euclidclientl.py (Page 1 of 1)
#!/usr/bin/env python

#

euclidclientl.py

#

1
2
3
4:
5: # Author: Bob Dondero
6
7
8: import sys

9

10: #-—- - - - - - -
11

12: def ged (i, 3Jj)

14 i = abs (i)

15: Jj = abs (J)

16: while j != 0: # Euclid’s algorithm

17: i, 3 =3, 1%3

18: return i

19:

20: #--

21:

22: def lem(i, J):

23:

24: i = abs (i)

25: j = abs (J)

26: return (i // gcd(i, 3J)) * 3

27:

28: #-—— - - - - - -
29:

30: def main():

31:

32: try:

33: line = input ('Enter the first integer: ')
34: i = int (line)

35:

36: line = input ('Enter the second integer: ')
37: j = int (line)

38:

39: my_gcd = gcd (i, 3Jj)

40: print (‘ged:’, my_gcd)

41:

42 my_lcm = lcm(i, 3Jj)

43: print ('lem:’, my_lcm)

44:

45: except ValueError:

46: print ('Error: Not an integer’, file=sys.stderr)
47: sys.exit (1)

48: except EOFError:

49: print ('Error: Missing integer’, file=sys.stderr)
50: sys.exit (1)

51

52: if _ name_ == '_main__':

53: main ()

The Python Language (Part 3): Page 1 of 6

euclidclient2.py (Page 1 of 1)
1: #!/usr/bin/env python

2

3: #

4: # euclidclient2.py

5: # Author: Bob Dondero

6: #

7:

8: import sys

9:

10: # - - - - - - -
11:

12: def ged(i, Jj):

13:

14: if (1 == 0) and (j == 0):

15: raise ZeroDivisionError (

16: "ged (i, j) is undefined if i and j are 0')
17: i = abs (i)

18: j = abs (3)

19: while j != 0: # Euclid’s algorithm
20: i, 3 =3, 1%3
21: return i
22:
23: #
24:
25: def lem(i, j):
26:
27: if (1 == 0) or (j == 0):
28: raise ZeroDivisionError (
29: "lem(i, j) is undefined if i or j is 0')
30: i = abs (1)
31: j = abs (3)
32: return (i // gcd(i, 3)) * 3
33:
34: # - - - - -
35
36: def main() :
37:
38: try:
39: line = input ('Enter the first integer: ')
40: i = int (line)
41
42 line = input ('Enter the second integer: ')
43: j = int (line)
44:
45: my_gcd = gcd (i, 3J)
46: print (‘ged:’, my_gcd)
47
48: my_lcm = lcm (i, 3Jj)
49: print ("lem:’, my_lcm)
50
51: except ValueError:
52: print ('Error: Not an integer’, file=sys.stderr)
53: sys.exit (1)
54: except EOFError:
55: print ('Error: Missing integer’, file=sys.stderr)
56: sys.exit (1)
57: except ZeroDivisionError as ex:
58: print (str(ex), file=sys.stderr)
59: sys.exit (1)

60

61l: if _ name__ == '_main__':

62: main ()

euclid.py (Page 1 of 1)

#!/usr/bin/env python

#

euclid.py
Author: Bob Dondero
#

def gecd (i, 3J):

if (1 == 0) and (j == 0):
raise ZeroDivisionError (
'ged(i, j) is undefined if i and j are 0’)
i = abs (1)

j = abs(3)
while j != 0: # Euclid’s algorithm
1,03 = 3, 1%3

return 1

def lem(i, 3J):

if (1 == 0) or (j == 0):
raise ZeroDivisionError (
’lem(i, j) is undefined if i or j is 0')
i = abs (i)
j = abs(3)
return (i // gcd(i, J)) * 3

The Python Language (Part 3): Page 2 of 6

euclidclient3.py (Page 1 of 1)

#!/usr/bin/env python

#

euclidclient3.py
Author: Bob Dondero

#

import sys
import euclid

def main () :

if

try:
line = input ('Enter the first integer: ')
i = int(line)

line = input ('Enter the second integer: ')
j = int (line)

my_gcd = euclid.gcd(i, Jj)
print (‘ged:’, my_gcd)

my_lcm = euclid.lcm(i, 3J)
print (‘lem:’, my_lcm)

except ValueError:
print ('Error: Not an integer’, file=sys.stderr)
sys.exit (1)
except EOFError:
print ('Error: Missing integer’, file=sys.stderr)
sys.exit (1)
except ZeroDivisionError as ex:
print (str(ex), file=sys.stderr)
sys.exit (1)
__name___ == '__main
main ()

The Python Language (Part 3): Page 3 of 6

intmath/__init__.py (Page 1 of 1) intmath/euclid.py (Page 1 of 1)
1: #!/usr/bin/env python 1: #!/usr/bin/env python
2: 2:
3: #
4: # euclid.py
5: # Author: Bob Dondero
6: #
7:
8: def ged(i, 3J):
9:
10: if (i == 0) and (j == 0):
11: raise ZeroDivisionError (
12: 'ged(i,j) is undefined if i and j are 0')
13:
14: i = abs (i)
15 j = abs (3j)
16 while j != 0: # Euclid’s algorithm
17: i, § =3, i%3
18: return i
19:
20: #
21:
22: def lem(i, 3J):
23:
24: if (i == 0) or (j == 0):
25: raise ZeroDivisionError (
26: "lem(i, j) is undefined if i or j is 0')
27:
28: i = abs (i)
29: j = abs(3J)

30: return (i // gcd(i, J)) * J

euclidclient4.py (Page 1 of 1)

