Software Structure for Display Wall

Department of Computer Science

Princeton University


The Display Wall offers a unique environment by combining a high-resolution display surface and a parallel computing cluster. Existing commercial software products often cannot take advantage of such an environment. They lack both the design consideration for a large screen, (poor texture, low polygon count, etc.), and the parallel software structure. A custom-designed scaleable software infrastructure is  necessary to enable high-quality contents on the Display Wall.

1. Application areas of interest and ideal solutions

1. Animation

Virtual environment, data visualization, and games require animation capability. We currently have OpenGL binary support (Rudro Samanta), Walk Through with VRML capability (Jiannan Zheng), and the Distributed Intel Scene Manager. The OpenGL support allows us to run unmodified animation code on a Windows NT station and show the results on the Display Wall. Wall-through and VRML browser operates on static scene graphs. Intel Scene Manger operates on scene graphs with animation engines. Since ISM is more versatile and efficient (except that it lackes object-space culling), we prefer ISM the Ring-based walk-through software.

OpenGL and ISM are great for polygon-based animation. Our OpenGL support lets us take advantage of existing content such as games and some data visualization packages. However, the performance bottleneck of a single machine generating polygons may not be solved within six months or longer. ISM complements our OpenGL software with distributed scene update and scene graph traversal. It can potentially be more efficient. The drawback of ISM is that re-programming is required in order to convert existing applications into ISM format.

The advantage of both OpenGL and ISM is that we can leverage existing content. ISM also has an import driver for content created with 3D MAX Studio from Kinetix. However, for most people, programming either OpenGL or ISM is too difficult.

An alternative is to leverage popular software for creating animation stories, then export the contents in a special format. It is not a big problem for us to read contents stored in a  vendor-specific format,  because the format for most animation software can be easily obtained. We need to develop an animation playback system that can run such content. A video playback approach is inappropriate, because it’s not interactive. We could try the OpenGL approach – running a playback program that generates OpenGL stream. I am not so sure about its scalability.

Because we target a format for storing animation content, we have total freedom in developing our own scalable playback system (Figure 1), which can support not only polygon-based rendering but also sophisticated rendering techniques such ray tracing for selected objects.

One feasible implementation approach is to modify Intel Scene Manager. ISM already includes a utility for converting content created by 3D Studio MAX into ISM format. This conversion isn’t complete. We may collaborate with Intel to implement all features. But, before devoting man powers, we need to study the feature set of 3D Studio MAX or the likes.

[image: image1.wmf]DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

… ...

Controller Workstation

MetaCommands:

keyboard, mouse, 

Storage

System

Scalable

network

Content Creation:

(e.g., 3D MAX)

content

Format

conversion

Display Wall Screen

projector

projector

Auxiliary Graphics Cluster: 

animation, culling, geometry

Parallel Storage API

Figure 1: Animation Content Creation and Playback

2. Multimedia

Student projects from COS 495 already demonstrated the power of simple multimedia contents. Our next step should be to bring sophistication to our image-based presentation tools. We need some kind of sprite animation and video software that is controllable through a scripting language. Editing of such content can also be done with a GUI interface. Again, we should try to leverage existing software such as Director. We can imagine following features for our multimedia system:

1) Sprite animation: multiple image sprites with moving, scaling, and effects such as dissolve and water splash.

2) Video playback: MPEG video stream into selected areas on the Display Wall, with arbitrary-shaped video window.

3) Sound: 3D sound playback in sync with the wall

4) 3D Animation: we can also imagine opening a window on the display for simple animation.

One way to achieve this goal is to run multiple instances of a popular multimedia software on the wall, and somehow synchronize their execution. This is a general approach in that if it succeeds, we can run everything on the wall. On the other hand, it’s an iffy question whether this approach can work at all. Also, we won’t have any control on the software, let alone customizing and optimizing for our Display Wall environment. I think the surest way for us is to develop an in-house multimedia system. Although it takes time, we will have total control of all aspects of the software. Besides, content designers can use their creativity to leverage whatever tools and features are available to achieve impressive effects. We are not pressed to supply all popular features at once.

