
COS 126 General Computer Science Spring 1999

Final - Solutions1

1. Convert the decimal numbers 77 and 23 to binary; take their bitwise XOR; then convert the result to
octal. Circle your final answer. (Recall the XOR function is 1 if its two input bits are different, and 0
if they are the same.)

132

7710 = 10011012, 2310 = 00101112
1001101 XOR 0010111 = 1011010.
10110102 = 001 011 0102 = 1328.

2. Draw a Boolean circuit that computes the XOR function using only AND, OR, and NOT gates.

Using the sum-of-products method, the Boolean formula is f = x′y + xy′. The resulting circuit is:
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x
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3. This problem considers whether it will be possible to solve large problems on future computers using an
exponential algorithm (e.g., for the traveling salesman problem). Exponential functions grow extremely
quickly, so this seems unlikely. However, computers are increasing in speed at an exponential rate too,
so maybe this is enough.

For concreteness, assume that computers double in speed every year (18 months is more realistic).
Also, assume that today’s computer can perform 2100 steps in an hour (a very generous estimate).

(a) Suppose you have a 2N algorithm for the problem. How big of a problem could you solve on
today’s computer in 1 hour? What about on a computer built in 10 years?

100, 110

If a computer performs x instructions per hour, then we want to solve for N in the equation
2N = x. With today’s computer x = 2100; in 10 years x = 2100 × 210 = 2110.

1Copyright 1999, COS 126.
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(b) How many years will pass before a computer is fast enough to solve a problem of size N = 1000
in 1 hour using a 2N algorithm?

900 years

We need x = 21000. If computer double in speed every two years, then in k years x = 2100× 2k =
2100+k. This equals 21000 when k = 900.

(c) Redo part (a) assuming you have an N5 algorithm. (Use 210 ≈ 1, 000 to simplify your numbers.)

220 ≈ 1 million, 222 ≈ 4 million

Solve for N in the equation N5 = x.

4. Label each of the following statements true, false, likely, or unlikely. Assume the Church-Turing
thesis is true, and that P 6= NP is likely. TSP is NP-complete; PRIME is in NP. Unless otherwise
specified, assume polynomial and exponential refer to the number of steps on a deterministic Turing
machine.

true There exists an exponential algorithm for TSP.

unlikely There exists a polynomial algorithm for TSP.

true There exists a polynomial algorithm for TSP on a nondeterministic Turing machine.

false There exists an exponential algorithm for the halting problem on the R2D2 computer.

true Discovering a polynomial algorithm for TSP would imply the immediate discovery of a polynomial
algorithm for PRIME, but maybe not vice versa.

5. For each of the 10 terms on the left, choose the best matching description on the right.

b compiler

i linker

j loader

c assembler

d interpreter

a preprocessor

g lexical analyzer

h syntax analyzer

f parse tree

e code generation

(a) prepare program for compiler

(b) translate program from high-level language to machine lan-
guage

(c) translates from assembly language to machine language

(d) high-level language simulation to execute program without
translation

(e) traverses parse tree in postorder to generate code

(f) represents structure of computation

(g) converts input into stylized stream of tokens using finite state
automata

(h) builds parse tree from sequence of tokens using pushdown
automata

(i) concatenates input object modules to make a single output
file, merges external references, and merges relocation tables

(j) translates object code to executable code by adding start
address to each address requiring relocation
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6. Give the TOY machine code that might be generated by a compiler for the C statement:

a = (b + c) * c;

Assume a, b, and c are 16-bit integers stored at locations AA, BB and CC, respectively. Start your code
at location 20, and use at most 5 TOY instructions.

20: 92BB R2 <- mem[BB] = b
21: 93CC R3 <- mem[CC] = c
22: 1123 R1 <- R2 + R3 = b + c
23: 3113 R1 <- R1 * R3 = (b + c) * c
24: A1AA mem[AA] <- R1

7. Consider the following TOY program. Assume that the following numbers are loaded into memory (all
other location are set to 0000), and that the machine is started with pc = 10.

