COS 126 General Computer Science Spring 1999

Midterm 2 - Solutions!

1. Write a C function int count(char s[1) that takes as input a '\0’ terminated string and outputs
the number of characters in the string (not including the "\0’). Do not use any library functions or
pointer arithmetic.

int count (char s[])

{
int i = O;
while (s[i] != °\0’)
it++;
return i;
}

See also String Exercise 1 in the course packet.

2. Consider the following recursive C program.

void mystery(int N)

{
if (N < 1) return;
printf("%d ", N);
mystery (N-2) ;
mystery (N-3);
printf("%d ", N);

}

Give the results of mystery(6). Circle the correct answer.

(a) 241613

(b) 214136

(c) 642131

(d) 642241163113
) 642211431136
) 631164224116
) 631134112246
)

segmentation fault

(e
(f
(g
(h

The very first and very last thing that mystery (N) does is print the integer N. So the answer must
start and end with 6. This eliminates everything but (e), (f), and (g). Just after printing the first
6, mystery(6) calls mystery(4). The very first thing that mystery(4) does is print 4, so the second
number printed is 4. This leaves only (e).

LCopyright 1999, COS 126.

3. What does the following TOY program print out? Assume that the following numbers are loaded into
memory and that the machine is started with the PC set to 10.

10: BOO4 RO <- 4

11: B101 R1 <- 1

12: 3101 R1 <- RO * R1

13: 4100 print R1

14: 7012 RO--; if (RO > 0) goto 12
15: 0000

0004 000C 0018 0018

The program is a single loop which decrements RO in each iteration. In each iteration R1 is multiplied by
RO and R1 is printed. Thus the function prints n, nx(n—1), ..., nx(n—1)...x2, nx(n—1)...x2x1,
where n is the initial value assigned to RO. Note the last two terms are both n!. Also, be careful to do
all arithmetic in hex.

4. What does the following TOY program print out? Assume that the following numbers are loaded into
memory and that the machine is started with the PC set to 10.

10: BOOO RO <- 0 40: 0001
11: B101 R1 <- 1 41: 0046
12: B240 R2 <- 40 42: 0002
13: 9B02 R3 <- mem[R2 + 0] 43: 0048
14: 4300 print R3 44: 0003
15: 9A12 R2 <- mem[R2 + 1] 45: 0000
16: 6213 if (R2 > 0) goto 13 46: 0004
17: 0000 halt 47: 0042

48: 0005

49: 0044

0001 0004 0002 0005 0003

The PC will never be set to 40-49 so you can think of these memory locations as storing data. The
guts of the program is in lines 10-17.

Throughout the computation RO = 0 and R1 = 1. Indexed addressing is used in instructions 9B02 and
9A12 since the second hex digit is greater than or equal to 8. Line 13 reads in a value from memory
location R2 and line 14 prints it out. Think of R2 as a pointer - it is the address in memory where
some data resides. Line 15 updates R2 to be the contents of memory address R2 + 1.

The memory address pair 40, 41 contains two pieces of information: the first is the data and is printed,
the second is the memory address of the next piece of data. This process is repeated until the memory
address is 0000 (i.e., NULL). The data in lines 40-49 is really a linked list!

5. Give the contents of the stack after the given PostScript program is executed.

123 45 dup add mul add dup add mul add

173
Here are the stack contents along the way, where the top of the stack is at the left.

6. Which strings are generated by the regular expression? (111 + 010) % 011x

Circle one or more of the following.

(a) 111010011
(b) 010000000
(c) 111111111111

(d) 1111110100100101110000011101011111
(e) 1011110101011101101100111010111100

(a)

First observe that the last bit must be 1: this eliminates (b) and (e). Second observe that there must
be at least one 0: this eliminates (c¢). Third, observe that there can’t be more than two consecutive
0’s: this eliminates (b) and (d).

. Consider the language generated by the following grammar.

- Rules
terminals 0,1
. A — B0
nonterminals | A, B
B — Al
start A
A—0

Is the language regular? If yes, give a regular expression that generates exactly the same language. If
no, explain why not.

yes, 0(10) * or (01)*0

The language is Type IIT (regular). This implies that there must exist a corresponding regular expres-
sion. The production rule A — B0 must be immediately followed by B — A1, so you could think
of having the compound rule A — A10. Thus, expressions of the following form could be generated:
A, A10, A1010, A101010, A10101010. Ultimately, we must end up with strings. This is accomplished
as soon as we apply the rule A — 0.

8. Consider the following FSA.

Circle all of the statements below that are true.

The FSA accepts 011111101. ~_

)
) The FSA accepts 11101000.
(¢) The FSA rejects 0000.
(d) The FSA accepts all bit strings with an odd number of 0’s.
)
)
)

The FSA is nondeterministic.
There exists a deterministic Turing machine that recognizes the same language as the FSA.

