

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers Page 76

October 6, 1997

Pointers

•

Pointers are variables whose

values

 are the

addresses

 of other variables

•

Basic operations

“address of” (reference)

“indirection” (dereference)

•

Suppose

 x

and

 y

are integers,

 p

is a pointer to an integer:

p = &x; p

gets the address of

 x

y = *p; y

gets the value pointed to by

 p

y = *(&x);

•

Declaration syntax mimics use of variables in expressions

int *p; *p

is an

 int

, so

 p

is a pointer to an

 int

•

Unary

 *

and

 &

bind more tightly than most other operators

y = *p + 1; y = (*p) + 1;

y = *p++; y = *(p++);

p

y

x5

5

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointer References Page 77

October 6, 1997

Pointer References

•

Pointer references (e.g.

 *p

) are

variables

int x, y, *px, *py;

px = &x; px

is the address of

 x

*px = 0;

sets

 x

to 0

py = px; py

also points to

 x

*py += 1;

increments

 x

to 1

y = (*px)++;

sets

 y

to 1,

 x

to

2

•

Passing pointers to functions

simulates

 passing arguments “by
reference”

void swap(int x, int y) {
int t;

t = x;
x = y;
y = t;

}

int a = 1, b = 2;
swap(a, b);
printf("%d %d\n", a, b);

void swap(int *x, int *y) {
int t;

t = *x;
*x = *y;
*y = t;

}

int a = 1, b = 2;
swap(&a, &b);
printf("%d %d\n", a, b);

2 1

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Arrays Page 78

October 6, 1997

Pointers & Arrays

•

Pointers can “walk along” arrays

int a[10], i, *p, x;

p = &a[0]; p

is the address of the 1st element of

 a
x = *p; x

gets

 a[0]
x = *(p + 1)

;

x

gets

 a[1]
p = p + 1; p

points to

 a[1]

,

by definition

p++; p

points to

 a[2]

•

Array names are

constant

 pointers

p = a; p

points to

 a[0]
a++;

 illegal; can’t change a constant

p++;

legal;

 p

is a variable

•

Subscripting, for any type, is defined in terms of pointers

a[i] *(a + i) i[a]

is legal, too!

&a[i] a + i
p = &a[0]

&*(a + 0)

&*a

a

•

Pointers can walk along arrays efficiently

p = a;
for (i = 0; i < 10; i++)

printf("%d\n", *p++);

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointer Arithmetic Page 79

October 6, 1997

Pointer Arithmetic

•

Pointer arithmetic takes into account the

stride

 (size of) the value
pointed to

T

 *p;

p += i

increment

 p

by

 i

elements

p -= i

decrement

 p

by

 i

elements

p++

increment

 p

by

 1

element

p--

decrement

 p

by

 1

element

•

If

 p

and

 q

are pointers to the same type

T

p - q

number of elements between

 p

and

 q

•

Does it make sense to add two pointers?

•

Other operations:

 p < q

;

 <= == != >= >

p

and

 q

must

 point to the

same

 array;

no runtime checks

 to insure this

•

Example

int strlen(char *s) {
char *p;
for (p = s; *p; p++)

;
return p - s;

}

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Array Parameters Page 80

October 6, 1997

Pointers & Array Parameters

•

Array parameters:

array formal parameters are not constants, they are

variables

passing an array passes a

pointer

 to the

first element

arrays (and

only

 arrays) are automatically passed “by reference”

void f(

T

 a[]) {...}

is equivalent to

void f(

T

 *a) {...}

•

String constants denote constant pointers to the actual characters

char *msg = "now is the time"; char amsg[] = "now is the time";
char *msg = amsg;

msg

 points to the first character of

 "now is ..."

•

Strings can be used wherever arrays of characters are used

putchar("0123456789"[i]); static char digits[] = "0123456789";
putchar(digits[i]);

•

Is there any difference between

extern char x[]; extern char *x;

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Array Parameters, cont’d Page 81

October 6, 1997

Pointers & Array Parameters, cont’d

•

Copying strings:

 void scopy(char *s, char *t)

copies

 t

to

 s

•

Array

 version:

void scopy(char s[], char t[]) {
int i = 0;
while ((s[i] = t[i]) != '\0')

i++;
}

•

Pointer

 version:

void scopy(char *s, char *t) {
while (*s = *t) { while ((*s = *t) != 0)

s++;
t++;

}
}

•

Idiomatic

 version:

void scopy(char *s, char *t) {
while (*s++ = *t++) while ((*s++ = *t++) != 0)

;
}

•

Which one is better and why?

