
COS 226 Algorithms and Data Structures Fall 2023

Midterm

This exam has 10 questions worth a total of 60 points. You have 80 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room:

P01 P02 P03 P04 P05 P06 P07 P08 P09

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name, NetID, and exam room; fill
in the bubble of the precept in which you are officially registered; write and sign the Honor
Code pledge.

COS 226 MIDTERM, FALL 2023 3

2. Resizable arrays. (8 points)

Consider the following partial implementation of a stack of integers that uses a resizable array.
Assume that the implementation triples the length of the array during a push() operation if
the array is full, but that it never shrinks the array during a pop() operation.

public class StackOfInts {

private int[] a; // underlying array

private int n; // number of integers in the stack

...

}

(a) In the worst case, what is the memory of a StackOfInts object after calling push()

n consecutive times on an initially empty stack? Use our 64-bit memory cost model.

Write your answer in the box below, using tilde notation to simplify your answer.

∼ bytes

(b) Identify each statement as true or false by filling in the appropriate bubble.

true false

The push() operation takes Θ(1) time in the worst case.

The pop() operation takes Θ(1) time in the worst case.

Starting from an empty stack, any intermixed sequence of m push()

and pop() operations takes Θ(m) time in the worst case.

4 PRINCETON UNIVERSITY

3. Data structures. (6 points)

(a) Consider the following parent-link representation of a weighted quick union (link-by-size)
data structure:

Midterm, Fall 2023

2

0

7

3

5 6

1

4

55

60

25

1520

45

05

50

40

3010

35

IT

first

G E R

last

nullS

Suppose that the last operation was a call to union() on two elements in different sets.
Which pair of elements could it have been?

Fill in all checkboxes that apply.

0–1 0–2 0–3 0–4 0–5 0–6 0–7

COS 226 MIDTERM, FALL 2023 5

(b) Consider the following maximum-oriented binary heap:

Midterm, Fall 2023

3

0

1

9

4

6 7

2

8

5

55

60

25

1520

45

05

50

40

3010

35

Suppose that the last operation in the binary heap was a call to insert().
Which key could have been the last one inserted?

Fill in all checkboxes that apply.

0 5 10 15 20 25 30

35 40 45 50 55 60

6 PRINCETON UNIVERSITY

4. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below.

Match each algorithm by writing its letter in the box under the corresponding column.
Use each letter exactly once.

78 23 10 10 69 40 10

69 45 12 12 66 69 12

23 58 13 13 67 23 13

58 67 19 19 58 58 19

45 69 22 20 52 45 20

67 78 23 22 60 67 22

83 10 45 23 54 26 23

49 19 49 26 49 49 26

22 22 54 40 45 22 40

10 49 58 45 10 10 45

80 80 60 49 40 66 49

19 83 67 52 26 19 52

60 60 69 60 19 60 54

12 12 78 69 12 12 58

54 54 80 54 23 54 60

13 13 83 83 13 13 66

20 20 20 78 20 20 67

81 81 81 81 22 52 69

75 75 75 75 75 75 75

40 40 40 67 78 78 78

52 52 52 58 80 81 80

66 66 66 66 81 80 81

89 89 89 89 83 89 83

26 26 26 80 89 83 89

A G

A. Original array

B. Selection sort

C. Insertion sort

D. Mergesort
(top-down)

E. Quicksort
(standard, no shuffle)

F. Heapsort

G. Sorted array

COS 226 MIDTERM, FALL 2023 7

5. Analysis of algorithms and sorting. (6 points)

Consider an array that contains n copies of A, B, C, and D, in that order.
For example, here is the array when n = 4:

A B C D A B C D A B C D A B C D

How many compares does each sorting algorithm (standard algorithm, from the textbook)
make as a function for n in the worst case? Note that the length of the array is 4n, not n.

For each sorting algorithm, fill in the best matching bubble.

(a) Selection sort

#
∼ 1

2n
2 ∼ n2 ∼ 2n2 ∼ 4n2 ∼ 8n2

(b) Mergesort

#
∼ n log2 n ∼ 2n log2 n ∼ 3n log2 n ∼ 7

2n log2 n ∼ 4n log2 n

(c) 3-way quicksort

#
Θ(n) Θ(n logn) Θ(n2) Θ(n4) Θ(2n)

8 PRINCETON UNIVERSITY

6. Advanced Java. (6 points)

Suppose that you remove the clause implements Iterable<Item> from the class declaration
of our textbook implementation of Stack, but leave everything else exactly the same.

For each client code fragment at left, write the letter of the best matching description at right.
Assume all relevant import statements are provided.

Stack<String> stack = new Stack<String>();

stack.push("A");

stack.push(226);

StdOut.println(stack.pop());

Stack<String> stack = new Stack<String>();

stack.push("A");

stack.push("B");

Object x = stack.pop();

StdOut.println(x.toString());

Object stack = new Stack<String>();

stack.push("A");

stack.push("B");

StdOut.println(stack.pop());

Stack<String> stack = new Stack<String>();

stack.push("A");

stack.push("B");

for (String s : stack) {

StdOut.println(s);

}

A. prints A

B. prints B

C. prints 226

D. prints A B

E. prints B A

F. infinite loop

G. compile-time error

H. run-time error

COS 226 MIDTERM, FALL 2023 9

7. Properties of BSTs. (6 points)

Identify each statement as true or false by filling in the appropriate bubble.

true false

Applying a left rotation to a node in a BST yields another BST.