This task is time consuming and requires multiple students to work as a group. The system can be broken down into three major areas: (1) sprite system with special effects, (2) video playback, and (3) multimedia scripting language. In each area, an existing software may be used directly or imitated. For example, the multimedia scripting language can be modeled after Hypercard or Lingo For Director. What we currently have in terms of Image Viewer and the multimedia commands (and a shell) is only a crude peek into what a full-featured Display Wall multimedia system could offer. If we decide to develop this system, we ought to start from scratch.

3. Video
We definitely need a scalable MPEG-2 playback system. There are two approaches: multiple-stream playback and parallel decoding of a single stream. On the multiple-stream front, we are very close. Stef Damianakis and Han Chen have worked out the multiple-stream system. It should be a matter of a week before the full system runs, if they can find the time to finish up(. The multiple-stream approach cannot deal with live content. We need a scheme to decode live stream in parallel.

There are currently two algorithms for decoding a single stream in parallel. The first approach involves rewriting an MPEG stream to eliminate block dependencies. It is currently investigated by Han Chen for CS597c. The second approach simulates a Shared-memory decoding architecture using remote memory fetch. Both schemes require source code for an efficient decoder. Steve Hunt at Intel may be able to supply us with the source. However, he also suggested that by the time we develop a parallel decoder, Intel may have a CPU fast enough to decode HDTV (720 line progressive) in real time. We have to make a decision here.

4. Storage System
Although a scalable file system is ideal for pumping data to the Display Wall, we cannot afford to wait for months for a stable parallel file system to be developed here. The simple method would be to attach a PC disk server to the cluster network (Myrinet) and devise an API for accessing files on the storage server via the Myrinet. The API would allow for multi-cast distribution of files, very similar to what Benjamin Liu did for the ImageViewer. MPEG stream would also benefit from an efficient storage and distribution system.

Using this approach, many of the Display Wall applications need to be modified to use a special API to access the storage. Since we develop these applications, we have the freedom to use this API instead of NT API to access our storage server. In the event that an efficient file system is developed, we can re-implement the API to use default NT file system API. A DLL trick would save us from recompiling the applications.
5. Configuration, Synchronization, and others
Display Wall software must not assume a fixed configuration of the wall. This way, our software can easily adapt to different wall environment, and be tested on a mock wall setup which may have different configuration. The configuration library that we use right now was a quick hack. We need to put more thoughts into redesigning the configuration system. We can also borrow what Intel has done for their Display Wall, in particular, how they incorporate blending parameters into the configuration.

Synchronization for most Display Wall software right now is done through a master-slave protocol. We should devise a fixed synchronization interface for everybody to use. I’ve developed one based on tree broadcast using sockets. It uses configuration libraries to determine the tree. The interface needs to be redesigned to allow for arbitrary membership  in the synchronization.

2. Near-term planning

Once we agree upon a set of goals for Display Wall software infrastructure, we can plan to have utilities developed in incremental stages toward these goals. 

� EMBED PowerPoint.Show.8  ���








[image: image2.wmf]DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

… ...

Controller Workstation

MetaCommands:

keyboard, mouse, 

Storage

System

Scalable

network

Content Creation:

(e.g., 3D MAX)

content

Format

conversion

Display Wall Screen

projector

projector

Auxiliary Graphics Cluster: 

animation, culling, geometry

Parallel Storage API

_979381264.ppt


DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

DISM Instance

Scene graph

Update Engine

Ray Tracing, etc

… ...

Controller Workstation

MetaCommands:

keyboard, mouse, 

Storage

System

Scalable

network

content

Format

conversion



Display Wall Screen

projector

projector

Auxiliary Graphics Cluster: animation, culling, geometry

Parallel Storage API

Content Creation:

(e.g., 3D MAX)













UNKNOWN-0






