
COS 126 Spring, 1999

COS 126 Main Objectives

• Programming

– programming skills universal, same basic features found in many languages (C, Java, PostScript, Maple,
Matlab, TeX, HTML)

– can address interesting and important problems with basic skills and without relying on “packaged”
solutions

– fundamental programming tools: array, linked list, stack, queue, tree, ADT, binary search, recursion,
divide-and-conquer

• TOY and machine language

– von Neumann machine

• How is a machine built?

– use layers of abstration
– fundamental building block = switch (transistor, relay, vacuum tube)
– machine sees only 0’s and 1’s ⇒ need to understand Boolean functions
– build Boolean circuits, decoder, multiplexer, memory bit from AND, OR, NOT gates
– build arithmetic circuits (adder) using Boolean circuits
– incorporate time with sequential circuits

• How powerful is my machine?

– formal languages used to describe abstract machines (FSA, PDA, Turing machine)
– deterministic vs. nondeterministic machine
– Chomsky hierarchy delineates fundamental machine-grammar relationship and classifies machines ac-

cording to power
– TOY and everyday computers equivalent to Turing machine
– all abstract and real machines have fundamental limitations

• What is an algorithm?

– Church-Turing thesis says intuitive notion of algorithm is a Turing machine
– some problems unsolvable even on Turing machine

• How good is my algorithm?

– complexity, polynomial vs. exponential
– NP-completeness and intractability, P 6= NP conjecture

• Systems programming

– machine language - 0’s and 1’s
– assembly language - symbolic variables (use BST for symbol table)
– compiler translates from C to machine language (uses grammar)
– interpreter emulates one machine on another (reuse old programs)
– multiprogramming and windows (single machine simulating many machines)

1


