Pointers

Basic operations

Pointers are variables whose values are the addresses of other variables

“address of” (reference)

“indirection” (dereference)

Suppose x and y are integers, p is a pointer to an integer:

p = &X; p gets the address of x =1 x

y = *p; y gets the value pointed to by p %

y = *(&);

o1y

* Declaration syntax mimics use of variables in expressions

I nt *p; *p isan int,so p isapointerto an i nt
* Unary * and & bind more tightly than most other operators

y =*p+1 y=(*p) *+ 1

y = *ptt y = *(pt+);

Copyright ©1995 D. Hanson, K. Li & J.P. Singh

Computer Science 217: Pointers

Page 76

Pointer References

* Pointer references (e.g. *p) are variables
Int X, vy, *px, *py;

pxX = &X; px is the address of x
*px = 0; sets x to0

Py = PX, py also pointsto X
*py += 1; increments x to 1

y = (*px)++, sets y tol, x to2

e Passing pointers to functions simulates passing arguments “by
reference”

void swap(int x, int y) { void swap(int *x, int *y) {

int t; int t;

t = X; t = *x;

X =y, TXo= 0ty

y =t; y =t
} }
int a=1, b = 2; int a=1, b = 2;
S\Nap(a, b); SV\I?.D(&a. &b) ;
printf("% %\n", a, b); printf("%l %l\n", a, b);

21

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointer References Page 77

Pointers & Arrays

Pointers can “walk along” arrays

Int a[10], i, *p, X;

p = &[0] ; p is the address of the 1st element of a
X = *p; X gets a[0]

X =*(p + 1); X gets af 1]

p =p + 1; p pointsto a[1], by definition

p++; p pointsto af 2]

Array names are constant pointers

p = a; p pointsto af 0]
a++; illegal; can’t change a constant
p++] legal; p is a variable

Subscripting, for any type, is defined in terms of pointers
ali] *(a + 1) I [a] islegal, too!
&afi] a + |
p = &a[0] = &**'(a + 0) = &*a = a

Pointers can walk along arrays efficiently

P =&
for (i =0; i < 10; i++)
printf("%\n", *p++);

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Arrays Page 78

Pointer Arithmetic

Pointer arithmetic takes into account the stride (size of) the value
pointed to

T *p;

p += i increment p by i elements
p -= 1| decrement p by i elements
p++ increment p by 1 element
p- - decrement p by 1 element

If p and g are pointers to the same type T
P-4 number of elements between p and

Does it make sense to add two pointers?

e Other operations: p < q; <= == = >= >
p and g must point to the same array; no runtime checks to insure this
* Example
int strlen(char *s) {
char *p;

for (p =s; *p; pt+)

return p - s;

}

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointer Arithmetic Page 79

Pointers & Array Parameters

Array parameters:

array formal parameters are not constants, they are variables
passing an array passes a pointer to the first element

arrays (and only arrays) are automatically passed “by reference”
void f(T a[]) {...} is equivalent to void f(T *a) {...}

String constants denote constant pointers to the actual characters

char *nsg = "now is the tinme"; char ansg[] = "nowis the tinme";
char *nsg = ansg;

nsg points to the first characterof "now is ..."

Strings can be used wherever arrays of characters are used

put char (" 0123456789"[1]); static char digits[] = "0123456789";
putchar (digits[i]);

Is there any difference between

extern char x[]; extern char *x;

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Array Parameters Page 80

Pointers & Array Parameters, cont’d

Copying strings: voi d scopy(char *s, char *t) copies t to s

Array Version:
voi d scopy(char s[], char t[]) {

int i = 0;
while ((s[i] =t[i]) !'="\0")
| ++;
}
* Pointer version:
voi d scopy(char *s, char *t) {
while (*s = *t) { while ((*s = *t) = 0)
S++;
t++;
}
}
* Idiomatic version:

voi d scopy(char *s, char *t) {
while (*s++ = *t++) while ((*s++ = *t++) 1= 0)

}
® Which one is better and why?

