public static int diff(int[] a, int[] b)

{

int i = 0, j = 0, count = 0;

while (i < a.length && j < b.length)

{

if (a[i] == b[j]) { i++; j++; }

else if (a[i] < b[j]) { count++; i++; }

else { count++; j++; }

}

return count + (a.length - i) + (b.length - j);

}



COS 226 MIDTERM, SPRING 2024 5

8. Data structure design.

Like in the Percolation assignment, we use a boolean array of length n to remember what sites
are open. We also keep a union-find data structure, implemented as weighted quick-union, to
represent the maximal consecutive sequences of open site as disjoint sets.

On an open(i) request, we mark i as open in our array. In addition, if site i − 1 is open, we
merge that set containing i and the set containing i − 1. If site i + 1 is open, we also merge
the set containing i and the set containing i + 1.

On an openLen(i) request, we return the size of the disjoint set in the union-find object that
contains i. To this end, we add the method int subsetSize(int i) to the API of weighted
quick-union. subsetSize(i) returns size[find(i)]. Recall that size is an instance variable
in the WeightedQuickUnionUF class and that size[j] is the number of elements in subtree
rooted at j.

For reference, here is a possible Java implementation (for clarity, we do not check the validity
of the inputs).

public class OpenSites {

private final int n;

private final boolean[] isOpen;

private final WeightedQuickUnionUF uf;

public OpenSites(int n)

{

this.n = n;

isOpen = new boolean[n];

uf = new WeightedQuickUnionUF(n);

}

public void open(int i)

{

isOpen[i] = true;

if (i > 0 && isOpen[i - 1])

uf.union(i - 1, i);

if (i < n - 1 && isOpen[i + 1])

uf.union(i, i + 1);

}

public int openLen(int i)

{

if (!isOpen[i])

return 0;

return uf.subsetSize(i);

}

}



6 PRINCETON UNIVERSITY

9. EXTRA CREDIT.

It might be tempting to try to modify the weighted quick union data structure to support a
“unlink” operation, but this is not easy. A better approach is to use a completely different
data structure, namely a balanced binary search tree.

Maintain a balanced BST containing the indices of all the sites that are currently blocked.
This means that in the constructor we start by inserting all the 0 through n−1 indices to the
BST (since they are all initially blocked). Now, opening a site consists of removing its index
from the BST and blocking a site consists of adding its index to a BST.

To implement the openLen(i) method we need the following observation: the indices of
the endpoints of the set containing element i are exactly the smallest blocked element that
is greater than i and the largest blocked element that is less than i. But this is exactly
what the floor and ceil methods in the BST give us. So we can return bst.ceil(i) -

bst.floor(i) - 1.

public class OpenSites {

private final int n;

private final RedBlackBST<Integer, Boolean> bst;

// We don’t actually need the Boolean value, but we have to pick one

public OpenSites(int n)

{

this.n = n;

for (int i = 0; i < n; i++)

bst.put(i, true);

}

public void open(int i)

{

bst.delete(i);

}

public void block(int i)

{

bst.put(i, true);

}

public int openLen(int i)

{

if (bst.contains(i))

return 0;

return bst.ceil(i) - bst.floor(i) - 1;

}

}


