COS 126 General Computer Science Spring 1999

Midterm 1 - Solutions!

Question 1

i=0;
while (i < N)
{
a += i;
i += 2;
}

The body of the for loop gets executed before the increment step.

Question 2

link x;

x = list->next; // store pointer to second node
list->next = x->next; // make first node point to third node
x->next = list; // make second node point to first node
list = x; // update pointer to first node of list

The order that these statements get executed is very important.

Question 3

(a) 5, (b) 2, (c) 4 . / 17 \ ”s
3 / \11 \
ANVAR
6 9 16
\

8

35

e To search for the key 8, we start from the root. We compare 8 with 17. Since 8 < 17, we know that
8 would have to be in the left subtree (the tree rooted at 7). Now, since 8 > 7, we know that 8 would
have to be in the right subtree of node 7, i.e., the subtree rooted at 11. Since 8 < 11, we consider the
subtree rooted at 9. Since 8 < 9, we consider the subtree rooted at 8. Finally we discover 8 == 8.
This required 5 comparisons.

LCopyright 1999, COS 126.



e Using the same logic, we see 19 > 17, so we consider the subtree rooted at 22. Then since 19 < 22, we
would then explore the left child of 22. But it is NULL, so we conclude that 19 is not in the BST.

e Similarly, 10 > 7, so we consider the subtree rooted at 7. Since 10 < 11, we consider the subtree rooted
at 9. Since 10 > 9, we would then explore the right child of 9. But it is NULL, so we conclude 10 is
not in the BST.

Question 4
(a)LTA, (b)ATLorTAL,(c)ALT

e With arrays, we store the N keys sequentially in memory. Hence, it is fast to access the kth element.
If the keys are sorted, we can search for a given element in at most log, N steps using binary search.
The drawback of arrays is that inserting and deleting keys is slow. To delete the smallest key, we would
have to shift over the other N-1 keys.

e With linked lists, we store the N keys in arbitrary memory locations, and maintain a pointer 1ist
to the beginning of the list. Each node stores a pointer to the next node; these N pointers take up
extra space. Deleting the first node can be done with a single step - we simply change 1ist to point
to list->next. Searching can be time consuming with a linked lists, since it is not easy to access the
kth element. Instead, we would have to traverse the list until we found the key (or a larger key).

e Binary search trees provide the best of both worlds - fast search and fast insert/delete. Now, for each
node we maintain two different pointers to other tree nodes; these extra 2N pointers require additional
storage. We also maintain a pointer root to the root of the tree. The binary search tree property is
maintained: for each node x, all keys in its left subtree are less than x->key and all keys in its right
subtree are greater than x->key. This allows for a fast sorting procedure. The number of steps to
search for an existing key is equal to that key’s depth in the tree. If the tree is reasonably balanced,
this will be O(log N). Also, it is possible to insert and delete keys in O(log N). Deleting the smallest
key is particularly easy, since it must be at the very bottom of the tree, and can just be removed
without ruining the binary search tree property. To find the smallest key, go down the left-side of the
tree. This will take O(log N) steps if the tree is balanced.

Question 5

Here’s the truth table:

O M= OO = O|IN
O R O OO

O OO O
— O O~k O O«

Don’t forget that 0 is even since 0 is a multiple of 2. The sum-of-products method gives: x'y'z’ + 2'yz +
2y’ z + xyz’. Use your imagination to view the picture.

Question 6

1248
O(N) time

The trickiest part is realizing that the function is called recursively before the variable value is printed.
Thus, the first value to get printed will be 1. To evaluate f(N), the function evaluates f(N-1) Then to



evaluate £ (N-1), the function evaluates f (N-2). Eventually, the recursion will “bottom-out” when N ==
Thus, there will be N recursive calls.

Question 7

42865371

24865371
24865371
24685371
24568371
23456871
23456781
12345678

The easiest and quickest way to answer this question is to realize that the code provided is insertion sort.
Note that the printf statement prints the array contents each time through the ¢ loop.

The outer loop ¢ ranges from 1 to N — 1. The inner loop ranges from 1 to i. Thus the total number of
comparisons is exactly 1 +2+...+ N —1= N(N —1)/2 or O(N?).

Question 8

int i, count[10];

for (i = 0; i < 10; i++) // initialize
count[i] = 0;

for (i = 0; 1 < N; i++)
count [scores[i]/10] ++; // integer arithmetic

for (i = 0; i < 10; i++)
printf (" [%2d-%2d]: %d\n", 10*i, 10*i+9, count[i]);

This is best done using an array count[10], where the ith element in the number of midterm scores in
the ith range (exactly like on the Mandelbrot assignment). Using integer arithmetic is the easiest way to
translate from midterm score to interval number.

You could solve this problem using a sequence of if-then-else statements, but this would consume
valuable time and is unnecessarily complicated. If you find yourself writing essentially the same lines of code
over and over, use a loop; if you are writing essentially the same variable names over and over, use an array!

int binO, binl, bin2, bin3, bin4, binb5, bin6, bin7, bin8, bin9;

int i;
bin0 = 0; binl = 0; bin2 = 0; bin3 = 0; bind = 0;
bin5 = 0; bin6 = 0; bin7 = 0; bin8 = 0; bin9 = 0;

for (i = 0; i < N; i++)
{
if (scores[i] < 10) binO++;
else if (scores[i] < 20) binl++;
else if (scores[i] < 30) bin2++;
else if (scores[i] < 40) bin3++;



else if (scores[i] < 50) bind++;
else if (scores[i] < 60) binb++;
else if (scores[i] < 70) bin6++;
else if (scores[i] < 80) binT7++;
else if (scores[i] < 90) binS8++;

else bin9++;

}

printf ("[00-09]: %d\n", bin0);
printf (" [10-19]: %d\n", binl);
printf (" [20-29]: %d\n", bin2);
printf (" [30-39]: %d\n", bin3);
printf (" [40-49]: %d\n", bin4);
printf (" [560-59]: %d\n", binb);
printf (" [60-69]: %d\n", bin6);
printf (" [70-79]: %d\n", bin7);
printf (" [80-89]: %d\n", bin8);
printf ("[90-99]: %d\n", bin9);



