
COS 226 Algorithms and Data Structures Fall 2023

Final

This exam has 13 questions worth a total of 100 points. You have 180 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, both sides, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # McCosh 46 # McCosh 50 # McCosh 60 # Other

P01 P02 P03 P04 P05 P06 P07 P08 P09

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the bubble
for your exam room and the precept in which you are officially registered; write and sign the
Honor Code pledge.

2. Empirical running time. (6 points)

Suppose that you observe the following running times (in seconds) for a program on graphs
with V vertices and E edges.

E

100 400 1600 6400

100 0.3 1.0 4.0 16.0

200 1.0 4.0 16.0 64.0

V 400 4.0 16.0 64.0 256.0

800 16.0 64.0 256.0 1024.0

(a) Estimate the running time of the program (in seconds) for a graph with V = 1,600
vertices and E = 25,600 edges. Fill in the best-matching bubble.

#
2,000 4,000 8,000 16,000 32,000

(b) Estimate the order of growth of the running time as a function of both V and E.
Fill in the best-matching bubble.

#
Θ(V 2 +E2) Θ(E + V 2) Θ(V 2E) Θ(V E2) Θ(V 2E2)

COS 226 FINAL, FALL 2023 3

3. Depth-first search. (9 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume the adjacency
lists are in sorted order: for example, when iterating over the edges leaving vertex 0, consider
the edge 0→2 before either 0→4 or 0→6.

46

20

3

7

9

1

8

5

start from here

preorder: 0 2 5 8 1 3 7 9 6 4
postorder: 5 1 7 9 3 8 6 8 4 0

Final, Fall 2023

(a) List the 10 vertices in DFS preorder.

0

(b) List the 10 vertices in DFS postorder.

0

(c) Is the reverse of the DFS postorder in (b) a topological order for this digraph?

#
yes no

4 PRINCETON UNIVERSITY

4. Minimum spanning trees. (8 points)

Consider the following edge-weighted graph.

s

20

Final, Fall 2023

0

60

30 50

40

80

Kruskal: 0 10 20 30 50 60 110
Prim: 30 0 20 50 60 10 110

70100

110

90

10 120

(a) List the weights of the MST edges in the order that Kruskal’s algorithm adds them to
the MST.

(b) List the weights of the MST edges in the order that Prim’s algorithm adds them to the
MST. Start Prim’s algorithm from vertex s.

COS 226 FINAL, FALL 2023 5

5. Shortest paths. (8 points)

Consider running the Bellman–Ford algorithm in the following edge-weighted digraph, with
source vertex s = 0. Assume that, within a pass, the edges are relaxed in sorted order:

0→1, 0→4, 0→5, 1→2, 2→3, 3→1, 4→1, 4→3, 5→4

5

0

3

2

4

1

Final, Fall 2023

6

v distTo[]

0 0.0

1 7.0

2 58.0

3 13.0

4 3.0

5 1.0

edge weight

9

50

1

2

34

8

7

source vertex

(a) Immediately after the first pass, what are the values of distTo[v] for each vertex v?
Write the values in the corresponding boxes.

distTo[0] distTo[1] distTo[2] distTo[3] distTo[4] distTo[5]

0

(b) Immediately after the first pass, for which vertices v is distTo[v] the length of the
shortest path from s to v? Mark all vertices that apply.

0 1 2 3 4 5

6 PRINCETON UNIVERSITY

6. Maxflows and mincuts. (10 points)

Consider the following flow network and a flow f .

Final, Fall 2023

flow f capacity

H

C

min cut: { A, B, E, F }
max flow value = 34

G

D

source

target

8 / 100 / 4

18 / 24

8 / 20

5 / 5

C

F

4 / 6

21 / 21

13 / 13

3 /
5

A

E

B

14 / 17

14 / 14

14 / 14

3 /
9

(a) What is the value of the flow f?

#
29 31 34 37 39

(b) What is the capacity of the cut {A,B,E,F}?

#
29 31 34 37 39

(c) What is the net flow across the cut {A,B,E,F}?

#
29 31 34 37 39

(d) Find an augmenting path with respect to f . Write the sequence of vertices in the path.

A →

(e) What is the bottleneck capacity of the augmenting path found in part (d)?

#
1 2 3 4 5

COS 226 FINAL, FALL 2023 7

7. Data structures. (10 points)

(a) Suppose that the following keys are inserted into an initially empty linear-probing hash
table, but not necessarily in the order given:

key hash

A 1

B 1

C 4

D 3

E 2

Which of the following could be the contents of the underlying array? Assume that the
length of the array is 6 and that it neither grows nor shrinks.

Fill in all checkboxes that apply.

