October 8, 1997

Self-Referential Data Structures

e Structures can hold pointers to instances Of themselves

struct tree {
char *wor d;

I nt count; -
struct tree *left, *right; ﬂéfl

b

e Structures cannot contain instances Of themselves:

struct tree {
char *word
I nt count;
struct tree left, right;

b

what is si zeof (struct tree)?

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Self-Referential Data Structures Page 98



October 8, 1997

Dynamic Data Structures

e C library routines mal l oc and free allocate and deallocate memory
extern void *mal | oc(unsi gned nbytes);
allocates nbyt es of memory and returns a pointer to the 1st byte
extern void free(void *p)
deallocates the memory pointed to by p, which must come from mal | oc

e TO create a new treenode:

t ypedef struct tree *Tree;

Tree talloc(void) {
return nmall oc(sizeof (struct tree));
}

» Better yet, provide arguments to initialize the new tree:

Tree talloc(char *word, int count, Tree left, Tree right) {
Tree t = mall oc(sizeof *t);

t->word = word; t->count = count;
t->left =1left; t->right = right;
return t;

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Dynamic Data Structures Page 99



October 8, 1997

Deallocating Memory

* Delallocate a previously created tree:

void tfree(Tree t) {
free(t);
}

e Other allocation functions:
extern void *call oc(unsi gned n, unsigned nbytes)

allocates and clears memory for n copies of nbyt es, e.g. an array of structures

extern void *realloc(void *p, unsigned size)

expands/shrinks the memory pointed by p to occupy nbyt es; may relocate

e All allocation functions return NULL if there is no memory available

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Deallocating Memory Page 100



Example: Binary Trees

e Function insert(Tree *p, char *word)
adds wor d to the tree rooted at p if word isn’t already in the tree
otherwise, it increments the count associated with wor d

void insert(Tree *p, char *word) { root _‘:
Tree g = *p; P
£ (a) 21
int cond = strcnp(word, g->word); A/
I f (cond < 0)
I nsert (&g->left, word); | N

else if (cond > 0) \

i nsert (&g->right, word);

el se |A/p

g- >count ++;

} else
*p = talloc(strsave(word), 1, NULL, NULL);

}
e char strsave(char *s) makes a copy of string s and returns it

char *strsave(char *s) {
char *new = malloc(strlen(s) + 1);

assert (new);
return strcpy(new, s);

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Example: Binary Trees

October 8, 1997

Page 101