There exists a nondeterministic Turing machine that recognizes the same language as the FSA.

b) e7 f? g

The FSA is nondeterministic for many reasons: if you are in state 0 and the next bit is 0, you can

transition to state 1 or 3. The n-FSA accepts 0000 since it could choose the following transitions:

0-253-2%1-% 2% 3 It accepts 11101000 because of 0 — 0 —— 0 - 0 - 1 — 0 -2

3 -2 1 -% 2 The n-FSA will not accept 01 or 00000 - either of these eliminates (d). Also, the
n-FSA does not accept any strings ending in 01 (including 011111101) since the only way to get to
state 3 after reading a 1 is to come from state 0, but there is no way to get to state 0 after reading a 0.
Statement (f) is true since deterministic Turing machines are more powerful than FSA’s or n-FSA’s.
Deterministic Turing machines can recognize exactly the same languages as nondeterministic ones, so
(g) is also true.

9. Construct a deterministic finite state automaton (FSA) that recognizes all bit strings with a multiple
of three 1’s. (For example, the following strings are in the language: 111, 111111, 1110, 0111, 10011,
but not 1, 11, 1111, 0110.) Use as few states as possible.

0 0

—))

x/x /R
b/b/R

10. Consider the Turing machine above. The alphabet consists of the four characters: a, b, x, and #.
Suppose the Turing machine is started with the input tape and initial cursor as shown below. Circle

all of the inputs below that will be accepted.
(@ .
LI T [#Jafb[#] [[][]]

(b) v

LI LTI [[#[afblbJaf#] [[]]]]

() v

[L[[#[alb[b[b[b[blblaf#]]|][]

(d) Characterize in plain English which inputs (i.e., characters between the two delimiting #’s) are
accepted by the Turing machine.

(a), (b), all strings with an equal number of a’s and b’s

The TM will accept all strings with an equal number of a’s and b’s. To do this it first moves to the left
end of the tape. If the first character (other than #) is an a, it will “delete” it by overwriting it with
an x. Then the TM will search for the leftmost b. If it finds a b, it “deletes” it by overwriting it with
an x. Otherwise, the TM concludes that there are more a’s than b’s and proceeds to state no. (The
process is analogous if the first character is a b. Then it deletes the b and searches for an a to delete.)
This whole procedure is repeated, until the string contains no more a’s or b’s. In this case, the TM
will go to state yes. It works because every time it “deletes” an a, it also “deletes” a corresponding
b, thereby reducing the size of the problem. Clearly the new smaller input has an equal number of a’s
and b’s if and only if the original input did.

Here’s a description of each state.

yes: the accept state
no: the reject state

left: This state repeatedly moves the cursor one position to the left, unless the cursor already
points to #. That is, 1eft moves the cursor to the left #. If instead, the cursor is already pointing
to #, then it transitions to skip x and moves the cursor one position to the right, i.e., to the
beginning of the interesting portion of the tape.

skip x: This state repeatedly moves the cursor one position to the right, until it reaches the first
character that is not x. If the first such character is #, then it accepts the string; if it is a, the
TM goes to state search b to find a b to “delete”; if it is b, the TM goes to state search a to
find an a to delete.

search b: This state skips over all a’s and x’s. If it finds a b, it “deletes” it by overwriting
it with an x and goes back to state left. If it doesn’t find a b (it reaches the right #) then in
concludes there were more a’s than b’s, and rejects the input.

search a: analogous to search b

11.

12.

For each of the 10 description on the left, choose the best matching machine on the right.

d corresponds with intuitive notion of “algo- (a) deterministic FSA’s
rithm” (

b

nondeterministic FSA’s
¢ pushes and pops characters using a stack

d reads and writes characters to and from an
array

d

)
)

(c) nondeterministic PDA’s

(d) deterministic Turing machines
)

e can recognize any language (e) none of the above
¢ least powerful machines that can recognize
language of all valid C programs

e least powerful machines that can recognize
language of all C programs that don’t go into
an infinite loop

¢ these nondeterministic machines recognize
more languages than their deterministic
counterparts

e recognizes fewer languages than nondeter-
ministic FSA’s

d named after Alan Turing

The machines in the right column are listed in nondecreasing order of power, as in the Chomsky
hierarchy. Note that deterministic and nondeterministic FSA’s recognize exactly the same (regular)
languages. Nondeterminism makes the PDA more powerful. (See Lecture Note 15.12). PDA’s are
FSA’s with a stack; Turing machines are FSA’s with an infinite tape or array.

No machine in the Chomsky hierarchy can recognize every language. The most famous of these
examples is the Halting problem, i.e, recognize the language of all C programs that don’t go into an
infinite loop.

The language of all legal C programs (programs that compile without syntax errors) is described by a
context-free grammar (as in one of the exercises and K+R Appendix A13). The Chomsky hierarchy
says that n-PDA’s are equivalent to context-free grammars, so PDA’s are used by compilers to find
syntax errors.

The following sequential circuit describes a master-slave flip flop. Fill in the timing diagram for the
output (‘OUTPUT’), given the input (‘D’) and clock signal (‘CLOCK’) shown below.

Recall that a D-flip flop stores a bit. The bit can only change when its ‘Cl’ input is 1. In this case, it
sets the bit to 1 if its ‘D’ input is 1, and to 0 if its ‘D’ input is 0.

See Lecture Note 12.6. The important feature of a master-slave flip flop is that the output can only
change just when the clock goes from on to off. The ‘OUTPUT’ is the value of ‘D’ at this time. It
remains the same until just after the next clock tick.