10: B0A0 R0 <- A0 D0: 0001 D8: 0006 E0: 0003
11: B1D0 R1 <- D0 D1: 0003 D9: 0006 E1: 0005
12: 5018 goto 18 D2: 0002 DA: 0006 E2: 0005
13: 9B05 R3 <- mem[R0 + R5] D3: 0005 DB: 0006 E3: 0004
14: B701 R7 <- 1 D4: 0004 DC: 0006 E4: 0000
15: 1227 R2++ D5: 0005 DD: 0006 E5: 0000
16: 1337 R3++ D6: 0005 DE: 0006 E6: 0000
17: AB05 mem[R0 + R5] <- R3 D7: 0004 DF: 0006 E7: 0000
18: 9D12 R5 <- mem[R1 + R2]
19: 6513 R5--; if (R5 > 0) goto 13
1A: 0000 halt

What values does it leave in memory locations A0, A1, ..., A7?

memory location A0 A1 A2 A3 A4 A5 A6 A7
value 0000 0001 0001 0002 0003 0005 0008 0000

Think of the integers stored in memory starting at D0 as data. The program reads in these integers
in order (using indexed addressing mode in instruction 18: 9D12) until an entry with value 0000
is reached (instruction 19: 6513 checks for this condition). Memory locations A1 - A7 is an array
that counts the number of times each integer (between 1 and 7) appears in the data. E.g., when data
element D6: 0005 is processed, A5 is incremented by one. This program is similar to the histogram
program from Midterm 1, Spring 1999.

8. Suppose that we connect a 3-bit counter to a multiplexer, and the output of the multiplexer to the
input of a second 3-bit counter as follows:

Assume that both counters are initially set to all zeros. Give the values of a2, a1, and a0 after 8 clock
ticks.
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tick a2 a1 a0

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 0
7 1 0 0
8 1 0 1

On the ith clock pulse, the multiplexer selects the ith input line. If it is 1, then the multiplexer outputs
1. This has the effect of incrementing the second counter by 1. If the multiplexer outputs 0, then the
input to the second counter is 0, so nothing changes.

9. Consider the mutually recursive C functions.

int f(int x) {
if (x == 0) return 1;
return f(x-1) + g(x-1);

}

int g(int x) {
if (x == 0) return 2;
return g(x-1) + f(x-1);

}

(a) What does f(g(2)) evaluate to?

96

Here’s a table of f(N) and g(N) values:

0 1 2 3 4 5 6
f 1 3 6 12 24 48 96
g 2 3 6 12 24 48 96

In general, for x ≥ 1, f(x) = g(x) = 3× 2x−1. We conclude f(g(2)) = f(6) = 96.

(b) How many mutually recursive function calls are required to compute f(N)? Circle the best answer.

i. O(logN)
ii. O(N)
iii. O(N logN)
iv. O(N2)
v. O(2N)

10. Consider all binary search trees containing the following 15 keys:

U S E T H E F O R C E L U K E
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(a) Suppose the 15 keys are inserted into an empty BST in the given order. When inserting a duplicate
key, always put it in the right subtree of any matching keys. Draw the BST. What is its height?
(Recall, the height of the empty tree is 0, and height of a tree with one node is 1.)

8

(b) Give the inorder traversal of the BST in (a).

C E E E E F H K L O R S T U U

The inorder traversal of a BST always sorts the keys.

(c) What is the minimum height among all BST’s containing these 15 keys? Draw such a BST.

4

Choose the median element as the root, and do this recursively in each subtree. E.g., the initial
root node will be K. For any input with N keys, this procedure results in a BST with height
dlog2(N + 1)e. You can’t do any better.

K
E S

E F O U

C E E H L R T U

(d) What is the maximum height among all BST’s containing these 15 keys? Draw such a BST.