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Arrays of Pointers Page 82

October 6, 1997

Arrays of Pointers

•

Arrays of pointers help build tabular structures

•

Indirection (

*

) has

lower

 precedence than

[]

char *line[100];

same as

char *(line[100]);

declares an array of pointers to char (strings); declaration mimics use:

*line[i]

refers to the 0th character in the

i

th string

•

Arrays of pointers can be

initialized

char *month(int n) {

static

 char *name[] = {
"January",
"February",
...,
"December"

};

assert

(n >= 1 && n <= 12);
return name[n-1];

}

int a, b;
int *x[] = { &a, &b, &b, &a, NULL };

name

is visible only within

 month

;
allocated & initialized at

compile time

0

x a

b

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Arrays of Pointers, cont’d Page 83

October 6, 1997

Arrays of Pointers, cont’d

•

Arrays of pointers are

similar

 to multi-dimensional arrays, but different

int a[10][10];

both

a[i][j]
int *b[10]; b[i][j]

are legal references to

int

s

•

Array

 a

:

2-dimensional 10x10 array

storage for 100 elements allocated at compile time

a[6]

is a

constant

;

 a[i]

cannot

 change during execution

each row of

 a

has 10 elements

•

Array

 b

:

an array of 10 pointers; each element

could

 point to an array

storage for 10 pointer elements allocated at compile time

values of these pointers must be initialized during execution

b[6]

is a

variable

; b[i]

can

 change during execution

each row of

 b

can have a different length; “ragged array”

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Command-Line Arguments Page 84

October 6, 1997

Command-Line Arguments

•

By convention,

 main

is called with 2 arguments (actually 3!)

int main(int argc, char *argv[])

argc

(“

arg

ument

c

ount”) is the number of command-line arguments

argv

(“

arg

ument

v

ector”) is an array of pointers to the arguments

•

For the command

 echo hello, world

argc = 3
argv[0] = "echo"
argv[1] = "hello,"
argv[2] = "world"
argv[3] = NULL

•

NULL

 is the

null pointer

, which points to nothing; defined to be 0

•

Implementation of

 echo

:

int main(int argc, char *argv[]) {
int i;
for(i = 1; i < argc; i++)

printf("%s%c", argv[i], (i < argc-1) ? ' ' : '\n');
return 0;

}

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: More on argc and argv Page 85

October 6, 1997

More on argc and argv

•

Another (less clear) implementation of

 echo

:

int main(int argc, char **argv) {
while (--argc > 0)

printf("%s%c", *++argv, argc > 1 ? ' ' : '\n');
return 0;

}

initially,

argv

 points to the program name:

*++argv

increments

 argv

to point the cell that points to

 "hello,"

, and indirection
fetches that pointer (a

 char *

)

•

Example

void f(int *a[10]);

is the same as

void f(int **a);
void g(int a[][10]); void g(int (*a)[10]);

**a = 1;

is legal in

both

 f

and

 g

; what gets changed in each?

•

See H&S for more

argv

0

"hello,"

"world"

"echo"

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions Page 86

October 6, 1997

Pointers to Functions

•

Pointers to functions help

parameterize

 other functions

void sort(void *v[], int n,

int (*compare)(void *, void *)

) {
...
if ((*compare)(v[i],v[j]) <= 0) {

...
}
...

}

•

sort

does not depend the type of the objects it’s sorting

it can sort arrays of pointers to

any

 type

such functions are called

generic

 or

polymorphic

 functions

•

Use an array of

 void *

(generic pointers) to pass data

•

void *

is a

placeholder

dereferencing a

 void *

requires

 a cast to a specific type

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions, cont’d Page 87

October 6, 1997

Pointers to Functions, cont’d

•

Declaration syntax can confuse:

int (*compare)(void *, void *)

declares

 compare

to be “a

pointer

 to a

function

 that takes two

 void *

arguments
and returns an

 int

”

int *compare(void *, void *)

declares

 compare

to be “a

function

 that takes two

 void *

arguments and returns
a

pointer

 to an

 int

”

•

Invocation syntax can also confuse:

(*compare)(v[i], v[j])

calls the function

pointed

 to by

 compare

with the arguments

 v[i]

and

 v[j]

*compare(v[i], v[j])

calls the function

compare

 with the arguments

 v[i]

and

 v[j]

, then

dereferences

the pointer value returned

•

Function call has higher precedence than dereferencing

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions, cont’d Page 88

October 6, 1997

Pointers to Functions, cont’d

•

A function name itself is a

constant pointer

 to a function (like array name)

#include <string.h>

contains

 extern int

strcmp

(char *, char *);

main(int argc, char *argv[]) {
char *v[VSIZE];
...
sort(v, VSIZE,

strcmp

);
...

}

•

Actually, both

 v

and

 strcmp

require a

cast

:

sort(

(void **)

v, VSIZE,

(int (*)(void *, void *))

strcmp);

•

Arrays of pointers to functions:

extern int mul(int, int), add(int, int), sub(int, int), ...;

int (*operators[])(int, int) = {
mul, add, sub, ...

};

to call the

i

th function:

 (*operators[i])(a, b);