0 1 2 3 4 5

– A B C D E

0 1 2 3 4 5

– A B D C E

0 1 2 3 4 5

– B A E D C

8 PRINCETON UNIVERSITY

(b) Consider the following 2d-tree:

Final, Fall 2023

(9, 5)

(5, 9)

(4, 2) (6, 12)

(7, 15)

(14, 8)

(16, 1)

(20, 7)

(13, 12)

(10, 14)

9 <= x <= 13
8 <= y <= 14

T

Which of the following points could be in the subtree T?

Fill in all checkboxes that apply.

(5, 10) (7, 16) (10, 10) (11, 16) (12, 9) (16, 13)

COS 226 FINAL, FALL 2023 9

(c) Consider the following code fragment for creating a uniformly shuffled version of an
ArrayList containing n strings.

ArrayList<String> from = ...;

ArrayList<String> to = new ArrayList<String>();

while (from.size() > 0) {

int r = StdRandom.uniformInt(from.size());

String x = from.remove(r); // remove and return item at index r in list,

// shifting subsequent elements to the left

to.append(x); // appends x to the end of the list

}

Assume that the ArrayList data type is implemented using a resizing array (with dou-
bling when full and halving when one-quarter full) and that element i in the list is stored
at index i in the resizing array.

All operations perform as efficiently as could be expected for this representation.Final, Fall 2023

"F" "I" "N" "A" "L" – – –

0 1 2 3 4 5 6 7

n

element 0 element n-1

What is the order-of-growth of the worst-case running time as a function of n?

#
Θ(1) Θ(n) Θ(n logn) Θ(n2) Θ(n3)

What is the order-of-growth of the best-case running time as a function of n?

#
Θ(1) Θ(n) Θ(n logn) Θ(n2) Θ(n3)

10 PRINCETON UNIVERSITY

8. Dynamic programming. (6 points)

You are taking an idealized exam with n questions and have m minutes to complete it.
Question j is worth pj points and takes tj minutes to earn the points. Your goal is to
maximize the number of points earned in the allotted time. Assume that all pj and tj are
positive integers (and that there is no partial credit).

You will solve this problem using dynamic programming. Define the following subproblems,
one for each i and j with 0 ≤ i ≤m and 0 ≤ j ≤ n:

OPT (i, j) = max points earned in i minutes by working only on questions 1 through j

Consider the following partial bottom-up implementation:

int[][] opt = new int[m+1][n+1];

for {

 for {

 if () {

 opt[i][j] = ;

 }

 else {

 opt[i][j] = Math.max(,

 points[j] +);

 }

 }

}

A. (int i = 1; i <= m; i++)

B. (int i = m; i >= 1; i--)

C. (int j = 1; j <= n; j++)

D. (int j = n; j >= 1; j--)

E. times[j] > i

F. points[j] > i

G. opt[i-1][j]

H. opt[i][j-1]

I. opt[i-1][j-1]

J. points[j]

K. times[j]

L. opt[i - times[j]][j-1]

M. opt[i - points[j]][j-1]

Final, Fall 2024

5

1

3

2

6

4

For each numbered oval above, write the letter of the corresponding code fragment on the right
in the space provided. You may use each letter once, more than once, or not at all.

1 2 3 4 5 6

COS 226 FINAL, FALL 2023 11

9. Karger’s algorithm. (5 points)

Run one execution of Karger’s algorithm for finding a global mincut in the following graph.
The table at right gives the uniformly random weights that this execution of Karger’s algo-
rithm assigns to the edges.

D

A

F

C

E

B

Final, Fall 2023

Karger: 0.1 0.2 0.3 0.4 0.6

edge
random
weight

A–B 0.5

A–D 0.4

A–E 0.6

B–C 0.9

B–E 0.8

C–E 0.1

C–F
DEE

0.3

D–E 0.7

E–F 0.2

D

A

F

C

E

B

(a) Which cut does this execution of Karger’s algorithm find?
Mark all vertices that are on the same side of the cut as vertex A.

A B C D E F

(b) How many edges cross the cut found by this execution of Karger’s algorithm?

#
0 1 2 3 4

12 PRINCETON UNIVERSITY

10. Multiplicative weights (9 points).

Consider the experts problem with n ≥ 2 experts over a period of T days.

Identify each property as either always true or sometimes/always false.

true false

Suppose that one of the n experts always predicts correctly. Then, the
total number of mistakes made by the elimination algorithm is ≤ log2 n.

#
Suppose that one of the n experts always predicts correctly. Then, after
⌈log2 n⌉ days, there will be exactly one expert remaining in the
elimination algorithm.

#
Suppose that exactly two of the n experts always predict correctly.
Then, the total number of mistakes made by the elimination algorithm
is ≤ 1

2 log2 n.