15

Sort the keys in increasing order. Insert the keys into an empty BST in this order. It will look
just like a linked-list.

C E E E E F H K L O R S T U U

11. What does the following PostScript program draw? Use the grid below to record your answer. Recall,
‘N {. . . } repeat’ repeats the grouped sequence N times.

%!
5 1 moveto
0 0 1 1 1 0 0 1 0 1
10 { 2 mul -1 add 0 rlineto 0 1 rlineto} repeat
stroke
showpage

5



0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

12. Consider the language generated by the regular expression 1(0*)1.

(a) Does there exists a deterministic FSA that recognizes the language? If yes, draw such an FSA. If
no, explain why not.

0 1 2

3

1

0

1

0, 1

0

0,1

(b) Does there exists a Type III (regular) grammar that generates the same language? If yes, give
such a grammar. If not, explain why not, and give a Type II grammar.

terminals 0, 1
nonterminals S,Z
start S

Rules
S → Z1
Z → Z0
Z → 1

(c) Give the parse tree for the string 10001 using the grammar from part (b).

S
Z 1

Z 0
Z 0

Z 0
1
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13. Consider the Turing machine above. The alphabet consists of the three characters: 1, x, and #. For
parts (a) and (b), suppose the Turing machine is started with the input tape and initial cursor as
given; circle the input if it will be accepted.
(a) # 1 1 1 1 1 1 1 #

# 1 1 1 1 1 1 1 #

(b) # 1 1 1 1 1 1 1 1 #

# 1 1 1 1 1 1 1 1 #

(b)

(c) Characterize which inputs (i.e., characters between the two delimiting #’s) are accepted by the
Turing machine.

All tape inputs whose number of 1’s is a power of 2 (e.g., 1, 2, 4, 8, 16) are accepted, Why is
this the case? Each pass from left to right through the tape skips all characters other than 1. It
“deletes” every other 1. By delete, we mean that it replace the character 1 with the character x.
If the number of 1’s is odd (and bigger than 1), it rejects; otherwise we go back to the leftmost
# and repeated the process. If the original problem has N 1’s, then after one pass through the
tape, the new problem has N/2 1’s. If N is a power of 2, then so is N/2.
Here’s a description of each state.

• accept, reject: self-explanatory
• left: Move the cursor one position to the left, until it points to the leftmost #. If it currently

points to the leftmost #, then transition to skip x and move the cursor one position to the
right, i.e., to the beginning of the interesting portion of the tape.
• skip x: Move the cursor to the right, until it reaches the first character that is not x. If the

first such character is #, transition to reject; if it is 1, the transition to first 1.
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• first 1: Skip over any x’s while moving the cursor to the right. If the first character scanned
(other than x) is # then transition to accept, as there has been exactly one 1 scanned during
this pass through the tape. If it is 1, then transition to state even.
• even: An even number of 1’s has been scanned during this pass through the tape. Skip over

any x’s. If the cursor points to a 1, delete it and transition to odd; otherwise go transition
back to left and start the whole process over.
• odd: An odd number of 1’s has been scanned during this pass through the tape. Skip over

any x’s. If the cursor points to a 1 transition to even; if it is #, transition to reject.

(d) How many steps (in the worst-case) does it take the Turing machine to accept or reject an input
with N consecutive 1’s delimited by two #’s? Circle the best answer.

i. O(logN)
ii. O(N)
iii. O(N log N)
iv. O(2N )

Traversing the tape from left to right (or right to left) takes N + 2 steps, since there are N 1’s
and two #’s. Half of the remaining 1’s are deleted each time you go from left to right through
the tape. Thus, you do this at most dlog2Ne times. You go through the tape from right to left
once for each left to right pass, so this doubles the number of steps. The total number of steps is
O(N logN).