For any set of n distinct keys, it is possible to construct a 2–3 tree
on those n keys using a total of at most 3n key compares.

#
In a left-leaning red–black BST containing n keys, the maximum
number of black links on a path from the root node to a null link is
∼ log2 n.

#
Suppose that you insert n distinct keys into an initially empty
left-leaning red–black BST. Then, regardless of the order in which
you insert the keys, the total number of color flips is at most n.

10 PRINCETON UNIVERSITY

8. Rank in a BST. (6 points)

Complete the following partial implementation of the rank() method in a binary search tree:

// return the number of keys in BST that are strictly less than key

public int rank(Key key) {

 return rank(key, root);

}

// return the number of keys in subtree rooted at x
// that are strictly less than key

public int rank(Key key, Node x) {

 if (x == null) return 0;

 int cmp = key.compareTo(x.key);

 int count = 0;

 if (x.left != null) count = ;

 if (cmp < 0) return + rank(key, x.left);

 if (cmp > 0) return 1 + count + rank(key, x.iright);

 if (cmp == 0) return count ;

}

6

1

5

A. 0

B. 1

C. count

D. 1 + count

E. x.left

F. x.right

G. x.key

H. x.value

I. x.size

J. x.left.size

K. x.right.size

2

4

3

Assume that the keys in the BST are distinct and that each BST node is represented using
the following Node class:

private class Node {

private Node left; // left subtree

private Node right; // right subtree

private Key key; // key

private Value value; // value

private int size; // number of keys in subtree rooted at this node

}

For each numbered oval above, write the letter of the corresponding expression on the right in
the space provided. You may use each letter once, more than once, or not at all.

1 2 3 4 5 6

COS 226 MIDTERM, FALL 2023 11

9. Algorithm design. (8 points)

(a) Given a sorted array a[] of n integers and an integer x, design an O(logn) time algorithm
that determines whether x appears in the array strictly more than n

4 times.

Example. If the array a[] consists of the following 16 integers:

1 1 1 2 2 2 2 2 2 4 4 6 6 6 6 6

then the algorithm should output

• yes for x = 2 because 2 appears 6 > 16
4 times

• yes for x = 6 because 6 appears 5 > 16
4 times

• no for every other integer x

In the space provided, give a concise English description of your algorithm for solving
the problem. You may use any of the algorithms that we have considered in this course
(e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify such an
algorithm, be sure to describe the modification. Feel free to use code or pseudocode to
improve clarity.

(b) Given a sorted array a[] of n integers, design an O(logn) time algorithm that determines
whether there exists any integer in the array that appears strictly more than n

4 times.

Example. In the example array above, the algorithm should output yes because there
are two integers (2 and 6) that appears more than n/4 times.

In the space provided, give a concise English description of your algorithm for solving
the problem. You may use the algorithm for (a) as a subroutine.

12 PRINCETON UNIVERSITY

10. Data structure design. (8 points)

Design a collection data type that supports inserting integers and processing nearest neighbor
queries. Given an integer x, its nearest neighbor is the integer in the collection that is closest
to x, where the distance between two integers is the absolute value of their difference. (If
there is a tie between two values, return either one.)

Midterm, Fall 2023: Nearest Neighbor

public class NearestNeighbor

NearestNeighbor() create an empty collection

void insert(int x) add x to the collection

int nearest(int x) return an integer in the collection that is closest to x

Example. Here is a small example sequence of operations.

NearestNeighbor nn = new NearestNeighbor(); // []

nn.insert(126); // [126]

nn.insert(226); // [126 226]

nn.insert(217); // [126 226 217]

nn.insert(423); // [126 226 217 423]

nn.insert(487); // [126 226 217 423 487]

nn.nearest(324); // returns 423

nn.nearest(101); // returns 126

nn.insert(333); // [126 226 217 423 487 333]

nn.nearest(324); // returns 333

Note: the integers in square brackets denote the integers currently in the collection, but the
API does not require you to store them in any particular order.

Performance requirements. For full credit,

• The constructor must take Θ(1) time.

• The insert() and nearest() methods must each take O(logn) time in the worst case.

Here, n is the number of integers in the collection.

COS 226 MIDTERM, FALL 2023 13

(a) Using Java code, declare the instance variables (along with any supporting nested classes)
that you would use to implement NearestNeighbor. You may use any of the data types
that we have considered in this course (either algs4.jar or java.util versions). If you
make any modifications to these data types, describe them.

(b) Draw a diagram of the underlying data structures (such as resizable arrays, linked lists,
or binary trees) for a nearest neighbor data type containing the integers 126, 226, 217,
423, 487, and 333. For linked data structures, draw all links.

14 PRINCETON UNIVERSITY

(c) Give a concise English description of your algorithm for implementing insert().
You may use code or pseudocode to improve clarity.

(d) Give a concise English description of your algorithm for implementing nearest(int x).
You may use code or pseudocode to improve clarity.

COS 226 MIDTERM, FALL 2023 15

This page is intentionally blank. You may use this page for scratch work.