Suppose that more than n/2 of the n experts predict 1 on a given day.
Then, the multiplicative weights algorithm also predicts 1 for that day.

#
In the multiplicative weights algorithm, an expert who has made 5
mistakes will have exactly one-half of the weight of an expert who has
made 10 mistakes.

Suppose that the best expert makes 7 mistakes. Then, the total number
of mistakes made by the multiplicative weights algorithm is ≥ 7.

COS 226 FINAL, FALL 2023 13

11. Intractability (8 points).

Suppose that Problem X is NP-complete; Problem Y is in NP; and Problem X poly-time
reduces to Problem Y . Which of the following can you infer? Fill in all checkboxes that apply.

Problem X is SAT.

Problem X is in NP.

The Integer-Factorization problem poly-time reduces to Problem X.

Problem Y poly-time reduces to Problem X.

Problem Y is NP-complete.

If Problem X can be solved in poly-time, then P = NP.

If Problem Y cannot be solved in poly-time, then P ≠ NP.

P ≠ NP.

14 PRINCETON UNIVERSITY

12. Princeton path game. (10 points)

Two players compete on a digraph G with two distinguished vertices, s and t.

• The orange player tries to build a directed path from vertex s to vertex t. The black
player tries to prevent this.

• The two players alternate moves. The orange player moves by coloring an uncolored
edge orange. The black player moves by coloring an uncolored edge black.

• The orange player wins if there is a directed path of orange edges from s to t. The black
player wins if every directed path from s to t contains a black edge.

To make the game interesting, assume that s ≠ t and that G contains at least one directed
path from s to t.

Goal. Your goal is to design an algorithm that, given the current state of the game (i.e., a
graph G with each edge either uncolored, orange, or black), determines whether either player
has already won and, if so, who. Note that the game may end before all of the edges are
colored.

• The orange player wins as soon as there is a directed path of orange edges from s to t.

• The black players wins as soon as every directed path from s to t contains one (or more)
black edges.

Examples. Consider two examples of the game being played on the same digraph.

• In the example at left, the orange player has won: the directed path 0→ 4→ 2→ 3→ 6
contains only orange edges.

• In the example at right, the black player has won: every directed path from s to t
contains one of the black edges 1→2, 4→2, or 4→5.

Final, Fall 2023

0

1

4

2 3

5 6

s

t

0

1

4

2 3

5 6

s

t
orange wins

(s-t path of orange edges)
black wins

(every s-t path contains a black edge)

Performance requirements. For full credit, your algorithm must take Θ(E + V) time,
where V and E are the number of vertices and edges in G, respectively. Assume that, given
access to an edge, you can determine its color in Θ(1) time.

Your answer will be graded for correctness, efficiency, and clarity.

COS 226 FINAL, FALL 2023 15

(a) Given a digraph G with each edge either uncolored, orange, or black, design an algorithm
to determine whether there is a directed path from s to t containing only orange edges.

(b) Given a digraph G with each edge either uncolored, orange, or black, design an algorithm
to determine whether every path from s to t contains one (or more) black edges.

(c) Can the game can end in a tie, with all edges colored and neither player winning?

Yes# No#

16 PRINCETON UNIVERSITY

13. Princeton minimum spanning trees. (10 points)

Consider the classic minimum spanning tree problem and a variant.

• Classic-MST: Given a connected, edge-weighted graph G′, find a spanning tree of G′

that has minimum total weight.

• Princeton-MST: Given a connected, edge-weighted graph G with each edge colored
orange or black, find a spanning tree of G that has minimum total weight among all
spanning trees that contain all of the orange edges (or report that no such spanning tree
exists).

Example. Consider the edge-weighted graph below.

• The Classic-MST includes the edges of weight 0, 10, 20, 50, 60.

• The Princeton-MST includes the edges of weight 0, 10, 20, 60, and 80.

20

Final, Fall 2023

10

60

30 50

40

80 700

210

61

31 51

41

0 711

Goal. Design an efficient algorithm to solve the Princeton-MST problem on an edge-
weighted and edge-colored graph G. To do so, model it as a Classic-MST problem on a
closely related edge-weighted graph G′.

Performance requirements. For full credit, your algorithm must run in O(E logE) time,
where V and E are the number of vertices and edges in G, respectively.

Your answer will be graded for correctness, efficiency, and clarity.

COS 226 FINAL, FALL 2023 17

(a) Describe your algorithm for solving the Princeton-MST problem. Your description
should work for any instance of Princeton-MST, not just the one on the facing page.

(b) Draw the Classic-MST instance G′ that your algorithm would construct in order to
solve the Princeton-MST instance G on the facing page. Be sure to draw the vertices,
edges, and edge weights.

18 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work.