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers & Array Parameters, cont’d Page 81

Arrays of Pointers

e Arrays of pointers help build tabular structures

 Indirection (*) has lower precedence than []

char *line[100]; same as char *(1ine[100]);
declares an array of pointers to char (strings); declaration mimics use:
*linel[i]

refers to the Oth character in the i th string

* Arrays of pointers can be initialized

nanme is visible only within nont h;
char *month(int n) { ‘//allocated & initialized at compile time
statlc char *nane[] =

"January",
"February",
" Decenber "
assert(n >= 1 && n <= 12); -
return nane[n-1]; < b
} -
int a, b; 0

int *x[] ={ &, &b, &b, &a, NULL };

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Arrays of Pointers Page 82

Arrays of Pointers, cont’'d

e Arrays of pointers are similar to multi-dimensional arrays, but different

int a[10][10]; bot h alillj]
int *b[10]; bl1][]]
are legal references to ints

* Array a:
2-dimensional 10x10 array
storage for 100 elements allocated at compile time
a[6] isaconstant; a[i] cannot change during execution
each row of a has 10 elements

* Array b:
an array of 10 pointers; each element could point to an array
storage for 10 pointer elements allocated at compile time
values of these pointers must be initialized during execution
b[6] isavariable; b[i] can change during execution
each row of b can have a different length; “ragged array”

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Arrays of Pointers, cont’d Page 83

Command-Line Arguments

By convention, mai n is called with 2 arguments (actually 3!)
I nt main(int argc, char *argv[])
argc (“argument count”) is the number of command-line arguments
ar gv (“argument vector”) is an array of pointers to the arguments

For the command echo hell o, world

argc = 3

argv[0] = "echo"
argv[l1l] = "hello,"
argv[2] = "world"
argv[3] = NULL

NULL is the null pointer, which points to nothing; defined to be 0

Implementation of echo:

int main(int argc, char *argv[]) {

int i;
for(i =1; i < argc; i++)

printf("%%", argv[i], (i < argc-1) ? ' ' : '\n");
return O;

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Command-Line Arguments

Page 84

More on argc and argv

* Another (less clear) implementation of echo:
int main(int argc, char **argv) {
while (--argc > 0)
printf("%%", *++argv, argc > 1 ? " ' : '"\n');
return O;

}
initially, ar gv points to the program name:

argv —s| e41—p "echo"”
et "hello,"
o1—p "Wor | d"

0

*++ar gv increments ar gv to point the cell that pointsto " hel | o, ", and indirection
fetches that pointer (a char *)

 Example
void f(int *a[10]); is the same as void f(int **a);
void g(int a[][10]); void g(int (*a)[10]);

**a = 1; islegalinboth f and g;what gets changed in each?

e See H&S for more

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: More on argc and arav Page 85

Pointers to Functions

* Pointers to functions help parameterize other functions

void sort(void *v[], int n, int (*conpare)(void *, void *)) {

it ((*conpare) (v[i],v[j]) <= 0) {
-

* sort does not depend the type of the objects it's sorting

it can sort arrays of pointers to any type

such functions are called generic or polymorphic functions

e Use an array of void * (generic pointers) to pass data

e void * IS a placeholder

dereferencinga voi d * requires a cast to a specific type

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions Page 86

Pointers to Functions, cont’d

* Declaration syntax can confuse:
Int (*conpare)(void *, void *)

declares conpar e to be “a pointer to a function that takes two voi d * arguments
and returnsan i nt”

I nt *conpare(void *, void *)

declares conpar e to be “afunction that takes two voi d * arguments and returns
a pointertoan int”

* |nvocation syntax can also confuse:

(*compare) (v[i], v[]])
calls the function pointed to by conpar e with the arguments v[i] and v[j]
*conpare(v[i], v[j])

calls the function conpar e with the arguments v[i] and v[]], then dereferences
the pointer value returned

e Function call has higher precedence than dereferencing

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions, cont'd Page 87

Pointers to Functions, cont’d

e A function name itself is a constant pointer to a function (like array name)

#include <string.h> contains extern int strcnp(char *, char *);

mai n(i nt argc, char *argv[]) {
char *v[VSI ZE] ;

sort(v, VSIZE, strcnp);

}

e Actually, both v and strcnp require a cast:
sort((void **)v, VSIZE, (int (*)(void *, void *))strcnp);

* Arrays of pointers to functions:
extern int mul (int, int), add(int, int), sub(int, int), ...;

int (*operators[])(int, int) ={
mul , add, sub,
}s

to call the ith function: (*operators[i])(a, b);

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Pointers to Functions, cont'd Page 88