14. Suppose that a binary tree is made up of nodes of type

typedef struct node* link;
struct node {int key; link l; link r; };

Write a recursive C function int height(link x) that takes as input a link to the root of the binary
tree, and returns its height.

int max(int a, int b) {
if (a > b) return a;
else return b;

}

int height(link x) {
if (x == NULL) return 0;
return 1 + max(height(x->l), height(x->r));

}

15. Suppose that a linked list is made up of nodes of type

typedef struct node* link;
struct node {int key; link next; };

Consider function swap(x, y) that allegedly swaps the nodes pointed to by x->next and y->next.
Assume that neither x->next nor y->next is the last node of the list, and that neither x nor y is the
first node on the list.
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void swap(link x, link y) {
link xn, xnn, yn, ynn;

xn = x->next; xnn = x->next->next;
yn = y->next; ynn = y->next->next;

x->next = yn; yn->next = xnn;
y->next = xn; xn->next = ynn;

}

Explain why the code does not work as claimed. Be brief but specific. Hint: draw a picture.

The code breaks down if the two nodes are next to each other in the linked list, i.e., x = y->next (or
y = x->next). (Otherwise, it works fine, even if x = y.) To see this, note that xn = ynn. The last
statement in swap(x, y) is xn->next = ynn. This creates a self-loop, a node pointing to itself.

16. Given an array int a[N], with k consecutive positive integers followed by N − k consecutive zeros,
your goal is to find the value k.

E.g., if a[ ] = {5, 6, 12, 33, 18, 17, 3, 0, 0, 0, 0, 0, 0, ..., 0}, then k = 7.

(a) Write a C function findk1(int a[ ]) that returns the value k in O(k) steps.

int findk1(int a[ ]) {
int k;
for (k = 0; k < N; k++)
if (a[k] == 0) return k;

}

(b) Write a C function find2(int a[ ], int l, int r) so that find2(a, 0, N-1) returns k in
O(logN) steps. Give a brief description of how your function works.

int findk2(int a[ ], int l, int r) {
int m = (l + r) / 2;
if (r == l + 1) return r;
if (a[m] == 0) return findk2(a, l, m);
return findk2(a, m, r);

}

Use bisection search. The function maintains the invariant that a[l] > 0 and a[r] == 0. Ini-
tially the interval [l, r] = [0, N-1]. Each iteration decreases the interval size in half, so there
are O(logN) iterations.

(c) Write a C function findk3(int a[ ]) that returns k in O(log k) steps. Give a high-level descrip-
tion of how your function works.

int findk3(int a[ ]) {
int r;
for (r = 1; r < N; r *= 2)

if (a[r] == 0) return find2k(a, 0, r);
return find2k(a, 0, N-1);

}

The key is to first obtain a value r that is within a factor of 2 of k. Then, we binary search on
the interval [0, r] to find k. This interval is of size at most 2k, so it takes O(log k) steps. We
find the value r using geometric doubling. At each iteration we increase r by a factor of 2 as long
as a[r] != 0. Thus, we find a value r such that a[r/2] > 0 and a[r] == 0. Now, r/2 < k ≤ r
as desired.
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17. Write a Java class Circle for circles. Represent a circle by its center point and its radius. Use
class Point from Lecture for Euclidean points. Implement method boolean contains(Point p)
that returns true if the Point p is properly contained inside the circle, and false otherwise. Then,
implement method double dist(Point p): if p is contained in the circle return 0.0; otherwise return
the Euclidean distance between p and the nearest point on the boundary of the circle. (Do not worry
about writing a constructor.)

class Point {
private double x, y;

Point(double x, double y) {
this.x = x; this.y = y;

}

double dist(Point p) {
double dx = this.x - p.x;
double dy = this.y - p.y;
return Math.sqrt(dx*dx + dy*dy);

}
}

class Circle {
private Point center;
private double radius;

public boolean contains(Point p) {
return (center.dist(p) < radius);

}

public double dist(Point p) {
if (contains(p)) return 0.0;
return center.dist(p) - radius;

}
}
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