September 7, 1997

C vs Modula-3
feature (o} _,_oawc_m-
safe no yes
efficient yes yes
garbage collection no yes
static typechecking mostly yes
enforced interfaces no yes
concurrency no yes
Huh?
widely available yes no
everyone knows it yes no
software tools yes some
good for a summer job yes no
Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: C vs Modula-3 Page 15

‘September 7, 1997

ANSI C Programming Language

* A small, general-purpose, initially systems programming language

¢ Used for writing the UNIX OS and tools for many computers

* Now also very popular for general-purpose computing
* A“low-level” language

datatypes and control structures are close to those on most machines
* Notable features

pointer (address) arithmetic and operators

all functions are call-by-value

simple, 2-level scope structure

no I/O or memory management facilities (provided by library routines)

“flexible” type structure

* History
BCPL B C K&R C ANSI C
~1960 ~1970 ~1972 ~1978 ~1988

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: ANSI C Programming Language Page14

September 7, 1997

Function Definitions

* General form of an ANSI C function definition
[type] name (argument-declarations) { body }
int twice (int x, double y) {

}

* If no return value, type of function should be voi d.
* return statements specify function return values
int twice(int x, double y) {
return 2*x + vy,
}

* Unlike in Pascal, functions are never defined within functions

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Function Definitions Page 17

September 7, 1997

C Program Structure

* Programs
are composed of one or more files

each file contains global variables and functions

int a, b; /* gl obal variables */

int main(int argc, char *argv[]) {
hel l o();
return O;

}

void hello(void) {
printf("hello world\n");
}

* Execution

begins by calling mai n
ends when nai n returns (or some function calls the library function exi t)

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: C Program Structure Page 16

September 7, 1997

Scope

* How do functions defined in different files communicate?

- by calling one another (parameter passing and return values

- through global (externally declared) variables

¢ External variables

Externally declared versus ext er n?
Can we have multiple declarations of an externally defined variable within a file?
What if an external declaration is not initialized? Is it treated as defined?

¢ So which functions and data may a function reference?

- determined by the scope of identifiers

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Scope Page 19

‘September 7, 1997

Declarations & Definitions

¢ Declaration: specifies (announces) the properties of an identifier

extern int sp;
extern int stack[];

specify that “sp isan i nt”and“stack isanarray of i nts”
ext er n indicates they are defined elsewhere

- outside this routine, or even outside this file

¢ Definition: declares the identifier and causes storage to be allocated

int sp;
int ptr = 1;;
int stack[100];

declares sp, ptr and stack, allocates storage, ptr is initialized to 1
* Why does a language have declarations for variables?

* Can a variable have multiple declarations?

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Declarations & Definitions Page 18

September 7, 1997

Scope, cont'd

* Formal parameter and local declarations “hide” outer-level declarations

int x, vy;

f(int x, int a) {
int b;

e f(int x) {
int x;

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: Scope, cont'd Page 21

September 7, 1997

Global Variables & Scope

* The scope of an identifier says where the identifier can be used

* Functions can use global variables declared outside and above them
file a.c:
int stack[100];

mai n() {
- stack isvisible

}

int sp;

void push(int x) {

-, - stack, sp arevisible
}

* Global variables and functions in other files are made avaiilable withext er n

file b.c:

extern int stack[];
voi d dump(void) { ... }

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: Global Variables & Scope Page 20

September 7, 1997

Function Arguments and Local Variables

¢ Local variables are temporary variables (unless declared static)
created upon entry to the function in which they are declared
destroyed upon return

e Arguments are transmitted by value
the values of the arguments are copied into “local variables”

* Arguments are initialized local variables

int a, b;

mai n(voi d) {
a=1, b =2
f(a);
print(a, b);

}

output:

34
32
15

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Function Arguments and Local Variables Page 23

‘September 7, 1997

Scope, cont'd

* Formal parameter and local declarations “hide” outer-level declarations

int x, vy;

f(int x, int a) {
int b;

}
¢ Cannot declare the same variable name twice in one scope
e f(int x) {
int x;
}
* Different name spaces allow same identifier to be multiply declared in a scope

- function and typdef names; labels; struct/union tags; struct/union members

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Scope, cont'd Page 22

September 7, 1997

Static Variables

* static keyword in a declaration specifies

lifetime: static vs dynamic

scope: static vs global
® Static variables are

allocated at compile time and exist throughout program execution
* Statics are permanent; locals are temporary

void f(int v) {
static int lastv = 0;

print(lastv, v);
lastv = v;

}

* Scope of static variables: within the file or block in which they are defined

- scope versus lifetime
* What if a variable is declared ext er n inside a function?

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: Static Variables Page 25

September 7, 1997

Function Declarations

* Declares the type of the value returned and the types of arguments
extern int f(int, float);
extern int f(int a, float b);
* Avoi d function is a procedure
* Avoi d argument list means no arguments
void hel |l o(void)
* Unlike Pascal, functions can be used before they are declared
as long as defined in same file or declared extern
¢ A function without a declaration
assumes the function returns an i nt
assumes arguments have the types of the corresponding expressions
“i =f(2.0, 1);” inplies “int f(double, int);”
if f is defined otherwise, anything goes!

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: Function Declarations Page 24

September 7, 1997

Initialization Rules

¢ Local variables have undefined values

* Need a variable to start with a particular value?

* use an explicit initializer

* External and static variables are initialized to 0 by default

* some consider it bad style to rely on this feature

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Initialization Rules Page27

‘September 7, 1997

Static Functions

* Scope restricts the visibility of variables and functions
file stack. c:

static int sp;
static int stack[100];

static void bump(int n) {

sp = sp + n;

assert(sp >= 0 & sp < 100);
}
void push(int x) {

bump(1);
stack[sp] = x;

}
int pop(void) {

bump(-1);
return stack[sp+1];

}
¢ Static functions are visible only within the file in which they are defined

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Sitic Functions Page 26