#!/usr/bin/env python

#

euclidclient4.py
Author: Bob Dondero

#

import sys
import intmath.euclid

def main() :

try:

line = input ('Enter the first integer: ')

i = int (line)

line = input ('Enter the second
j = int (line)

my_gcd = intmath.euclid.gcd (1,
print (‘ged:’, my_gcd)

my_lcm = intmath.euclid.lcm(1i,
print (‘lem:’, my_lcm)

except ValueError:
print ('Error: Not an integer’,
sys.exit (1)

except EOFError:
print ('Error: Missing integer’,
sys.exit (1)

except ZeroDivisionError as ex:
print (str(ex), file=sys.stderr)
sys.exit (1)

if _ name_ == ’_main__':
main ()

integer: ')

3)

3)

file=sys.stderr)

file=sys.stderr)

The Python Language (Part 3): Page 4 of 6

blank (Page 1 of 1)
1: This page is intentionally blank.

fractionprelim.py (Page 1 of 1)
#!/usr/bin/env python

#

fractionprelim.py

#
import euclid
#___

1
2
3
4:
5: # Author: Bob Dondero
6.
7
8
9

10: class Fraction:

11: def __init__ (self, num=0, den=1):

12: if den == 0:

13: raise ZeroDivisionError (' Denominator cannot be 0')
14: self._num = num

15: self._den = den

16: self._normalize ()

17:

18: def _normalize (self):

19: if self._den < O:

20: self._num *= -1

21: self._den *= -1

22: if self._num ==

23: self._den =1

24: else:

25: gcden = euclid.gcd(self._num, self._den)

26: self._num //= gcden

27: self._den //= gcden

28:

29: def to_string(self):

30: if self._den ==

31: return str(self._num)

32: return '%d/%d’ % (self._num, self._den)

33:

34: def equals (self, other):

35: return (self._num == other._num) and (self._den == other._den)
36:

37: def compare_to (self, other):

38: if (self._num * other._den) < (other._num * self._den):
39: return -1

40: if (self._num * other._den) > (other._num * self._den):
41: return 1

42: return 0

43:

44: def negate (self):

45: return Fraction(-self._num, self._den)

46:

47 def add(self, other):

48: new_num = (self._num * other._den) + (other._num * self._den)
49: new_den = self._den * other._den

50: return Fraction (new_num, new_den)

51:

52: def subtract (self, other):

53: new_num = (self._num * other._den) - (other._num * self._den)
54: new_den = self._den * other._den

55: return Fraction (new_num, new_den)

56:

57: def multiply(self, other):

58: new_num = self._num * other._num

59: new_den = self._den * other._den

60: return Fraction (new_num, new_den)

61:

62: def divide (self, other):

63: new_num = self. _num * other._den

64: new_den = self._den * other._num

65: return Fraction (new_num,

new_den)

The Python Language (Part 3): Page 5 of 6

fractionprelimclient.py (Page 1 of 1)
1: #!/usr/bin/env python

#

fractionlclient.py

2

3

4:

5: # Author: Bob Dondero
6: #

7

8

: import sys
9: import fractionprelim as fraction

10:

11: def main():

12:

13: try:

14: line = input (’Numerator 1: ')

15: numl = int (line)

16: line = input ('Denominator 1: ')

17: denl = int (line)

18: line = input (' Numerator 2: ')

19: num2 = int (line)

20: line = input ('Denominator 2: ')

21: den2 = int (line)

22:

23: fracl = fraction.Fraction(numl, denl)

24: print (' fracl:’, fracl.to_string()

25:

26: frac2 = fraction.Fraction(num2, den2)

27: print (' frac2:’, frac2.to_string()

28:

29: if fracl.equals(frac2):

30: print (' fracl equals frac2’)

31: if not fracl.equals(frac2):

32: print (' fracl does not equal frac2’)
33:

34: comparison = fracl.compare_to (frac2)

35: if comparison < O:

36: print (' fracl is less than frac2’)

37: if comparison > O:

38: print (' fracl is greater than frac2’)
39: if comparison <= 0:

40: print (' fracl is less than or equal to frac2’)
41: if comparison >= 0:

42: print (' fracl is greater than or equal to frac2’)
43:

44: frac3 = fracl.negate ()

45: print (' —fracl:’, frac3.to_string()

46:

47: frac3 = fracl.add(frac2)

48: print (' fracl + frac2:’, frac3.to_string()
49:

50: frac3 = fracl.subtract (frac2)

51: print (' fracl - frac2:’, frac3.to_string()
52

53: frac3 = fracl.multiply (frac2)

54: print (' fracl * frac2:’, frac3.to_string()
55:

56: frac3 = fracl.divide (frac2)

57: print (' fracl / frac2:’, frac3.to_string()
58

59: except Exception as ex:

60: print (str(ex), file=sys.stderr)

61: sys.exit (1)

62:

63: # - - - - - -
64: if _ name_ == '_main__':

65 main ()

euclidstrong.py (Page 1 of 1)

#!/usr/bin/env python

#

euclidstrong.py
Author: Bob Dondero
#

def gecd (i, 3J):

if not isinstance (i, int)

raise TypeError (’ged() arguments must be integers’)

if (i == 0) and (j == 0):

or not isinstance(j,

raise ZeroDivisionError (
'ged(i, j) is undefined if i and j are 0’)

i = abs (i)
j = abs(3)
while j != 0: # Euclid’s

i, 3 =3, i%3
return i

algorithm

int) :

def lem (i, j):

if not isinstance (i, int)

raise TypeError (’lem() arguments must be integers’)

if (1 == 0) or (j == 0):

or not isinstance(j,

raise ZeroDivisionError (

"lem(i, j) is undefined if i or j is 0')

i = abs (i)
j = abs (J)
return (i // gcd(i, Jj)) *

3

int) :

The Python Language (Part 3):

Page 6 of 6

